1,302
Views
7
CrossRef citations to date
0
Altmetric
Review Articles

Kombucha analogues around the world: A review

, , , , &
Pages 10105-10129 | Published online: 29 Apr 2022

References

  • Abuduaibifu, A., and C. E. Tamer. 2019. Evaluation of physicochemical and bioaccessibility properties of goji berry kombucha. Journal of Food Processing and Preservation 43 (9):e14077. doi: 10.1111/jfpp.14077.
  • Afiati, F., F. Setiyoningrum, G. Priadi, and C. H. Handoyo. 2020. Characteristics of solo black garlic fermented in kombucha black tea. IOP Conference Series: Earth and Environmental Science 439 (1):012053. doi: 10.1088/1755-1315/439/1/012053.
  • Alderson, H., C. Liu, A. Mehta, H. S. Gala, N. R. Mazive, Y. Chen, Y. Zhang, S. Wang, and L. Serventi. 2021. Sensory profile of kombucha brewed with New Zealand ingredients by focus group and word clouds. Fermentation 7 (3):100. doi: 10.3390/fermentation7030100.
  • Álvarez Ron, F., M. R. de la Rosa, and I. Hernandez. 2021. Development of a no added sugar kombucha beverage based on germinated corn. International Journal of Gastronomy and Food Science 24:100355. doi: 10.1016/j.ijgfs.2021.100355.
  • Antolak, H., D. Piechota, and A. Kucharska. 2021. Kombucha tea—A double power of bioactive compounds from tea and symbiotic culture of bacteria and yeasts (SCOBY). Antioxidants 10 (10):1541. doi: 10.3390/antiox1010154.
  • Artanti, N. A. Susilowati, P. D. N. Aspiyanto, Y. Lotulung, and Y. Maryati. 2017. Antioxidant activity of fermented broccoli and spinach by kombucha culture. Jakarta, Indonesia: 3rd International Symposium on Applied Chemistry. doi: 10.1063/1.5011926.
  • Aspiyanto, A. Susilowati, J. M. Iskandar, H. Melanie, Y. Maryati, and P. D. Lotulung. 2016. Characteristic of fermented spinach (Amaranthus spp.) polyphenol by kombucha culture for antioxidant compound. Tangerang, Indonesia: International Symposium on Applied Chemistry (ISAC). doi: 10.1063/1.4973145.
  • Aung, T., and J. B. Eun. 2021. Production and characterization of a novel beverage from laver (Porphyra dentata) through fermentation with kombucha consortium. Food Chemistry 350:129274. doi: 10.1016/j.foodchem.2021.129274.
  • Aung, T., and J. B. Eun. 2022. Impact of time and temperature on the physicochemical, microbiological, and nutraceutical properties of laver kombucha (Porphyra dentata) during fermentation. LWT - Food Science and Technology 154:112643. doi: 10.1016/j.lwt.2021.112643.
  • Ayed, L., S. Ben-Abid, and M. Hamdi. 2017. Development of a beverage from red grape juice fermented with the Kombucha consortium. Annals of Microbiology 67 (1):111–21. doi: 10.1007/s13213-016-1242-2.
  • Ayed, L., and M. Hamdi. 2015. Manufacture of a beverage from cactus pear juice using “tea fungus” fermentation. Annals of Microbiology 65 (4):2293–9. doi: 10.1007/s13213-015-1071-8.
  • Banerjee, D., S. A. Hassarajani, B. Maity, G. Narayan, S. K. Bandyopadhyay, and S. Chattopadhyay. 2010. Comparative healing property of kombucha tea and black tea against indomethacin-induced gastric ulceration in mice: Possible mechanism of action. Food & Function 1 (3):284–93. doi: 10.1039/c0fo00025f.
  • Battikh, H., A. Bakhrouf, and E. Ammar. 2012. Antimicrobial effect of Kombucha analogues. LWT - Food Science and Technology 47 (1):71–7. doi: 10.1016/j.lwt.2011.12.033.
  • Beth, A. P. 1996. The book of kombucha. Berkeley, CA: Ulysses Press.
  • Četojević-Simin, D. D., A. S. Velićanski, D. D. Cvetković, S. L. Markov, J. Ž. Mrđanović, V. V. Bogdanović, and S. V. Šolajić. 2012. Bioactivity of lemon balm kombucha. Food and Bioprocess Technology 5 (5):1756–65. doi: 10.1007/s11947-010-0458-6.
  • Dufresne, C., and E. Farnworth. 2000. Tea, kombucha, and health: A review. Food Research International 33 (6):409–21. doi: 10.1016/S0963-9969(00)00067-3.
  • Emiljanowicz, K. E., and E. Malinowska-Pańczyk. 2020. Kombucha from alternative raw materials—The review. Critical Reviews in Food Science and Nutrition 60 (19):3185–94. doi: 10.1080/10408398.2019.1679714.
  • Fibrianto, K., E. Zubaidah, N. A. Muliandari, L. Y. Wahibah, S. D. Putri, A. M. Legowo, and A. N. Al-Baarri. 2020. Antioxidant activity optimisation of young Robusta coffee leaf kombucha by modifying fermentation time and withering pre-treatment. IOP Conference Series: Earth and Environmental Science 475 (1):012029. doi: 10.1088/1755-1315/475/1/012029.
  • Gamboa-Gómez, C. I., R. F. González-Laredo, J. A. Gallegos-Infante, P. del Mar Larrosa, M. R. Moreno-Jiménez, A. G. Flores-Rueda, and N. E. Rocha-Guzmán. 2016. Antioxidant and angiotensin-converting enzyme inhibitory activity of Eucalyptus camaldulensis and Litsea glaucescens infusions fermented with Kombucha consortium. Food Technology and Biotechnology 54 (3):367–74. doi:10.17113/ftb.54.03.16.4622.
  • Gamboa-Gómez, C. I., L. E. Simental-Mendía, R. F. González-Laredo, E. J. Alcantar-Orozco, V. H. Monserrat-Juarez, J. C. Ramírez-España, J. A. Gallegos-Infante, M. R. Moreno-Jiménez, and N. E. Rocha-Guzmán. 2017. In vitro and in vivo assessment of anti-hyperglycemic and antioxidant effects of Oak leaves (Quercus convallata and Quercus arizonica) infusions and fermented beverages. Food Research International 102:690–9. doi: 10.1016/j.foodres.2017.09.040.
  • Greenwalt, C. J., K. H. Steinkraus, and R. A. Ledford. 2000. Kombucha, the fermented tea: Microbiology, composition, and claimed health effects. Journal of Food Protection 63 (7):976–81. doi: 10.4315/0362-028x-63.7.976.
  • Hesseltine, C. W. 1965. A millennium of fungi, food, and fermentation. Mycologia 57 (2):149–97. doi: 10.1080/00275514.1965.12018201.
  • Hou, J., R. Luo, H. Ni, K. Li, F. C. Mgomi, L. Fan, and L. Yuan. 2021. Antimicrobial potential of kombucha against foodborne pathogens: A review. Quality Assurance and Safety of Crops & Foods 13 (3):53–61. doi: 10.15586/qas.v13i3.920.
  • Hrnjez, D., Ž. Vaštag, S. Milanović, V. Vukić, M. Iličić, L. Popović, and K. Kanurić. 2014. The biological activity of fermented dairy products obtained by kombucha and conventional starter cultures during storage. Journal of Functional Foods 10:336–45. doi: 10.1016/j.jff.2014.06.016.
  • Iličić, M., K. Kanurić, S. Milanović, E. Lončar, M. Djurić, and R. Malbaša. 2012. Lactose fermentation by Kombucha–a process to obtain new milk–based beverages. Romanian Biotechnological Letters 17 (1):7013–7021.
  • Jayabalan, R., R. V. Malbaša, E. S. Lončar, J. S. Vitas, and M. Sathishkumar. 2014. A review on kombucha tea: Microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. Comprehensive Reviews in Food Science and Food Safety 13 (4):538–50. doi: 10.1111/1541-4337.12073.
  • Kabiri, N., and M. Setorki. 2016. Protective effect of kombucha tea on brain damage induced by transient cerebral ischemia and reperfusion in rat. Bangladesh Journal of Pharmacology 11 (3):675–83. doi: 10.3329/bjp.v11i3.27014.
  • Kanurić, K. G., S. D. Milanović, B. B. Ikonić, E. S. Lončar, M. D. Iličić, V. R. Vukić, and D. V. Vukić. 2018. Kinetics of lactose fermentation in milk with kombucha starter. Journal of Food and Drug Analysis 26 (4):1229–34. doi: 10.1016/j.jfda.2018.02.002.
  • Khosravi, S., M. Safari, Z. Emam-Djomeh, and M.-T. Golmakani. 2019. Development of fermented date syrup using kombucha starter culture. Journal of Food Processing and Preservation 43 (2):e13872. doi: 10.1111/jfpp.13872.
  • Kim, J., and K. Adhikari. 2020. Current trends in kombucha: Marketing perspectives and the need for improved sensory research. Beverages 6 (1):15. doi: 10.3390/beverages6010015.
  • Kruk, M., M. Trząskowska, I. Ścibisz, and P. Pokorski. 2021. Application of the “SCOBY” and kombucha tea for the production of fermented milk drinks. Microorganisms 9 (1):123–17. doi: 10.3390/microorganisms9010123.
  • Laavanya, D., S. Shirkole, S, and P. Balasubramanian. 2021. Current challenges, applications and future perspectives of SCOBY cellulose of Kombucha fermentation. Journal of Cleaner Production 295:126454. doi: 10.1016/j.jclepro.2021.126454.
  • Leal, J. M., L. Valenzuela Suárez, R. Jayabalan, J. Huerta Oros, and A. Escalante-Aburto. 2018. A review on health benefits of kombucha nutritional compounds and metabolites. CyTA - Journal of Food 16 (1):390–9. doi: 10.1080/19476337.2017.1410499.
  • Leonarski, E., K. Cesca, E. Zanella, B. U. Stambuk, D. Oliveira, and P. Poletto. 2021. Production of kombucha-like beverage and bacterial cellulose by acerola byproduct as raw material. LWT 135:110075. doi: 10.1016/j.lwt.2020.110075.
  • Lopes, D. R., L. O. Santos, and C. Prentice-Hernández. 2021. Antioxidant and antibacterial activity of a beverage obtained by fermentation of yerba-maté (Ilex paraguariensis) with symbiotic kombucha culture. Journal of Food Processing and Preservation 45 (2):1–10. doi: 10.1111/jfpp.15101.
  • Malbaša, R., J. Vitas, E. Lončar, J. Grahovac, and S. Milanović. 2014. Optimization of the antioxidant activity of kombucha fermented milk products. Czech Journal of Food Sciences 32 (5):477–84. doi: 10.17221/447/2013-CJFS.
  • Malbaša, R. V., S. D. Milanović, E. S. Lončar, M. S. Djurić, M. Đ. Carić, M. D. Iličić, and L. Kolarov. 2009. Milk-based beverages obtained by Kombucha application. Food Chemistry 112 (1):178–84. doi: 10.1016/j.foodchem.2008.05.055.
  • Markov, S. L., D. D. Cvetkovic, and A. Velicanski. 2012. The availability of a lactose medium for tea fungus culture and Kombucha fermentation. Archives of Biological Sciences 64 (4):1439–47. doi: 10.2298/ABS1204439M.
  • Marsh, A. J., O. O’Sullivan, C. Hill, R. P. Ross, and P. D. Cotter. 2014. Sequence-based analysis of the bacterial and fungal compositions of multiple kombucha (tea fungus) samples. Food Microbiology 38:171–8. doi: 10.1016/j.fm.2013.09.003.
  • Miranda, J. F., L. F. Ruiz, C. B. Silva, T. M. Uekane, K. A. Silva, A. Gonzalez, F. Fernandes, and A. R. Lima. 2022. Kombucha: A review of substrates, regulations, composition, and biological properties. Journal of Food Science 87 (2):503–27. doi: 10.1111/1750-3841.16029.
  • Mohd Roby, B. H., B. J. Muhialdin, M. Abadl, N. A. Mat Nor, A. A. Marzlan, S. Lim, S. N. A. Mustapha, and A. S. Meor Hussin. 2020. Physical properties, storage stability, and consumer acceptability for sourdough bread produced using encapsulated kombucha sourdough starter culture. Journal of Food Science 85 (8):2286–95. doi: 10.1111/1750-3841.15302.
  • Morales, D. 2020. Biological activities of kombucha beverages: The need of clinical evidence. Trends in Food Science & Technology 105:323–33. doi: 10.1016/j.tifs.2020.09.025.
  • Moreno-Jiménez, M. R., N. E. Rocha-Guzmán, R. Quiñones, J. Guadalupe, D. Medrano-Núñez, J. A. Rojas-Contreras, R. F. González-Laredo, and J. A. Gallegos-Infante. 2018. Polyphenolic profile, sugar consumption and organic acids generation along fermentation of infusions from guava (Pisidium guajava) by the Kombucha consortium. Recent Research in Science and Technology 10:16–22. doi: 10.25081/rrst.2018.10.3399.
  • Morshedi, A., M. H. Dashti, M. H. Mosaddegh, A. Rafati, and A. S. Salami. 2006. Chronic effect of kombucha tea consumption on weight loss in diabetic rats. Journal of Medicinal Plants 5 (2):17–32.
  • Mousavi, S. M., S. A. Hashemi, M. Zarei, A. Gholami, C. W. Lai, W. H. Chiang, N. Omidifar, S. Bahrani, and S. Mazraedoost. 2020. Recent progress in chemical composition, production, and pharmaceutical effects of kombucha beverage: A complementary and alternative medicine. Evidence-Based Complementary and Alternative Medicine 2020:1–14. doi: 10.1155/2020/4397543.
  • Muzaifa, M., R. Andini, M. I. Sulaiman, F, and Rahmi, N. 2021. Novel utilization of coffee processing by-products: Kombucha cascara originated from ‘Gayo-Arabica’. IOP Conf. Series: Earth and Environmental Science 644:012048. doi: 10.1088/1755-1315/644/1/012048.
  • Nizioł-Łukaszewska, Z., A. Ziemlewska, T. Bujak, M. Zagórska-Dziok, M. Zarebska, Z. Hordyjewicz-Baran, and T. Wasilewski. 2020. Effect of fermentation time on antioxidant and anti-ageing properties of green coffee kombucha ferments. Molecules 25 (5394):1–26.
  • Nurliyani, Indratiningsih, Widodo, S. Sukarno, and F. Suciati. 2019. Characteristics of fermented goat milk using combination of kombucha and Lactobacillus casei starters. IOP Conference Series: Earth and Environmental Science 327 (1):012077. doi: 10.1088/1755-1315/387/1/012077.
  • Permatasari, H. K., F. Nurkolis, P. S. Augusta, N. Mayulu, M. Kuswari, N. A. Taslim, D. S. Wewengkang, S. C. Batubara, and W. Ben Gunawan. 2021. Kombucha tea from seagrapes (Caulerpa racemosa) potential as a functional anti-ageing food: In vitro and in vivo study. Heliyon 7 (9):e07944. doi: 10.1016/j.heliyon.2021.e07944.
  • Pure, A. E., and M. E. Pure. 2016a. Antioxidant, antibacterial and color analysis of garlic fermented in kombucha and red grape vinegar. Applied Food Biotechnology 3 (4):246–52.
  • Pure, A. E., and M. E. Pure. 2016b. Antioxidant and antibacterial activity of kombucha beverages prepared using banana peel, common nettles and black tea infusions. Applied Food Biotechnology 3 (2):125–30.
  • Rahmani, R., S. Beaufort, S. A. Villarreal-Soto, P. Taillandier, J. Bouajila, and M. Debouba. 2019. Kombucha fermentation of African mustard (Brassica tournefortii) leaves: Chemical composition and bioactivity. Food Bioscience 30:100414. doi: 10.1016/j.fbio.2019.100414.
  • Sarkaya, P., E. Akan, and O. Kinik. 2021. Use of kombucha culture in the production of fermented dairy beverages. LWT 137:110326. doi: 10.1016/j.lwt.2020.110326.
  • Savary, O., J. Mounier, A. Thierry, E. Poirier, J. Jourdren, M.-B. Maillard, M. Penland, C. Decamps, E. Coton, and M. Coton. 2021. Tailor-made microbial consortium for Kombucha fermentation: Microbiota-induced biochemical changes and biofilm formation. Food Research International 147:110549. doi: 10.1016/j.foodres.2021.110549.
  • Sharifudin, S. A., W. Y. Ho, S. K. Yeap, R. Abdullah, and P. S. Koh. 2021. Fermentation and characterisation of potential kombucha cultures on papaya-based substrates. LWT 151:112060. doi: 10.1016/j.lwt.2021.112060.
  • Shenoy, C. K. 2000. Hypoglycemic activity of bio-tea in mice. Indian Journal of Experimental Biology 38 (3):278–9.
  • Silva, K. A., T. M. Uekane, J. F. Miranda, L. F. Ruiz, J. Motta, C. B. Silva, N. Pitangui, A. Gonzalez, F. F. Fernandes, and A. R. Lima. 2021. Kombucha beverage from non-conventional edible plant infusion and green tea: Characterization, toxicity, antioxidant activities and antimicrobial properties. Biocatalysis and Agricultural Biotechnology 34:102032. doi: 10.1016/j.bcab.2021.102032.
  • Silva Júnior, J. C., M. da, W. K. Magnani, M. S. Almeida da Costa, L. Madruga, G. Souza Olegário, A. da Silva Campelo Borges, M. Macedo Dantas, S. d. Lima, L. C. de Lima, et al. 2021. Traditional and flavored kombuchas with pitanga and umbu-cajá pulps: Chemical properties, antioxidants, and bioactive compounds. Food Bioscience 44:101380. doi: 10.1016/j.fbio.2021.101380.
  • Sknepnek, A., S. Tomić, D. Miletić, S. Lević, M. Čolić, V. Nedović, and M. Nikšić. 2021. Fermentation characteristics of novel Coriolus versicolor and Lentinus edodes kombucha beverages and immunomodulatory potential of their polysaccharide extracts. Food Chemistry 342:128344. doi: 10.1016/j.foodchem.2020.128344.
  • Soares, M. G., M. de Lima, and V. Schmidt. 2021. Technological aspects of kombucha, its applications and the symbiotic culture (SCOBY), and extraction of compounds of interest: A literature review. Trends in Food Science & Technology 110:539–50. doi: 10.1016/j.tifs.2021.02.017.
  • Tan, J., X. Zhou, S. Cheng, Z. Chen, Y. Gou, J. Ye, and F. Xu. 2019. Biocontrol of pear postharvest decay by kombucha. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 47 (3):668–75. doi: 10.15835/nbha47311407.
  • Torán-Pereg, P., B. del Noval, S. Valenzuela, J. Martinez, D. Prado, R. Perisé, J. C, and Arboleya, J. C. 2021. Microbiological and sensory characterization of kombucha SCOBY for culinary applications. International Journal of Gastronomy and Food Science 23:100314. doi: 10.1016/j.ijgfs.2021.100314.
  • Tu, C., S. Tang, F. Azi, W. Hu, and M. Dong. 2019. Use of kombucha consortium to transform soy whey into a novel functional beverage. Journal of Functional Foods 52:81–9. doi: 10.1016/j.jff.2018.10.024.
  • Uțoiu, E., F. Matei, A. Toma, C. Diguță, L. Ștefan, S. Mănoiu, V. Vrăjmașu, I. Moraru, A. Oancea, F. Israel-Roming, et al. 2018. Bee collected pollen with enhanced health benefits, produced by fermentation with a Kombucha consortium. Nutrients 10 (10):1365. ( doi: 10.3390/nu10101365.
  • Vazquez-Cabral, B. D., M. Larrosa-Perez, J. A. Gallegos-Infante, M. R. Moreno-Jimenez, R. F. Gonzalez-Laredo, J. G. Rutiaga-Quinones, C. I. Gamboa-Gomez, and N. E. Rocha-Guzman. 2017. Oak kombucha protects against oxidative stress and inflammatory processes. Chemico-Biological Interactions 272:1–9. doi: 10.1016/j.cbi.2017.05.001.
  • Velićanski, A., D. Cvetković, and S. Markov. 2013. Characteristics of Kombucha fermentation on medicinal herbs from Lamiaceae family. Romanian Biotechnological Letters 18 (1):8034–42.
  • Villarreal-Soto, S. A., S. Beaufort, J. Bouajila, J. P. Souchard, and P. Taillandier. 2018. Understanding kombucha tea fermentation: A review. Journal of Food Science 83 (3):580–8. doi: 10.1111/1750-3841.14068.
  • Villarreal-Soto, S. A., J. Bouajila, M. Pace, J. Leech, P. D. Cotter, J. P. Souchard, P. Taillandier, and S. Beaufort. 2020. Metabolome-microbiome signatures in the fermented beverage, Kombucha. International Journal of Food Microbiology 333:108778. doi: 10.1016/j.ijfoodmicro.2020.108778.
  • Vitas, J., R. Malbasa, J. Grahovac, and E. Loncar. 2013. The antioxidant activity of kombucha fermented milk products with stinging nettle and winter savory. Chemical Industry and Chemical Engineering Quarterly 19 (1):129–39. doi: 10.2298/CICEQ120205048V.
  • Vitas, J. S., A. D. Cvetanović, P. Z. Mašković, V. Švarc-Gajić, V. Jaroslava, R. V, and Malbaša, R. V. 2018. Chemical composition and biological activity of novel types of kombucha beverages with yarrow. Journal of Functional Foods 44:95–102. doi: 10.1016/j.jff.2018.02.019.
  • Vitas, J. S., S. Z. Vukmanović, R. V. Malbaša, and A. Horecki. 2019. Influence of process temperature on ethanol content in kombucha products obtained by fermentation of flotated must effluent. Acta Periodica Technologica 50 (50):311–5. doi: 10.2298/APT1950331V.
  • Vitas, M. K., S. Banjac, S. Kovačević, L. Vukmanović, R. V. Jevrić, S. Malbaša, and Podunavac-Kuzmanović, J. S. 2021. Chemometric approach to quality characterization of milk-based kombucha beverages. Mljekarstvo 71 (2):83–94. doi: 10.15567/mljekarstvo.2021.0201.
  • Vukić, V., M. Iličić, D. Vukić, S. Kocić-Tanackov, B. Pavlić, M. Bjekić, K. Kanurić, J. Degenek, and Z. Zeković. 2021. The application of kombucha inoculum as an innovative starter culture in fresh cheese production. Lwt 151:112142. doi: 10.1016/j.lwt.2021.112142.
  • Vukić, V. R., D. V. Hrnjez, K. G. Kanuric, S. D. Milanovic, M. D. Iličic, A. M. Torbica, and J. M. Tomic. 2014. The effect of kombucha starter culture on the gelation process, microstructure and rheological properties during milk fermentation: Effect of kombucha on milk fermentation. Journal of Texture Studies 45 (4):261–73. doi: 10.1111/jtxs.12071.
  • Vukmanović, S., J. Vitas, and R. Malbaša. 2020. Valorization of winery effluent using kombucha culture. Journal of Food Processing and Preservation 44 (8):e14627. doi: 10.1111/jfpp.14627.
  • Waisundara, V. Y. 2018. Usage of kombucha ‘tea fungus’ for enhancement of functional properties of herbal beverages. In Frontiers and new trends in the science of fermented food and beverages, ed. R. L. Solís-Oviedo and A. De La Cruz Pech-Canul, 1–14. London, United Kingdom: IntechOpen. doi: 10.5772/intechopen.80873.
  • Watawana, M. I., N. Jayawardena, C. B. Gunawardhana, and V. Y. Waisundara. 2015. Health, wellness, and safety aspects of the consumption of kombucha. Journal of Chemistry 2015:1–11. doi: 10.1155/2015/591869.
  • Watawana, M. I., N. Jayawardena, C. B. Gunawardhana, and V. Y. Waisundara. 2016. Enhancement of the antioxidant and starch hydrolase inhibitory activities of king coconut water (Cocos nucifera var. Aurantiaca) by fermentation with kombucha ‘tea fungus’. International Journal of Food Science & Technology 51 (2):490–8. doi: 10.1111/ijfs.13006.
  • Watawana, M. I., N. Jayawardena, and V. Y. Waisundara. 2015. Enhancement of the functional properties of coffee through fermentation by “tea fungus” (kombucha). Journal of Food Processing and Preservation 39 (6):2596–603. doi: 10.1111/jfpp.12509.
  • Wispen, S. C. Santivrangkana, P. Somsong, P. Tiyayon, and W. Srichamnong. 2020. Development of kombucha and its functional property from agricultural waste (fermented tea broth). ICoFAB. Proceedings. https://techno2.msu.ac.th/icofab/wp-content/uploads/2020/08/03-DEVELOPMENT-OF-KOMBUCHA-AND-ITS-FUNCTIONAL-PROPERTY-FROM-AGRICULTURAL-WASTE-FERMENTED-TEA-BROTH.pdf
  • Wongthai, N., W. Tanticharakunsiri, S. Mangmool, and D. Ochaikul. 2021. Characteristics and antioxidant activity of royal lotus pollen, butterfly pea flower, and oolong tea kombucha beverages. Asia-Pacific Journal of Science and Technology 26 (04).
  • Xia, X., Y. Dai, H. Wu, X. Liu, Y. Wang, L. Yin, Z. Wang, X. Li, and J. Zhou. 2019. Kombucha fermentation enhances the health-promoting properties of soymilk beverage. Journal of Functional Foods 62:103549. doi: 10.1016/j.jff.2019.103549.
  • Yildiz, E., M. Guldas, and O. Gurbuz. 2021. Determination of in-vitro phenolics, antioxidant capacity and bioaccessibility of Kombucha tea produced from black carrot varieties grown in Turkey. Food Science and Technology 41 (1):180–7. doi: 10.1590/fst.00320.
  • Yıkmış, S., and S. Tuğgüm. 2019. Evaluation of microbiological, physicochemical and sensorial properties of purple basil kombucha beverage. Turkish Journal of Agriculture - Food Science and Technology 7 (9):1321–7. doi: 10.24925/turjaf.v7i9.1321-1327.2550.
  • Zhang, S., M. Cheng, L. Zhidi, G. Shimin, C. Baoguo, L. Qianqian, and R. Shaofeng. 2020. Composition and biological activity of rose and jujube kernel after fermentation with kombucha SCOBY. Journal of Food Processing and Preservation 44 (10):1–11. doi: 10.1111/jfpp.14758.
  • Zhang, J., J. Cheng, L. Van Mullem, D. R. Dias, and R. F. Schwan. 2021. The chemistry and sensory characteristics of new herbal tea‐based kombuchas. Journal of Food Science 86 (3):740–8. doi: 10.1111/1750-3841.15613.
  • Zhiwen, W., S. Yijiao, M. Xianhua, L. Kai, and Y. Fahu. 2021. Production and characterization of a novel beverage from maize silk through fermentation with Kombucha consortium. IOP Conference Series: Earth and Environmental Science. 792 (1):012053. doi: 10.1088/1755-1315/792/1/012053.
  • Zhixin, L. J. Hongting, C. Zhongqiang, Z. Yin, and Y. Fahu. 2021. Characteristics and upregulation of antioxidant capacity of fermented Pueraria starch production wastewater with kombucha consortium. E3S Web of Conferences 251:02054. doi: 10.1051/e3sconf/202125102054.
  • Zubaidah, E., C. A. Afgani, U. Kalsum, I. Srianta, and P. J. Blanc. 2019. Comparison of in vivo antidiabetes activity of snake fruit kombucha, black tea kombucha and metformin. Biocatalysis and Agricultural Biotechnology 17:465–9. doi: 10.1016/j.bcab.2018.12.026.
  • Zubaidah, E., F. J. Dewantari, F. R. Novitasari, I. Srianta, and P. J. Blanc. 2018. Potential of snake fruit (Salacca zalacca (Gaerth.) Voss) for the development of a beverage through fermentation with the Kombucha consortium. Biocatalysis and Agricultural Biotechnology 13:198–203. doi: 10.1016/j.bcab.2017.12.012.
  • Zubaidah, E., A. R. Iastika, T. D. Widyaningsih, and K. Febrianto. 2021. Immunomodulatory activity of black tea kombucha (Camellia sinensis) and Arabica coffee leaves tea kombucha (Coffee arabica) for Salmonella typhi-infected mice. IOP Conference Series: Earth and Environmental Science 733 (1):012128. doi: 10.1088/1755-1315/733/1/012128.
  • Zubaidah, E., R. A. Ifadah, and C. A. Afgani. 2019. Changes in chemical characteristics of kombucha from various cultivars of snake fruit during fermentation. IOP Conference Series: Earth and Environmental Science 230:012098. doi: 10.1088/1755-1315/230/1/012098.
  • Zubaidah, E., S. Yurista, and N. R. Rahmadani. 2018. Characteristic of physical, chemical, and microbiological kombucha from various varieties of apples. IOP Conference Series: Earth and Environmental Science 131 (1):012040. doi: 10.1088/1755-1315/131/1/012040.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.