1,228
Views
7
CrossRef citations to date
0
Altmetric
Review Articles

An updated and comprehensive review on the potential health effects of curcumin-encapsulated micro/nanoparticles

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Ahmadi, R., S. Salari, M. D. Sharifi, H. Reihani, M. Bagher Rostamiani, M. Behmadi, Z. Taherzadeh, S. Eslami, S. M. Rezayat, M. R. Jaafari, et al. 2021. Oral nano-curcumin formulation efficacy in the management of mild to moderate outpatient COVID-19: A randomized triple-blind placebo-controlled clinical trial. Food Science & Nutrition 9:4068–75. doi: 10.1002/fsn3.2226.
  • Akbari, J., M. Saeedi, R. Enayatifard, K. Morteza-Semnani, S. M. Hassan Hashemi, A. Babaei, S. M. Rahimnia, S. S. Rostamkalaei, and A. Nokhodchi. 2020. Curcumin Niosomes (curcusomes) as an alternative to conventional vehicles: A potential for efficient dermal delivery. Journal of Drug Delivery Science and Technology 60:102035. doi: 10.1016/j.jddst.2020.102035.
  • Akolade, J. O., H. O. B. Oloyede, and P. C. Onyenekwe. 2017. Encapsulation in chitosan-based polyelectrolyte complexes enhances antidiabetic activity of curcumin. Journal of Functional Foods 35:584–94. doi: 10.1016/j.jff.2017.06.023.
  • Ali, K. A., M. M. El-Naa, A. F. Bakr, M. Y. Mahmoud, E. M. Abdelgawad, and M. Y. Matoock. 2022. The dual gastro- and neuroprotective effects of curcumin loaded chitosan nanoparticles against cold restraint stress in rats. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 148:112778. doi: 10.1016/j.biopha.2022.112778.
  • Ameruoso, A., R. Palomba, A. L. Palange, A. Cervadoro, A. Lee, D. Di Mascolo, and P. Decuzzi. 2017. Ameliorating amyloid-β fibrils triggered inflammation via curcumin-loaded polymeric nanoconstructs. Frontiers in Immunology 8:1411. doi: 10.3389/fimmu.2017.01411.
  • Anubala, S., R. Sekar, and K. Nagaiah. 2016. Determination of curcuminoids and their degradation products in turmeric (Curcuma longa) rhizome herbal products by non-aqueous capillary electrophoresis with photodiode array detection. Food Analytical Methods 9 (9):2567–78. doi: 10.1007/s12161-016-0438-1.
  • Ariamoghaddam, A. r., B. Ebrahimi-Hosseinzadeh, A. Hatamian-Zarmi, and R. Sahraeian. 2018. In vivo anti-obesity efficacy of curcumin loaded nanofibers transdermal patches in high-fat diet induced obese rats. Materials Science & Engineering, C: Materials for Biological Applications 92:161–71. doi: 10.1016/j.msec.2018.06.030.
  • Bao, C., P. Jiang, J. Chai, Y. Jiang, D. Li, W. Bao, B. Liu, B. Liu, W. Norde, and Y. Li. 2019. The delivery of sensitive food bioactive ingredients: Absorption mechanisms, influencing factors, encapsulation techniques and evaluation models. Food Research International (Ottawa, ON.) 120:130–40. doi: 10.1016/j.foodres.2019.02.024.
  • Barik, A., B. Mishra, A. Kunwar, and K. I. Priyadarsini. 2007. Interaction of curcumin with human serum albumin: Thermodynamic properties, fluorescence energy transfer and denaturation effects. Chemical Physics Letters 436:239–43. doi: 10.1016/j.cplett.2007.01.006.
  • Bateni, Z., V. Behrouz, H. R. Rahimi, M. Hedayati, S. Afsharian, and G. Sohrab. 2022. Effects of nano-curcumin supplementation on oxidative stress, systemic inflammation, adiponectin, and NF-κB in patients with metabolic syndrome: A randomized, double-blind clinical trial. Journal of Herbal Medicine 31:100531. doi: 10.1016/j.hermed.2021.100531.
  • Bhawana, R. K. Basniwal, H. S. Buttar, V. K. Jain, and N. Jain. 2011. Curcumin nanoparticles: Preparation, characterization, and antimicrobial study. Journal of Agricultural and Food Chemistry 59:2056–61. doi: 10.1021/jf104402t.
  • Bisht, S., G. Feldmann, S. Soni, R. Ravi, C. Karikar, A. Maitra, and A. Maitra. 2007. Polymeric nanoparticle-encapsulated curcumin ("nanocurcumin"): A novel strategy for human cancer therapy. Journal of Nanobiotechnology 5:3–18. doi: 10.1186/1477-3155-5-3.
  • Bollimpelli, V. Satish, P. Kumar, S. Kumari, and A. K. Kondapi. 2016. Neuroprotective effect of curcumin-loaded lactoferrin nano particles against rotenone induced neurotoxicity. Neurochemistry International 95:37–45. doi: 10.1016/j.neuint.2016.01.006.
  • Casadey, R., M. Broglia, C. Barbero, S. Criado, and C. Rivarola. 2020. Controlled release systems of natural phenolic antioxidants encapsulated inside biocompatible hydrogels. Reactive and Functional Polymers 156:104729. doi: 10.1016/j.reactfunctpolym.2020.104729.
  • Chang, C., T. G. Meikle, C. J. Drummond, Y. Yang, and C. E. Conn. 2021. Comparison of cubosomes and liposomes for the encapsulation and delivery of curcumin. Soft Matter 17 (12):3306–13. doi: 10.1039/D0SM01655A.
  • Chauhan, P., A. Kumar Tamrakar, S. Mahajan, and G. B. K. S. Prasad. 2018. Chitosan encapsulated nanocurcumin induces GLUT-4 translocation and exhibits enhanced anti-hyperglycemic function. Life Sciences 213:226–35. doi: 10.1016/j.lfs.2018.10.027.
  • Chávez-Zamudio, R., A. A. Ochoa-Flores, I. Soto-Rodríguez, R. Garcia-Varela, and H. S. García. 2017. Preparation, characterization and bioavailability by oral administration of O/W curcumin nanoemulsions stabilized with lysophosphatidylcholine. Food & Function 8 (9):3346–54. doi: 10.1039/C7FO00933J.
  • Chen, S., L. Ge, H. Wang, Y. Cheng, S. Gorantla, L. Y. Poluektova, A. F. Gombart, and J. Xie. 2019. Eluted 25-hydroxyvitamin D3 from radially aligned nanofiber scaffolds enhances cathelicidin production while reducing inflammatory response in human immune system-engrafted mice. Acta Biomaterialia 97:187–99. doi: 10.1016/j.actbio.2019.08.005.
  • Cheng, K. K., P. S. Chan, S. Fan, S. M. Kwan, K. L. Yeung, Y.-X J. Wáng, A. H. L. Chow, E. X. Wu, and L. Baum. 2015. Curcumin-conjugated magnetic nanoparticles for detecting amyloid plaques in Alzheimer’s disease mice using magnetic resonance imaging (MRI). Biomaterials 44:155–72. doi: 10.1016/j.biomaterials.2014.12.005.
  • Dhillon, N., B. B. Aggarwal, R. A. Newman, R. A. Wolff, A. B. Kunnumakkara, J. L. Abbruzzese, C. S. Ng, V. Badmaev, and R. Kurzrock. 2008. Phase II trial of curcumin in patients with advanced pancreatic cancer. Clinical Cancer Research 14 (14):4491–9. doi: 10.1158/1078-0432.CCR-08-0024.
  • Dima, C., E. Assadpour, S. Dima, and S. M. Jafari. 2020. Bioavailability and bioaccessibility of food bioactive compounds; overview and assessment by in vitro methods. Comprehensive Reviews in Food Science and Food Safety 19 (6):2862–84. doi: 10.1111/1541-4337.12623.
  • Doggui, S., J. Kaur Sahni, M. Arseneault, L. Dao, and C. Ramassamy. 2012. Neuronal uptake and neuroprotective effect of curcumin-loaded PLGA nanoparticles on the human SK-N-SH cell line. Journal of Alzheimer’s Disease: JAD 30 (2):377–92. doi: 10.3233/JAD-2012-112141.
  • Dourado, D., D. T. Freire, D. T. Pereira, L. Amaral-Machado, É. N. Alencar, A. L. B. de Barros, and E. S. T. Egito. 2021. Will curcumin nanosystems be the next promising antiviral alternatives in COVID-19 treatment trials? Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 139:111578. doi: 10.1016/j.biopha.2021.111578.
  • Ekambaram, P., and H. S. A. Abdul. 2011. Formulation and evaluation of solid lipid nanoparticles of ramipril. Journal of Young Pharmacists: JYP 3 (3):216–20. doi: 10.4103/0975-1483.83765.
  • Feng, T., Z. Hu, K. Wang, X. Zhu, D. Chen, H. Zhuang, L. Yao, S. Song, H. Wang, and M. Sun. 2020. Emulsion-based delivery systems for curcumin: Encapsulation and interaction mechanism between debranched starch and curcumin. International Journal of Biological Macromolecules 161:746–54. doi: 10.1016/j.ijbiomac.2020.06.088.
  • Feng, T., Y. Wei, R. J. Lee, and L. Zhao. 2017. Liposomal curcumin and its application in cancer. International Journal of Nanomedicine 12:6027–44. doi: 10.2147/IJN.S132434.
  • Ge, X., M. Wei, S. He, and W.-E. Yuan. 2019. Advances of non-ionic surfactant vesicles (niosomes) and their application in drug delivery. Pharmaceutics 11 (2):55. doi: 10.3390/pharmaceutics11020055.
  • Gehrcke, M., M. H. M. Sari, L. M. Ferreira, A. Valentini Barbieri, L. M. Giuliani, V. C. Prado, J. M. Nadal, P. V. Farago, C. W. Nogueira, and L. Cruz. 2018. Nanocapsules improve indole-3-carbinol photostability and prolong its antinociceptive action in acute pain animal models. European Journal of Pharmaceutical Sciences 111:133–41. doi: 10.1016/j.ejps.2017.09.050.
  • Gómez-Estaca, J., M. P. Balaguer, G. López-Carballo, R. Gavara, and P. Hernández-Muñoz. 2017. Improving antioxidant and antimicrobial properties of curcumin by means of encapsulation in gelatin through electrohydrodynamic atomization. Food Hydrocolloids. 70:313–20. doi: 10.1016/j.foodhyd.2017.04.019.
  • Gong, C., S. Deng, Q. Wu, M. Xiang, X. Wei, L. Li, B. Xiang Gao, L. Wang, Y. Sun, Y. Chen, et al. 2013. Improving antiangiogenesis and anti-tumor activity of curcumin by biodegradable polymeric micelles. Biomaterials 34 (4):1413–32. doi: 10.1016/j.biomaterials.2012.10.068.
  • Gopi, S., A. Amalraj, S. Jude, K. Varma, T. R. Sreeraj, J. T. Haponiuk, and S. Thomas. 2017. Preparation, characterization and anti-colitis activity of curcumin-asafoetida complex encapsulated in turmeric nanofiber. Materials Science & Engineering, C: Materials for Biological Applications 81:20–31. doi: 10.1016/j.msec.2017.07.037.
  • Grama, C. N., P. Suryanarayana, M. A. Patil, G. Raghu, N. Balakrishna, M. N. V. Ravi Kumar, and G. B. Reddy. 2013. Efficacy of biodegradable curcumin nanoparticles in delaying cataract in diabetic rat model. PLoS One 8 (10):e78217. doi: 10.1371/journal.pone.0078217.
  • Guo, Q., X. Shu, Y. Hu, J. Su, S. Chen, E. A. Decker, and Y. Gao. 2021. Formulated protein-polysaccharide-surfactant ternary complexes for co-encapsulation of curcumin and resveratrol: Characterization, stability and in vitro digestibility. Food Hydrocolloids. 111:106265. doi: 10.1016/j.foodhyd.2020.106265.
  • Gupta, S. C., S. Patchva, and B. B. Aggarwal. 2013. Therapeutic roles of curcumin: Lessons learned from clinical trials. The AAPS Journal 15 (1):195–218. doi: 10.1208/s12248-012-9432-8.
  • Gutierres, V. O., M. L. Campos, C. A. Arcaro, R. P. Assis, H. M. Baldan-Cimatti, R. G. Peccinini, S. Paula-Gomes, I. C. Kettelhut, A. M. Baviera, and I. L. Brunetti. 2015. Curcumin pharmacokinetic and pharmacodynamic evidences in streptozotocin-diabetic rats support the antidiabetic activity to be via metabolite(s). Evidence-Based Complementary and Alternative Medicine: eCAM 2015:678218. doi: 10.1155/2015/678218.
  • Hanafy, N. A. N., S. Leporatti, and M. El-Kemary. 2020. Mucoadhesive curcumin crosslinked carboxy methyl cellulose might increase inhibitory efficiency for liver cancer treatment. Materials Science & Engineering, C: Materials for Biological Applications 116:111119. doi: 10.1016/j.msec.2020.111119.
  • Heger, M., R. F. Van Golen, M. Broekgaarden, and M. C. Michel. 2014. The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancer. Pharmacological Reviews 66 (1):222–307. doi: 10.1124/pr.110.004044.
  • Hu, Q., and Y. Luo. 2021. Chitosan-based nanocarriers for encapsulation and delivery of curcumin: A review. International Journal of Biological Macromolecules 179:125–35. doi: 10.1016/j.ijbiomac.2021.02.216.
  • Huo, X., Y. Zhang, X. Jin, Y. Li, and L. Zhang. 2019. A novel synthesis of selenium nanoparticles encapsulated PLGA nanospheres with curcumin molecules for the inhibition of amyloid β aggregation in Alzheimer’s disease. Journal of Photochemistry and Photobiology, B, Biology 190:98–102. doi: 10.1016/j.jphotobiol.2018.11.008.
  • Indira Priyadarsini, K. 2013. Chemical and structural features influencing the biological activity of curcumin. Current Pharmaceutical Design 19 (11):2093–100. doi: 10.2174/138161213805289228.
  • Ireson, C., S. Orr, J. L. Don, R. Jones, C.-K. Verschoyle, J.-L. Lim, L. Luo, S. Howells, R. Plummer, M. Jukes, et al. 2001. Characterization of metabolites of the chemopreventive agent curcumin in human and rat hepatocytes and in the rat in vivo, and evaluation of their ability to inhibit phorbol ester-induced prostaglandin E2 production. Cancer Research 61:1058–64. https://pubmed.ncbi.nlm.nih.gov/11221833/.
  • Jahanizadeh, S., F. Yazdian, A. Marjani, M. Omidi, and H. Rashedi. 2017. Curcumin-loaded chitosan/carboxymethyl starch/montmorillonite bio-nanocomposite for reduction of dental bacterial biofilm formation. International Journal of Biological Macromolecules 105 (Pt 1):757–63. doi: 10.1016/j.ijbiomac.2017.07.101.
  • Jazayeri-Tehrani, S. A., S. M. Rezayat, S. Mansouri, M. Qorbani, S. M. Alavian, M. Daneshi-Maskooni, and M.-J. Hosseinzadeh-Attar. 2019. Nano-curcumin improves glucose indices, lipids, inflammation, and Nesfatin in overweight and obese patients with non-alcoholic fatty liver disease (NAFLD): A double-blind randomized placebo-controlled clinical trial. Nutrition & Metabolism 16:1–13. London, UK: BioMed Central. doi: 10.1186/s12986-019-0331-1.
  • Ji, H., J. Tang, M. Li, J. Ren, N. Zheng, and L. Wu. 2016. Curcumin-loaded solid lipid nanoparticles with Brij78 and TPGS improved in vivo oral bioavailability and in situ intestinal absorption of curcumin. Drug Delivery 23 (2):459–70. doi: 10.3109/10717544.2014.918677.
  • Jiang, Z., X. Dong, H. Liu, Y. Wang, L. Zhang, and Y. Sun. 2016. Multifunctionality of self-assembled nanogels of curcumin-hyaluronic acid conjugates on inhibiting amyloid β-protein fibrillation and cytotoxicity. Reactive and Functional Polymers 104:22–9. doi: 10.1016/j.reactfunctpolym.2016.04.019.
  • Joung, H. J., M.-J. Choi, J. T. Kim, S. H. Park, H. J. Park, and G. H. Shin. 2016. Development of food-grade curcumin nanoemulsion and its potential application to food beverage system: Antioxidant property and in vitro digestion. Journal of Food Science 81 (3):N745–N753. doi: 10.1111/1750-3841.13224.
  • Kanai, M., A. Imaizumi, Y. Otsuka, H. Sasaki, M. Hashiguchi, K. Tsujiko, S. Matsumoto, H. Ishiguro, and T. Chiba. 2012. Dose-escalation and pharmacokinetic study of nanoparticle curcumin, a potential anticancer agent with improved bioavailability, in healthy human volunteers. Cancer Chemotherapy and Pharmacology 69 (1):65–70. doi: 10.1007/s00280-011-1673-1.
  • Karim, N., Z. Jia, X. Zheng, S. Cui, and W. Chen. 2018. A recent review of citrus flavanone naringenin on metabolic diseases and its potential sources for high yield-production. Trends in Food Science & Technology 79:35–54. doi: 10.1016/j.tifs.2018.06.012.
  • Khalil, N. M., T. C. F. do Nascimento, D. M. Casa, L. F. Dalmolin, A. C. de Mattos, I. Hoss, M. A. Romano, and R. M. Mainardes. 2013. Pharmacokinetics of curcumin-loaded PLGA and PLGA-PEG blend nanoparticles after oral administration in rats. Colloids and Surfaces, B, Biointerfaces 101:353–60. doi: 10.1016/j.colsurfb.2012.06.024.
  • Kocher, A., C. Schiborr, D. Behnam, and J. Frank. 2015. The oral bioavailability of curcuminoids in healthy humans is markedly enhanced by micellar solubilisation but not further improved by simultaneous ingestion of sesamin, ferulic acid, naringenin and xanthohumol. Journal of Functional Foods 14:183–91. doi: 10.1016/j.jff.2015.01.045.
  • Kumari, A., A. Guliani, A. K. Shukla, S. Kumar, and A. Acharya. 2020. Green surfactant based synthesis of curcumin loaded poly lactic-co-glycolic acid nanoparticles with enhanced solubility, photo-stability and anti-biofilm activity. Journal of Drug Delivery Science and Technology 59:101884. doi: 10.1016/j.jddst.2020.101884.
  • Lazar, A. N., S. Mourtas, I. Youssef, C. Parizot, A. Dauphin, B. Delatour, S. G. Antimisiaris, and C. Duyckaerts. 2013. Curcumin-conjugated nanoliposomes with high affinity for Aβ deposits: Possible applications to Alzheimer disease. Nanomedicine: Nanotechnology, Biology, and Medicine 9 (5):712–21. doi: 10.1016/j.nano.2012.11.004.
  • Liang, H., B. Zhou, L. He, Y. An, L. Lin, Y. Li, S. Liu, Y. Chen, and B. Li. 2015. Fabrication of zein/quaternized chitosan nanoparticles for the encapsulation and protection of curcumin. RSC Advances 5 (18):13891–900. doi: 10.1039/C4RA14270E.
  • Liu, Q., Y. Jing, C. Han, H. Zhang, and Y. Tian. 2019. Encapsulation of curcumin in zein/caseinate/sodium alginate nanoparticles with improved physicochemical and controlled release properties. Food Hydrocolloids 93:432–42. doi: 10.1016/j.foodhyd.2019.02.003.
  • Liu, Y., Q. Liu, Y. Liu, F. Ju, Q. Ma, and Q. He. 2019. In vivo evaluation of enhanced drug carrier efficiency and cardiac anti-hypertrophy therapeutic potential of nano-curcumin encapsulated photo-plasmonic nanoparticles combined polymerized nano-vesicles: A novel strategy. Journal of Photochemistry and Photobiology, B, Biology 199:111619. doi: 10.1016/j.jphotobiol.2019.111619.
  • Loo, C.-Y., R. Rohanizadeh, P. M. Young, D. Traini, R. Cavaliere, C. B. Whitchurch, and W.-H. Lee. 2016. Combination of Silver nanoparticles and curcumin nanoparticles for enhanced anti-biofilm activities. Journal of Agricultural and Food Chemistry 64 (12):2513–22. doi: 10.1021/acs.jafc.5b04559.
  • Lu, L., S. Qi, Y. Chen, H. Luo, S. Huang, X. Yu, Q. Luo, and Z. Zhang. 2020. Targeted immunomodulation of inflammatory monocytes across the blood-brain barrier by curcumin-loaded nanoparticles delays the progression of experimental autoimmune encephalomyelitis. Biomaterials 245:119987. doi: 10.1016/j.biomaterials.2020.119987.
  • Mangolim, C. S., C. Moriwaki, A. C. Nogueira, F. Sato, M. L. Baesso, A. M. Neto, and G. Matioli. 2014. Curcumin-β-cyclodextrin inclusion complex: Stability, solubility, characterisation by FT-IR, FT-Raman, X-ray diffraction and photoacoustic spectroscopy, and food application. Food Chemistry 153:361–70. . doi: 10.1016/j.foodchem.2013.12.067.
  • Marcillo-Parra, V., D. S. Tupuna-Yerovi, Z. González, and J. Ruales. 2021. Encapsulation of bioactive compounds from fruit and vegetable by-products for food application – A review. Trends in Food Science & Technology 116:11–23. doi: 10.1016/j.tifs.2021.07.009.
  • Marques, M. S., M. F. Cordeiro, M. A. G. Marinho, C. O. Vian, G. R. Vaz, B. S. Alves, R. D. Jardim, M. A. Hort, C. L. Dora, and A. P. Horn. 2020. Curcumin-loaded nanoemulsion improves haemorrhagic stroke recovery in wistar rats. Brain Research 1746:147007. doi: 10.1016/j.brainres.2020.147007.
  • Marslin, G., B. F. Sarmento, G. Franklin, J. A. Martins, C. J. Silva, A. F. Gomes, M. P. Sárria, O. M. Coutinho, and A. C. Dias. 2017. Curcumin encapsulated into methoxy poly(ethylene glycol) poly(ε-caprolactone) nanoparticles increases cellular uptake and neuroprotective effect in glioma cells. Planta Medica 83 (5):434–44. doi: 10.1055/s-0042-112030.
  • Mathew, A., T. Fukuda, Y. Nagaoka, T. Hasumura, H. Morimoto, Y. Yoshida, T. Maekawa, K. Venugopal, and D. S. Kumar. 2012. Curcumin loaded-plga nanoparticles conjugated with tet-1 peptide for potential use in Alzheimer’s disease. PLoS One 7 (3):e32616. doi: 10.1371/journal.pone.0032616.
  • Meena, R., S. Kumar, R. Kumar, U. S. Gaharwar, and P. Rajamani. 2017. PLGA-CTAB curcumin nanoparticles: Fabrication, characterization and molecular basis of anticancer activity in triple negative breast cancer cell lines (MDA-MB-231 cells). Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 94:944–54. doi: 10.1016/j.biopha.2017.07.151.
  • Meng, D., L. Shi, L. Zhu, Q. Wang, J. Liu, Y. Kong, M. Hou, R. Yang, and Z. Zhou. 2020. Coencapsulation and stability evaluation of hydrophilic and hydrophobic bioactive compounds in a cagelike phytoferritin. Journal of Agricultural and Food Chemistry 68 (10):3238–49. doi: 10.1021/acs.jafc.9b06904.
  • Meng, F., Q. Zhang, Y. Li, J. Li, D. Liu, and L. Peng. 2020. Konjac glucomannan octenyl succinate as a novel encapsulation wall material to improve curcumin stability and bioavailability. Carbohydrate Polymers 238:116193. doi: 10.1016/j.carbpol.2020.116193.
  • Meng, R., Z. Wu, Q.-T. Xie, J.-S. Cheng, and B. Zhang. 2021. Preparation and characterization of zein/carboxymethyl dextrin nanoparticles to encapsulate curcumin: Physicochemical stability, antioxidant activity and controlled release properties. Food Chemistry 340:127893. doi: 10.1016/j.foodchem.2020.127893.
  • Mirzahosseinipour, M., K. Khorsandi, R. Hosseinzadeh, M. Ghazaeian, and F. K. Shahidi. 2020. Antimicrobial photodynamic and wound healing activity of curcumin encapsulated in silica nanoparticles. Photodiagnosis and Photodynamic Therapy 29:101639. doi: 10.1016/j.pdpdt.2019.101639.
  • Mohamed, J. Muthu, A. Alqahtani, F. Ahmad, V. Krishnaraju, and K. Kalpana. 2021. Pectin co-functionalized dual layered solid lipid nanoparticle made by soluble curcumin for the targeted potential treatment of colorectal cancer. Carbohydrate Polymers 252:117180. doi: 10.1016/j.carbpol.2020.117180.
  • Mohammadabadi, M. R., and M. R. Mozafari. 2018. Enhanced efficacy and bioavailability of thymoquinone using nanoliposomal dosage form. Journal of Drug Delivery Science and Technology 47:445–53. doi: 10.1016/j.jddst.2018.08.019.
  • Mollazade, M., N. Zarghami, M. Nasiri, K. Nejati, M. Rahmati, and M. Pourhasan. 2011. Polyamidoamine (PAMAM) encapsulated curcumin inhibits telomerase activity in breast cancer cell line. Clinical Biochemistry 44 (13):S217. doi: 10.1016/j.clinbiochem.2011.08.966.
  • Mozafari, M. R., R. Javanmard, and M. Raji. 2017. Tocosome: Novel drug delivery system containing phospholipids and tocopheryl phosphates. International Journal of Pharmaceutics 528 (1–2):381–2. doi: 10.1016/j.ijpharm.2017.06.037.
  • Nikolic, I., E. Mitsou, A. Damjanovic, V. Papadimitriou, J. Antic-Stankovic, B. Stanojevic, A. Xenakis, and S. Savic. 2020. Curcumin-loaded low-energy nanoemulsions: Linking EPR spectroscopy-analysed microstructure and antioxidant potential with in vitro evaluated biological activity. Journal of Molecular Liquids 301:112479. doi: 10.1016/j.molliq.2020.112479.
  • Paolino, D., A. Vero, D. Cosco, T. M. G. Pecora, S. Cianciolo, M. Fresta, and R. Pignatello. 2016. Improvement of oral bioavailability of curcumin upon microencapsulation with methacrylic copolymers. Frontiers in Pharmacology 7:485. doi: 10.3389/fphar.2016.00485.
  • Parohan, M., P. Sarraf, M. H. Javanbakht, A. R. Foroushani, S. Ranji-Burachaloo, and M. Djalali. 2021. The synergistic effects of nano-curcumin and coenzyme Q10 supplementation in migraine prophylaxis: A randomized, placebo-controlled, double-blind trial. Nutritional Neuroscience 24 (4):317–26. doi: 10.1080/1028415X.2019.1627770.
  • Pérez-Pacheco, C. G., N. A. R. Fernandes, F. L. Primo, A. C. Tedesco, E. Bellile, B. Retamal-Valdes, M. Feres, M. R. Guimarães-Stabili, and C. Rossa. 2021. Local application of curcumin-loaded nanoparticles as an adjunct to scaling and root planing in periodontitis: Randomized, placebo-controlled, double-blind split-mouth clinical trial. Clinical Oral Investigations 25 (5):3217–27. doi: 10.1007/s00784-020-03652-3.
  • Pontes-Quero, G. María, L. Benito-Garzón, J. P. Cano, María Rosa Aguilar, and B. Vázquez-Lasa. 2021. Amphiphilic polymeric nanoparticles encapsulating curcumin: Antioxidant, anti-inflammatory and biocompatibility studies. Materials Science and Engineering: C 121:111793. doi: 10.1016/j.msec.2020.111793.
  • Pool, H., S. Mendoza, H. Xiao, and D. J. McClements. 2013. Encapsulation and release of hydrophobic bioactive components in nanoemulsion-based delivery systems: Impact of physical form on quercetin bioaccessibility. Food & Function 4 (1):162–74. doi: 10.1039/C2FO30042G.
  • Prasad, C., E. Bhatia, and R. Banerjee. 2020. Curcumin encapsulated lecithin nanoemulsions: An oral platform for ultrasound mediated spatiotemporal delivery of curcumin to the tumor. Scientific Reports 10 (1):8587. doi: 10.1038/s41598-020-65468-1.
  • Rafiee, Z., M. Nejatian, M. Daeihamed, and S. M. Jafari. 2019. Application of different nanocarriers for encapsulation of curcumin. Critical Reviews in Food Science and Nutrition 59 (21):3468–97. doi: 10.1080/10408398.2018.1495174.
  • Rahimi, H. R., A. H. Mohammadpour, M. Dastani, M. R. Jaafari, K. Abnous, M. G. Mobarhan, and R. K. Oskuee. 2016. The effect of nano-curcumin on HbA1c, fasting blood glucose, and lipid profile in diabetic subjects: A randomized clinical trial. Avicenna Journal of Phytomedicine 6:567–77. doi: 10.22038/AJP.2016.6761.
  • Rakotoarisoa, M., B. Angelov, V. M. Garamus, and A. Angelova. 2019. Curcumin- and fish oil-loaded spongosome and cubosome nanoparticles with neuroprotective potential against H2O2-induced oxidative stress in differentiated human SH-SY5Y cells. ACS Omega 4 (2):3061–73. . doi: 10.1021/acsomega.8b03101.
  • Rashwan, A. K., N. Karim, Y. Xu, J. Xie, H. Cui, M. R. Mozafari, and W. Chen. 2021. Potential micro-/nano-encapsulation systems for improving stability and bioavailability of anthocyanins: An updated review. Critical Reviews in Food Science and Nutrition: 1–24. doi: 10.1080/10408398.2021.1987858.
  • Ray, B., S. Bisht, A. Maitra, A. Maitra, and D. K. Lahiri. 2011. Neuroprotective and neurorescue effects of a novel polymeric nanoparticle formulation of curcumin (NanoCurc™) in the neuronal cell culture and animal model: Implications for Alzheimer’s disease. Journal of Alzheimer’s Disease: JAD 23 (1):61–77. doi: 10.3233/JAD-2010-101374.
  • Rein, M. J., M. Renouf, C. Cruz-Hernandez, L. Actis-Goretta, S. K. Thakkar, and M. da Silva Pinto. 2013. Bioavailability of bioactive food compounds: A challenging journey to bioefficacy. British Journal of Clinical Pharmacology 75 (3):588–602. doi: 10.1111/j.1365-2125.2012.04425.x.
  • Rostamabadi, H., S. R. Falsafi, S. Boostani, I. Katouzian, A. Rezaei, E. Assadpour, and S. M. Jafari. 2021. Chapter 1 - Design and formulation of nano/micro-encapsulated natural bioactive compounds for food applications. In Application of nano/microencapsulated ingredients in food products, ed. Seid Mahdi Jafari, 1–41. Cambridge, USA: Academic Press. doi: 10.1016/B978-0-12-815726-8.00001-5.
  • Sampath, M., A. Pichaimani, P. Kumpati, and B. Sengottuvelan. 2020. The remarkable role of emulsifier and chitosan, dextran and PEG as capping agents in the enhanced delivery of curcumin by nanoparticles in breast cancer cells. International Journal of Biological Macromolecules 162:748–61. doi: 10.1016/j.ijbiomac.2020.06.188.
  • Sarika, P. R., and R. J. Nirmala. 2016. Curcumin loaded gum arabic aldehyde-gelatin nanogels for breast cancer therapy. Materials Science & Engineering, C, Materials for Biological Applications 65:331–7. doi: 10.1016/j.msec.2016.04.044.
  • Setayesh, A., F. Bagheri, and S. Boddohi. 2020. Self-assembled formation of chondroitin sulfate-based micellar nanogel for curcumin delivery to breast cancer cells. International Journal of Biological Macromolecules 161:771–8. doi: 10.1016/j.ijbiomac.2020.06.108.
  • Shahgordi, S., M. Sankian, Y. Yazdani, K. Mashayekhi, S. Hasan Ayati, M. Sadeghi, M. Saeidi, and M. Hashemi. 2020. Immune responses modulation by curcumin and allergen encapsulated into PLGA nanoparticles in mice model of rhinitis allergic through sublingual immunotherapy. International Immunopharmacology 84:106525. doi: 10.1016/j.intimp.2020.106525.
  • Shamsi-Goushki, A., Z. Mortazavi, M. A. Mirshekar, M. Mohammadi, N. Moradi-Kor, S. Jafari-Maskouni, and M. Shahraki. 2020. Comparative effects of curcumin versus nano-curcumin on insulin resistance, serum levels of apelin and lipid profile in type 2 diabetic rats. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 13:2337–46. doi: 10.2147/DMSO.S247351.
  • Sharma, A., A. Yadav, K. Cwiklinski, E. Quaye, R. Aalinkeel, S. D. Mahajan, S. A. Schwartz, and R. K. Sharma. 2019. In-vitro studies of curcumin encapsulated mesoporous Fe-Phenanthroline nanocluster for reduction of amyloid β plaque. Journal of Drug Delivery Science and Technology 54:101314. doi: 10.1016/j.jddst.2019.101314.
  • Shehzad, A., G. Rehman, and Y. S. Lee. 2013. Curcumin in inflammatory diseases. BioFactors (Oxford, England) 39 (1):69–77. doi: 10.1002/biof.1066.
  • Song, J., B. Choi, E. J. Jin, Y. Yoon, and K. H. Choi. 2012. Curcumin suppresses Streptococcus mutans adherence to human tooth surfaces and extracellular matrix proteins. European Journal of Clinical Microbiology & Infectious Diseases 31 (7):1347–52. doi: 10.1007/s10096-011-1448-y.
  • Sudirman, S., C.-S. Lai, Y.-L. Yan, Hung-I. Yeh, and Z.-L. Kong. 2019. Histological evidence of chitosan-encapsulated curcumin suppresses heart and kidney damages on streptozotocin-induced type-1 diabetes in mice model. Scientific Reports 9 (1):15233. doi: 10.1038/s41598-019-51821-6.
  • Sun, X., and N. Bandara. 2019. Applications of reverse micelles technique in food science: A comprehensive review. Trends in Food Science & Technology 91:106–15. doi: 10.1016/j.tifs.2019.07.001.
  • Szczepanowicz, K., D. Jantas, M. Piotrowski, J. Staroń, M. Leśkiewicz, M. Regulska, W. Lasoń, and P. Warszyński. 2016. Encapsulation of curcumin in polyelectrolyte nanocapsules and their neuroprotective activity. Nanotechnology 27 (35):355101. doi: 10.1088/0957-4484/27/35/355101.
  • Thimmulappa, R. K., K. K. Mudnakudu-Nagaraju, C. Shivamallu, K. J. Thirumalai Subramaniam, A. Radhakrishnan, S. Bhojraj, and G. Kuppusamy. 2021. Antiviral and immunomodulatory activity of curcumin: A case for prophylactic therapy for COVID-19. Heliyon 7 (2):e06350. doi: 10.1016/j.heliyon.2021.e06350.
  • UNAIDS. 2020. HIV infections. United Nations Programme on HIV/AIDS. https://www.unaids.org/en/topic/data. Accessed 25 February 2021.
  • Valizadeh, H., S. Abdolmohammadi-vahid, S. Danshina, M. Ziya Gencer, A. Ammari, A. Sadeghi, L. Roshangar, S. Aslani, A. Esmaeilzadeh, M. Ghaebi, et al. 2020. Nano-curcumin therapy, a promising method in modulating inflammatory cytokines in COVID-19 patients. International Immunopharmacology 89 (Pt B):107088. doi: 10.1016/j.intimp.2020.107088.
  • Vareed, S. K., M. Kakarala, M. T. Ruffin, J. A. Crowell, D. P. Normolle, Z. Djuric, and D. E. Brenner. 2008. Pharmacokinetics of curcumin conjugate metabolites in healthy human subjects. Cancer Epidemiology, Biomarkers & Prevention 17 (6):1411–7. doi: 10.1158/1055-9965.EPI-07-2693.
  • Vijayan, U. K., S. Varakumar, S. Sole, and R. S. Singhal. 2020. Enhancement of loading and oral bioavailability of curcumin loaded self-microemulsifying lipid carriers using Curcuma oleoresins. Drug Development and Industrial Pharmacy 46 (6):889–98. doi: 10.1080/03639045.2020.1762201.
  • Wang, Y.-J., M.-H. Pan, A.-L. Cheng, L.-I. Lin, Y.-S. Ho, C.-Y. Hsieh, and J.-K. Lin. 1997. Stability of curcumin in buffer solutions and characterization of its degradation products. Journal of Pharmaceutical and Biomedical Analysis 15 (12):1867–76. doi: 10.1016/S0731-7085(96)02024-9.
  • WHO. 2016. World Health Organiziation. Global report on diabetes. http://apps.who.int/iris/bitstream/10665/204871/1/978924. Accessed March. 15, 2021.
  • Wu, Y., W. Yang, C. Wang, J. Hu, and S. Fu. 2005. Chitosan nanoparticles as a novel delivery system for ammonium glycyrrhizinate. International Journal of Pharmaceutics 295 (1–2):235–45. doi: 10.1016/j.ijpharm.2005.01.042.
  • Wu, Y., B. Mou, S. Song, C.-P. Tan, O.-M. Lai, C. Shen, and L.-Z. Cheong. 2020. Curcumin-loaded liposomes prepared from bovine milk and krill phospholipids: Effects of chemical composition on storage stability, in-vitro digestibility and anti-hyperglycemic properties. Food Research International (Ottawa, ON) 136:109301. doi: 10.1016/j.foodres.2020.109301.
  • Xiao, J., S. Nian, and Q. Huang. 2015. Assembly of kafirin/carboxymethyl chitosan nanoparticles to enhance the cellular uptake of curcumin. Food Hydrocolloids 51:166–75. doi: 10.1016/j.foodhyd.2015.05.012.
  • Yallapu, M. M., B. K. Gupta, M. Jaggi, and S. C. Chauhan. 2010. Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. Journal of Colloid and Interface Science 351 (1):19–29. doi: 10.1016/j.jcis.2010.05.022.
  • Yallapu, M. M., S. Khan, D. M. Maher, M. C. Ebeling, V. Sundram, N. Chauhan, A. Ganju, S. Balakrishna, B. K. Gupta, N. Zafar, et al. 2014. Anti-cancer activity of curcumin loaded nanoparticles in prostate cancer. Biomaterials 35 (30):8635–48. doi: 10.1016/j.biomaterials.2014.06.040.
  • Yu, H., and Q. Huang. 2010. Enhanced in vitro anti-cancer activity of curcumin encapsulated in hydrophobically modified starch. Food Chemistry 119 (2):669–74. doi: 10.1016/j.foodchem.2009.07.018.
  • Yuan, D., F. Zhou, P. Shen, Y. Zhang, L. Lin, and M. Zhao. 2021. Self-assembled soy protein nanoparticles by partial enzymatic hydrolysis for ph-driven encapsulation and delivery of hydrophobic cargo curcumin. Food Hydrocolloids 120:106759. doi: 10.1016/j.foodhyd.2021.106759.
  • Yuan, J.-D., D.-L. ZhuGe, M.-Q. Tong, M.-T. Lin, X.-F. Xu, X. Tang, Y.-Z. Zhao, and H.-L. Xu. 2018. pH-sensitive polymeric nanoparticles of mPEG-PLGA-PGlu with hybrid core for simultaneous encapsulation of curcumin and doxorubicin to kill the heterogeneous tumour cells in breast cancer. Artificial Cells, Nanomedicine, and Biotechnology 46 (sup1):302–13. doi: 10.1080/21691401.2017.1423495.
  • Zarrabi, A., M. Alipoor Amro Abadi, S. Khorasani, M.-R. Mohammadabadi, A. Jamshidi, S. Torkaman, E. Taghavi, M. R. Mozafari, and B. Rasti. 2020. Nanoliposomes and tocosomes as multifunctional nanocarriers for the encapsulation of nutraceutical and dietary molecules. Molecules 25 (3):638. doi: 10.3390/molecules25030638.
  • Zhang, J., H. S. Almoallim, S. Ali Alharbi, and B. Yang. 2021. Anti-atherosclerotic activity of Betulinic acid loaded polyvinyl alcohol/methylacrylate grafted Lignin polymer in high fat diet induced atherosclerosis model rats. Arabian Journal of Chemistry 14 (2):102934. doi: 10.1016/j.arabjc.2020.102934.
  • Zhao, S., J. Yang, X. Han, Y. Gong, S. Rao, B. Wu, Z. Yi, L. Zou, T. Jia, H. Lin Li, et al. 2017. Effects of nanoparticle-encapsulated curcumin on HIV-gp120-associated neuropathic pain induced by the P2X3 receptor in dorsal root ganglia. Brain Research Bulletin 135:53–61. doi: 10.1016/j.brainresbull.2017.09.011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.