1,123
Views
10
CrossRef citations to date
0
Altmetric
Review Articles

The nutraceutical properties and health benefits of pseudocereals: a comprehensive treatise

, , , , , , , ORCID Icon, , ORCID Icon, , , , & ORCID Icon show all
Pages 10217-10229 | Published online: 13 May 2022

References

  • Adebowale, O. J., and O. O Ajibode. 2022. Fortification of cassava starch with coconut residue: effects on flours’ functional properties and products’ (Tapioca meals) nutritional and sensory qualities. Natural Resources for Human Health 2(2):200–207.
  • Ahmad, I., Rashid M. H. U., Nawaz, S., Asif M., Farooq T. H., Shahbaz Z., M. Kashif, M. Shaheen. 2022. Effect of different compost concentrations on the growth yield of Bombax Ceiba (Simal). Natural Resources for Human Health 2(2):222–227.
  • Ahmed, J., L. Thomas, Y. A. Arfat, and A. Joseph. 2018. Rheological, structural and functional properties of high-pressure treated quinoa starch in dispersions. Carbohydrate Polymers 197:649–57. doi: 10.1016/j.carbpol.2018.05.081.
  • Alan, B. 2011. Quinoa, an ancient crop to contribute to world food security. In 37th FAO Conference.
  • Alghamdi, E. S. 2018. Protective effect of quinoa (Chenopodium quinoa willd.) seeds against hypercholesterolemia in male rats. Pharmacophore 9 (6):11–21.
  • Alonso-Calderón, A., E. Chávez-Bravo, A. Rivera, C. Montalvo-Paquini, R. ArroyoTapia, M. Monterrosas-Santamaria, T. Jiménez-Salgado, and A. Tapia-Hernández. 2013. Characterization of black chia seed (Salvia hispanica L) and oil and quantification of β-sitosterol. International Research Journal of Biological Sciences 2 (1):70–2.
  • Asao, M., and K. Watanabe. 2010. Functional and bioactive properties of quinoa and amaranth. Food Science and Technology Research 16 (2):163–8. doi: 10.3136/fstr.16.163.
  • Ayerza, R., and W. Coates. 2011. Protein content, oil content and fatty acid profiles as potential criteria to determine the origin of commercially grown chia (Salvia hispanica L.). Industrial Crops and Products 34 (2):1366–71. doi: 10.1016/j.indcrop.2010.12.007.
  • Barrio, D. A., and M. C. Añón. 2010. Potential antitumor properties of a protein isolate obtained from the seeds of Amaranthus mantegazzianus. European Journal of Nutrition 49 (2):73–82.
  • Bojňanská, T., H. Frančáková, P. Chlebo, and A. Vollmannová. 2009. Rutin content in buckwheat enriched bread and influence of its consumption on plasma total antioxidant status. Czech Journal of Food Sciences 27 (Special Issue 1):S236–S240. doi: 10.17221/967-CJFS.
  • Bonafaccia, G., M. Marocchini, and I. Kreft. 2003. Composition and technological properties of the flour and bran from common and tartary buckwheat. Food Chemistry 80 (1):9–15. doi: 10.1016/S0308-8146(02)00228-5.
  • Bresson, J. L., A. Flynn, M. Heinonen, et al. 2009. Opinion on the safety of chia seeds (Salvia hispanica L.) and ground whole chia seeds, as a food ingredient. Journal of European Food Safety Authority 996:1–26.
  • Cao, W., W.-J. Chen, Z.-R. Suo, and Y.-P. Yao. 2008. Protective effects of ethanolic extracts of buckwheat groats on DNA damage caused by hydroxyl radicals. Food Research International 41 (9):924–9. doi: 10.1016/j.foodres.2007.10.014.
  • Capitani, M. I., V. Spotorno, S. M. Nolasco, and M. C. Tomás. 2012. Physicochemical and functional characterization of by-products from chia (Salvia hispanica L.) seeds of Argentina. LWT – Food Science and Technology 45 (1):94–102. doi: 10.1016/j.lwt.2011.07.012.
  • Carrasco, E, and J. L. Soto. 2010. Importancia de los granos andinos. In Granos andinos: avances, logros y experiencias desarrolladas en quinua, canihua y kiwicha en Per ∼ u, eds. R. Bravo, R. Valdivia, K. Andrade, S. Paludosi, and M. Jagger, 6–10. Rome, Italy: Biodiversity International.
  • Carvalho, A., J. Marchini, and A. Navarro. 2015. Quinoa or corn flakes to prevent peripheral inflammation after menopause? Journal of Obesity & Eating Disorders 1:4.
  • Christa, K., and M. Soral-Śmietana. 2008. Buckwheat grains and buckwheat products – Nutritional and prophylactic value of their components – A review. Czech Journal of Food Sciences 26 (3):153–62. doi: 10.17221/1602-CJFS.
  • Ciudad-Mulero, M. V. Fernandez-Ruiz, M. C. Matallana-Gonzalez, and P. Morales. 2019. Dietary fiber sources and human benefits: The case study of cereal and pseudocereals. Advances in Food and Nutrition Research, 90:83–134.
  • Coelho, M. S., S. A. Aquino, J. M. Latorres, and M. M. Salas-Mellado. 2019. In vitro and in vivo antioxidant capacity of chia protein hydrolysates and peptides. Food Hydrocolloids 91:19–25.
  • Coelho, M. S., R. A. M. Soares-Freitas, J. A. G. Areas, E. A. Gandra, and M. M. Salas-Mellado. 2018. Peptides from chia present antibacterial activity and inhibit cholesterol synthesis. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 73 (2):101–7. doi: 10.1007/s11130-018-0668-z.
  • Cotabarren, J., A. M. Rosso, M. Tellechea, J. Garcia-Pardo, J. L. Rivera, W. D. Obregon, and M. G. Parisi. 2019. Adding value to the chia (Salvia hispanica L.) experller: Production of bioactive peptides with antioxidant properties by enzymatic hydrolysis with Papain. Food Chemistry 274:848–56. doi: 10.1016/j.foodchem.2018.09.061.
  • Cumbane, P., Estivila, A., Magaia, I. 2022. A comparative study on the antioxidant activity of Gladiolus dalenii Van Geel and nine commonly used substances to compare the antioxidant activity of foods and medicinal plants. Natural Resources for Human Health 2:(2)228–235.
  • da Silva, B. P., D. M. Dias, M. E. de Castro Moreira, R. C. L. Toledo, S. L. P. da Matta, C. M. D. Lucia, H. S. D. Martino, and H. M. Pinheiro-Sant’Ana. 2016. Chia seed shows good protein quality, hypoglycemic effect and improves the lipid profile and liver and intestinal morphology of wistar rats. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 71 (3):225–30.
  • De Carvalho, F. G., P. P. Ovídio, G. J. Padovan, A. A. Jordão Junior, J. S. Marchini, and A. M. Navarro. 2014. Metabolic parameters of postmenopausal women after quinoa or corn flakes intake – A prospective and double-blind study. International Journal of Food Sciences and Nutrition 65 (3):380–5.
  • De la Rosa, A. P. B., A. B. Montoya, P. Martinez-Cuevas, B. Hernandez-Ledesma, M. F. Leon-Galvan, A. de Leon-Rodriguez, and C. Gonzalez. 2010. Tryptic amaranth glutelin digests induce endotelial nitric oxide production through inhibition of ACE: Antihypertensive role of amaranth peptides. Nitric Oxide 23:106–11.
  • Fernández‐Martínez, E., I. G. Lira‐Islas, R. Cariño‐Cortés, L. E. Soria‐Jasso, E. Pérez-Hernández, and N. Pérez-Hernández. 2019. Dietary chia seeds (Salvia hispanica) improve acute dyslipidemia and steatohepatitis in rats. Journal of Food Biochemistry 43 (9):e12986.
  • Fritz, M., B. Vecchi, G. Rinaldi, and M. C. Añón. 2011. Amaranth seed protein hydrolysates have in vivo and in vitro antihypertensive activity. Food Chemistry 126 (3):878–84. doi: 10.1016/j.foodchem.2010.11.065.
  • Gabrial, S. G. N., M.-C R. Shakib, and G. N. Gabrial. 2016. Effect of pseudocereal-based breakfast meals on the first and second meal glucose tolerance in healthy and diabetic subjects. Open Access Macedonian Journal of Medical Sciences 4 (4):565–73. doi: 10.3889/oamjms.2016.115.
  • Gazem, R. A., H. R. Puneeth, and A. C. Sharada. 2016. Hypolipidemic, hypoglycemic and antiproliferateproperties of chia seed oil and its blends with selected vegetable oils – An in-vitro study. IOSR Journal of Biotechnology and Biochemistry (IOSR-JBB) 2:33–9.
  • Gazem, R., H. R. Puneeth, C. Shivmadhu, and A. Madhu. 2017. In vitro anticancer and anti-lipoxygenase activities of chia seed oil and its blends with selected vegetable oils. In Vitro 10 (10):124–8.
  • Giménez‐Bastida, J. A., S. Hamdi, J. M. L. Llopis. 2017. Nutritional and health implications of pseudocereal intake. In Pseudocereals: Chemistry and Technology, ed. C. M. Haros and R. Schonlechner, 217–32.
  • Gordillo, S., D. Díaz-Rizzolo, E. Roura, T. Massanés, and R. Gomis. 2016. Quinoa (Chenopodium quinoa Willd), from nutritional value to potential health benefits: An integrative review. Journal of Nutrition & Food Sciences 6 (3):2–10.
  • Grancieri, M., H. S. D. Martino, and E. G. de Mejia. 2019a. Chia seed (Salvia hispanica L.) as a source of proteins and bioactive peptides with health benefits: A review. Comprehensive Reviews in Food Science and Food Safety 18 (2):480–99. doi: 10.1111/1541-4337.12423.
  • Grancieri, M., H. S. D. Martino, and E. G. de Mejia. 2019b. Digested total protein and protein fractions from chia seed (Salvia hispanica L.) had high scavenging capacity and inhibited 5-LOX, COX-1-2, and iNOS enzymes. Food Chemistry 289:204–14. doi: 10.1016/j.foodchem.2019.03.036.
  • Guo, H., Y. Hao, A. Richel, N. Everaert, Y. Chen, M. Liu, X. Yang, and G. Ren. 2020. Antihypertensive effect of quinoa protein under simulated gastrointestinal digestion and peptide characterization. Journal of the Science of Food and Agriculture 100 (15):5569–76.
  • Hou, Z., Y. Hu, X. Yang, and W. Chen. 2017. Antihypertensive effects of Tartary buckwheat flavonoids by improvement of vascular insulin sensitivity in spontaneously hypertensive rats. Food & Function 8 (11):4217–28. doi: 10.1039/c7fo00975e.
  • Hu, Y., Y. Zhao, D. Ren, J. Guo, Y. Luo, and X. Yang. 2015. Hypoglycemic and hepatoprotective effects of d-chiro-inositol-enriched tartary buckwheat extract in high fructose-fed mice. Food & Function 6 (12):3760–9. doi: 10.1039/C5FO00612K.
  • Ixtaina, V. Y., S. M. Nolasco, and M. C. Tom. 2008. Physical properties of chia (Salvia hispanica L.) seeds. Industrial Crops and Products 28 (3):286–93. doi: 10.1016/j.indcrop.2008.03.009.
  • Jancurová, M., L. Minarovičová, and A. Dandar. 2009. Quinoa – A review. Czech Journal of Food Sciences 27 ( 2):71–9. doi: 10.17221/32/2008-CJFS.
  • Jeong, S. K., H. J. Park, B. D. Park, and H. Hwan Kim. 2010. Effectiveness of topical chia seed oil on pruritus of end-stage renal disease (ESRD) patients and healthy volunteers. Annals of Dermatology 22 (2):143–8. doi: 10.5021/ad.2010.22.2.143.
  • Kabiri, N., S. Asgary, H. Madani, and P. Mahzouni. 2010. Effects of Amaranthus caudatus L. extract and lovastatin on atherosclerosis in hypercholesterolemic rabbits. Journal of Medicinal Plants Research 4:355–64.
  • Kim, H. K., M. J. Kim, H. Y. Cho, E.-K. Kim, and D. H. Shin. 2006. Antioxidative and anti-diabetic effects of amaranth (Amaranthus esculantus) in streptozotocin-induced diabetic rats. Cell Biochemistry and Function 24 (3):195–9.
  • Kraujalis, P., P. R. Venskutonis, V. Kraujalienė, and A. Pukalskas. 2013. Antioxidant properties and preliminary evaluation of phytochemical composition of different anatomical parts of amaranth. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 68 (3):322–8.
  • Kumar, A., K. Lakshman, P. A. Kumar, G. L. Viswantha, V. P. Veerapur, B. S. Thippeswamy, and B. Manoj. 2011. Hepatoprotective activity of methanol extract of Amaranthus caudatus Linn. against paracetamol-induced hepatic injury in rats. J Chinese Integrative Med 9:194–200.
  • Leung, E. H. W., and T. B. Ng. 2007. A relatively stable antifungal peptide from buckwheat seeds with antiproliferative activity toward cancer cells. Journal of Peptide Science: An Official Publication of the European Peptide Society 13 (11):762–7. doi: 10.1002/psc.891.
  • Liberal, Â., R. C. Calhelha, C. Pereira, F. Adega, L. Barros, M. Dueñas, C. Santos-Buelga, R. M. V. Abreu, and I. C. F. R. Ferreira. 2016. A comparison of the bioactivity and phytochemical profile of three different cultivars of globe amaranth: Red, white, and pink. Food & Function 7 (2):679–88.
  • Li, H., Z. Deng, R. Liu, H. Zhu, J. Draves, M. Marcone, Y. Sun, and R. Tsao. 2015. Characterization of phenolics, betacyanins and antioxidant activities of the seed, leaf, sprout, flower and stalk extracts of three Amaranthus species. Journal of Food Composition and Analysis 37:75–81. doi: 10.1016/j.jfca.2014.09.003.
  • Li, L., G. Lietz, W. Bal, A. Watson, B. Morfey, and C. Seal. 2018. Effects of quinoa (Chenopodium quinoa Willd.) consumption on markers of CVD risk. Nutrients 10 (6):777. doi: 10.3390/nu10060777.
  • Li, G. H., M. R. Qu, J. Z. Wan, and J. M. You. 2007. Antihypertensive effect of rice protein hydrolysate with in vitro angiotensin I-converting enzyme inhibitory activity in spontaneously hypertensive rats. Asia Pacific Journal of Clinical Nutrition 16:275–80.
  • Liu, J. 2019. Quinoa. In Bioactive Factors and Processing Technology for Cereal Foods, eds. J. Wang et al., 207–16. doi: 10.1007/978-981-13-6167-8_12
  • Ma, M.-S., I. Y. Bae, H. G. Lee, and C.-B. Yang. 2006. Purification and identification of angiotensin I-converting enzyme inhibitory peptide from buckwheat (Fagopyrum esculentum Moench). Food Chemistry 96 (1):36–42. doi: 10.1016/j.foodchem.2005.01.052.
  • Marineli, R., S. da, É. A. Moraes, S. A. Lenquiste, A. T. Godoy, M. N. Eberlin, and M. R. Maróstica. Jr., 2014. Chemical characterization and antioxidant potential of Chilean chia seeds and oil (Salvia hispanica L.). LWT – Food Science and Technology 59 (2):1304–10. doi: 10.1016/j.lwt.2014.04.014.
  • Martirosyan, D. M., L. A. Miroshnichenko, S. N. Kulakova, A. V. Pogojeva, and V. I. Zoloedov. 2007. Amaranth oil application for coronary heart disease and hypertension. Lipids in Health and Disease 6 (1):1. doi: 10.1186/1476-511X-6-1.
  • Ma, Y., Y. L. Xiong, J. Zhai, H. Zhu, and T. Dziubla. 2010. Fractionation and evaluation of radical scavenging peptides from in vitro digests of buckwheat protein. Food Chemistry 118 (3):582–8. doi: 10.1016/j.foodchem.2009.05.024.
  • Mehmetçik, G., G. Ozdemirler, N. Koçak-Toker, U. Cevikbaş, and M. Uysal. 2008. Effect of pretreatment with artichoke extract on carbon tetrachloride-induced liver injury and oxidative stress. Experimental and Toxicologic Pathology 60 (6):475–80. doi: 10.1016/j.etp.2008.04.014.
  • Mlakar, S. G., M. Turinek, M. Jakop, M. Bavec, and F. Bavec. 2009. Nutrition value and use of grain amaranth: Potential future application in bread making. Agricultura 6 (4):1.
  • Montoya-Rodríguez, A., E. G. de Mejía, V. P. Dia, C. Reyes-Moreno, and J. Milán-Carrillo. 2014. Extrusion improved the anti-inflammatory effect of amaranth (Amaranthus hypochondriacus) hydrolysates in LPS-induced human THP-1 macrophage-like and mouse RAW 264.7 macrophages by preventing activation of NF-κB signaling. Molecular Nutrition & Food Research 58 (5):1028–41.
  • Morales, D., M. Miguel, and M. Garcés-Rimón. 2020. Pseudocereals: A novel source of biologically active peptides. Critical Reviews in Food Science and Nutrition 61(9):1537–1544.
  • Moreno-Limón, S., and R. González-Luna. 2018. Antihypertensive activity of quinoa (Chenopodium quinoa Willd.) protein hydrolysates. African Journal of Traditional, Complementary and Alternative Medicines 15 (4):22–6. doi: 10.21010/ajtcam.v15i4.3.
  • Nascimento, A. C., C. Mota, I. Coelho, S. Gueifao, M. Santos, A. S. Matos, A. Gimenez, M. Lobo, N. Samman, and I. Castanheira. 2014. Characterisation of nutrient profile of quinoa (Chenopodium quinoa), amaranth (Amaranthus caudatus), and purple corn (Zea mays L.) consumed in the North of Argentina: Proximate, minerals and trace elements. Food Chemistry 148:420–6. doi: 10.1016/j.foodchem.2013.09.155.
  • Ngov Linh, N. T, and A. K. Do Vo, H. Veronika. 2014. Buckwheat as valuable feed and food resource. Nova Journal of Medical and Biological Sciences 2:1–81.
  • Noratto, G., R. Carrion-Rabanal, G. Medina, and A. Mencia. 2015. Quinoa protective effects against obesity-induced intestinal inflammation. FASEB Journal 29 (Supplement 602.9).doi: 10.1096/fasebj.29.1_supplement.602.9
  • Obaroakpo, J. U., W. Nan, L. Hao, L. Liu, S. Zhang, J. Lu, X. Pang, andJ. Lv. 2020. The hyperglycemic regulatory effect of sprouted quinoa yoghurt in high-fat-diet and streptozotocin-induced type 2 diabetic mice via glucose and lipid homeostasis. Food & Function 11 (9):8354–68. doi:10.1039/D0FO01575J.
  • Orona-Tamayo, D., M. E. Valverde, B. Nieto-Rendón, and O. Paredes-López. 2015. Inhibitory activity of chia (Salvia hispanica L.) protein fractions against angiotensin I-converting enzyme and antioxidant capacity. LWT – Food Science and Technology 64 (1):236–42. doi: 10.1016/j.lwt.2015.05.033.
  • Pamela, E. A. I., A. O. Oyeronke, A. G. Michael, O. A. Ayodeji, A. O. Solomon, and M. A. Ayodeji. 2015. Hepatoprotective effect of Amaranthus hypochondriacus seed extract on sodium arsenite-induced toxicity in male Wistar rats. Journal of Medicinal Plants Research 9 (26):731–40. doi: 10.5897/JMPR2015.5860.
  • Paweł, P., B. Henryk, Z. Paweł, G. Shela, F. Maria, and Z. Zofia. 2009. Anthocyanins, total polyphenols and antioxidant activity in amaranth and quinoa seeds and sprouts during their growth. Food Chemistry 115:994–8.
  • Pirzadah, T. B., B. Malik, I. Tahir, and R. U. Rehman. 2020. Buckwheat journey to functional food sector. Current Nutrition & Food Science 16 (2):134–41. doi: 10.2174/1573401314666181022154332.
  • Plate, A. Y. A., and J. A. G. Areas. 2002. Cholesterol-lowering effect of extruded amaranth (Amaranthus caudatus L.) in hypercholesterolemic rabbits. Food Chemistry 76 (1):1–6. doi: 10.1016/S0308-8146(01)00238-2.
  • Pourshahidi, L. K., E. Caballero, A. Osses, B. W. Hyland, N. G. Ternan, and C. I. R. Gill. 2020. Modest improvement in CVD risk markers in older adults following quinoa (Chenopodium quinoa Willd.) consumption: A randomized-controlled crossover study with a novel food product. European Journal of Nutrition 59 (7):3313–23. doi: 10.1007/s00394-019-02169-0.
  • Ramkisson, S., D. Dwarka, S. Venter, and J. J. Mellem. 2020. In vitro anticancer and antioxidant potential of Amaranthus cruentus protein and its hydrolysates. Food Science and Technology 40 (suppl 2):634–9. doi: 10.1590/fst.36219.
  • Rastogi, A., and S. Shukla. 2013. Amaranth: A new millennium crop of nutraceutical values. Critical Reviews in Food Science and Nutrition 53 (2):109–25.
  • Saxena, S., L. Shahani, and P. Radee, and P. Bhatnagar. 2017. Hepatoprotective effect of Chenopodium quinoa seed against CCL4-induced liver toxicity in Swiss albino male mice. Asian Journal of Pharmaceutical and Clinical Research 10 (11):273–6. doi: 10.22159/ajpcr.2017.v10i11.20918.
  • Segura-Campos, M. R., F. Peralta González, L. Chel Guerrero, and D. Betancur Ancona. 2013. Angiotensin I-converting enzyme inhibitory peptides of chia (Salvia hispanica) produced by enzymatic hydrolysis. International Journal of Food Science 2013:1–8. doi: 10.1155/2013/158482.
  • Shahwan, A., N. M. El Aali, Y. F. Layas, S. G. El Tumi 2021. Phytochemical content and antioxidant activities of Rhubarb (Rheum emodi). Natural Resources for Human Health 2(2):156–159.
  • Shukla, S., A. Bhargava, A. Chatterjee, A. Srivastava, and S. P. Singh. 2006. Genotypic variability in vegetable amaranth (Amaranthus tricolor L.) for foliage yield and its contributing traits over successive cuttings and years. Euphytica 151 (1):103–10. doi: 10.1007/s10681-006-9134-3.
  • Silva-Sanchez, C., A. P. Barba de la Rosa, M. F. Leon-Galvan, B. O. de Lumen, A. Leon-Rodriguez, and E. G. de Mejia. 2008. Bioactive peptides in amaranth (Amaranthus hypochondriacus) seed. Journal of Agricultural and Food Chemistry 56 (4):1233–40. doi: 10.1021/jf072911z.
  • Sirotkin, A. V., M. Macejková, A. Tarko, Z. Fabova, A. Alrezaki, S. Alwasel, and A. H. Harrath. 2021. Effects of benzene on gilts ovarian cell functions alone and in combination with buckwheat, rooibos, and vitex. Environmental Science and Pollution Research International 28 (3):3434–44.
  • Soares, R. A., S. Mendonc, a, L. I. de Castro, A. C. Menezes, and J. A. Areas. 2015. Major peptides from amaranth (Amaranthus cruentus) protein inhibit HMG-CoA reductase activity. International Journal of Molecular Sciences 16 (2):4150–60. doi: 10.3390/ijms16024150.
  • Stănilă, A., B. Cioanca, Z. Diaconeasa, S. Stănilă, N. Sima, and R. M. Sima. 2019. Phytochemical composition and antioxidant activity of various grain amaranth cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 47 (4):1153–60. doi: 10.15835/nbha47411714.
  • Subramanian, D., and S. Gupta. 2016. Pharmacokinetic study of amaranth extract in healthy human subjects – A randomized trial. Nutrition 32 (7-8):748–53. doi: 10.1016/j.nut.2015.12.041.
  • Tahir, F., M. Sonibare, S. M. Yagi. 2022. Comparative chemical profiling and antimicrobial activity of Nigella sativa seeds oils obtained from different sources. Natural Resources for Human Health. 2 (2):194–199.
  • Tang, Y., X. Li, P. X. Chen, B. Zhang, M. Hernandez, H. Zhang, M. F. Marcone, R. Liu, and R. Tsao. 2015. Characterisation of fatty acid, carotenoid, tocopherol/tocotrienol compositions and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes. Food Chemistry 174:502–8. doi: 10.1016/j.foodchem.2014.11.040.
  • Tang, Y., X. Li, P. X. Chen, B. Zhang, R. Liu, M. Hernandez, J. Draves, M. F. Marcone, and R. Tsao. 2016. Assessing the fatty acid, carotenoid, and tocopherol compositions of amaranth and quinoa seeds grown in Ontario and their overall contribution to nutritional quality. Journal of Agricultural and Food Chemistry 64 (5):1103–10.
  • Tenore, G. C., D. Caruso, G. Buonomo, M. D’Avino, R. Ciampaglia, and E. Novellino. 2018. Plasma lipid lowering effect by a novel chia seed based nutraceutical formulation. Journal of Functional Foods 42:38–46. doi: 10.1016/j.jff.2018.01.007.
  • Tien, N. N. T., L. N. D. Trinh, N. Inoue, N. Morita, and P. V. Hung. 2018. Nutritional composition, bioactive compounds, and diabetic enzyme inhibition capacity of three varieties of buckwheat in Japan. Cereal Chemistry 95 (5):615–24.
  • Tomotake, H., J. Kayashita, and N. Kato. 2015. Hypolipidemic activity of common (Fagopyrumesculentum Moench) and tartary (Fagopyrum tataricum Gaertn.) buckwheat. Journal of the Science of Food and Agriculture 95 (10):1963–7.
  • Tomotake, H., N. Yamamoto, N. Yanaka, H. Ohinata, R. Yamazaki, J. Kayashita, and N. Kato. 2006. High protein buckwheat flour suppresses hypercholesterolemia in rats and gallstone formation in mice by hypercholesterolemic diet and body fat in rats because of its low protein digestibility. Nutrition 22 (2):166–73.
  • Tyszka-Czochara, M., P. Pasko, P. Zagrodzki, E. Gajdzik, R. Wietecha-Posluszny, and S. Gorinstein. 2016. Selenium supplementation of amaranth sprouts influences betacyanin content and improves anti-inflammatory properties via NFκB in murine RAW 264.7 macrophages. Biological Trace Element Research 169 (2):320–30.
  • USDA. 2011. National Nutrient Database for Standard Reference Release 28. Basic report 12006, seeds, Chia seeds, dried. Report date: January 11, 2016.
  • Vilcacundo, R., C. Martinez-Villaluenga, and B. Hernandez-Ledesma. 2017. Release of dipeptidyl peptidase IV, a-amylase and a-glucosidase inhibitory peptides from quinoa (Chenopodium quinoa Willd.) during in vitro simulated gastrointestinal digestion. Journal of Functional Foods 35:531–9. doi: 10.1016/j.jff.2017.06.024.
  • Vilcacundo, R., B. Miralles, W. Carrillo, and B. Hernandez-Ledesma. 2018. In vitro chemopreventive properties of peptides released from quinoa (Chenopodium quinoa Willd.) protein under simulated gastrointestinal digestion. Food Research International 105:403–11. doi: 10.1016/j.foodres.2017.11.036.
  • Vrancheva, R., L. Krystev, A. Popova, and D. Mihaylova. 2019. Proximate nutritional composition and heat-induced changes of starch in selected grains and seeds. Emirates Journal of Food and Agriculture 31 (9):718–24. doi: 10.9755/ejfa.2019.v31.i9.2011.
  • Vuksan, V., D. Whitham, J. L. Sievenpiper, A. L. Jenkins, A. L. Rogovik, R. P. Bazinet, E. Vidgen, and A. Hanna. 2007. Supplementation of conventional therapy with the novel grain Salba (Salvia hispanica L.) improves major and emerging cardiovascular risk factors in type 2 diabetes. Diabetes Care 30 (11):2804–10. doi: 10.2337/dc07-1144.
  • Wang, M., J. R. Liu, J. M. Gao, J. W. Parry, and Y. M. Wei. 2009. Antioxidant activity of Tartary buckwheat bran extract and its effect on the lipid profile of hyperlipidemic rats. Journal of Agricultural and Food Chemistry 57 (11):5106–12. doi: 10.1021/jf900194s.
  • Wijngaard, H., and E. K. Arendt. 2006. Buckwheat. Cereal Chemistry 83 (4):391–401. doi: 10.1094/CC-83-0391.
  • Witchel, S. F., S. E. Oberfield, and A. S. Peña. 2019. Polycystic ovary syndrome: Pathophysiology, presentation, and treatment with emphasis on adolescent girls. Journal of the Endocrine Society 3 (8):1545–73. doi: 10.1210/js.2019-00078.
  • Wright, K. H., O. A. Pike, D. J. Fairbanks, and C. S. Huber. 2002. Composition of Atriplex hortensis, sweet and bitter Chenopodium quinoa seeds. Journal of Food Science 67 (4):1383–5. doi: 10.1111/j.1365-2621.2002.tb10294.x.
  • Yao, Y., X. Yang, Z. Shi, and G. Ren. 2014. Anti-inflammatory activity of saponins from Quinoa (Chenopodium quinoa Willd.) seeds in lipopolysaccharide-stimulated RAW 264.7 macrophages cells. Journal of Food Science 79 (5):H1018–H1023.
  • Zeashan, H., G. Amresh, S. Singh, and C. V. Rao. 2008. Hepatoprotective activity of Amaranthus spinosus in experimental animals. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 46 (11):3417–21.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.