569
Views
3
CrossRef citations to date
0
Altmetric
Review Articles

Nanoarchitectonics of graphene based sensors for food safety monitoring

, , &

References

  • Abe, Y., S. Ogino, M. Irifune, I. Imamura, H. Fukui, H. Wada, and T. Matsunaga. 1993. Histamine content, synthesis and degradation in human nasal mucosa. Clinical and Experimental Allergy: Journal of the British Society for Allergy and Clinical Immunology 23 (2):132–6. doi: 10.1111/j.1365-2222.1993.tb00308.x.
  • Afkhami, A., P. Hashemi, H. Bagheri, J. Salimian, A. Ahmadi, and T. Madrakian. 2017. Impedimetric immunosensor for the label-free and direct detection of botulinum neurotoxin serotype A using Au nanoparticles/graphene-chitosan composite. Biosensors & Bioelectronics 93:124–31. doi: 10.1016/j.bios.2016.09.059.
  • Altland, A. 2006. Low-energy theory of disordered graphene. Physical Review Letters 97 (23):236802–4. doi: 10.1103/PhysRevLett.97.236802.
  • Apetrei, I. M., and C. Apetrei. 2016. Amperometric biosensor based on diamine oxidase/platinum nanoparticles/graphene/chitosan modified screen-printed carbon electrode for histamine detection. Sensors (Basel, Switzerland) 16 (4):422–15. doi: 10.3390/s16040422.
  • Bai, W. Q., H. Y. Huang, Y. Li, H. Y. Zhang, B. Liang, R. Guo, L. L. Du, and Z. W. Zhang. 2014. Direct preparation of well-dispersed graphene/gold nanorod composites and their application in electrochemical sensors for determination of ractopamine. Electrochimica Acta. 117:322–8. doi: 10.1016/j.electacta.2013.11.175.
  • Bai, X. Y., B. Zhang, M. Liu, X. L. Hu, G. Z. Fang, and S. Wang. 2020. Molecularly imprinted electrochemical sensor based on polypyrrole/dopamine@graphene incorporated with surface molecularly imprinted polymers thin film for recognition of olaquindox. Bioelectrochemistry (Amsterdam, Netherlands) 132:107398. doi: 10.1016/j.bioelechem.2019.
  • Barbosa, J., C. Cruz, J. Martins, J. M. Silva, C. Neves, C. Alves, F. Ramos, and M. I. N. Da Silveira. 2005. Food poisoning by clenbuterol in Portugal. Food Additives and Contaminants 22 (6):563–6. doi: 10.1080/02652030500135102.
  • Basu, J., S. Datta, and C. RoyChaudhuri. 2015. A graphene field effect capacitive Immunosensor for sub-femtomolar food toxin detection. Biosensors & Bioelectronics 68:544–9. doi: 10.1016/j.bios.2015.01.046.
  • Berger, C., Z. M. Song, X. B. Li, X. S. Wu, N. Brown, C. Naud, D. Mayou, T. B. Li, J. Hass, A. N. Marchenkov, et al. 2006. Electronic confinement and coherence in patterned epitaxial graphene. Science (New York, N.Y.) 312 (5777):1191–6. doi: 10.1126/science.1125925.
  • Bonaccorso, F., Z. Sun, T. Hasan, and A. C. Ferrari. 2010. Graphene photonics and optoelectronics. Nature Photonics 4 (9):611–22. doi: 10.1038/nphoton.2010.186.
  • Borisova, B., A. Sanchez, P. E. D. Soto-Rodriguez, A. Boujakhrout, M. Arevalo-Villena, J. M. Pingarron, A. Briones-Perez, C. Parrado, and R. Villalonga. 2018. Disposable amperometric immunosensor for Saccharomyces cerevisiae based on carboxylated graphene oxide-modified electrodes. Analytical and Bioanalytical Chemistry 410 (30):7901–7. doi: 10.1007/s00216-018-1410-2.
  • Borisova, B., M. L. Villalonga, M. Arevalo-Villena, A. Boujakhrout, A. Sanchez, C. Parrado, J. M. Pingarron, A. Briones-Perez, and R. Villalonga. 2017. Disposable electrochemical immunosensor for Brettanomyces bruxellensis based on nanogold-reduced graphene oxide hybrid nanomaterial. Analytical and Bioanalytical Chemistry 409 (24):5667–74. doi: 10.1007/s00216-017-0505-5.
  • Carvalho, F. P. 2017. Pesticides, environment, and food safety. Food and Energy Security 6 (2):48–60. doi: 10.1002/fes3.108.
  • Chen, C., M. X. Zhang, C. Y. Li, Y. X. Xie, and J. J. Fei. 2018. Switched voltammetric determination of ractopamine by using a temperature-responsive sensing film. Microchimica Acta. 185 (2):1–8. doi: 10.1007/s00604-018-2680-2.
  • Chen, Q. W., L. Y. Zhang, and G. Chen. 2012. Facile preparation of graphene-copper nanoparticle composite by in situ chemical reduction for electrochemical sensing of carbohydrates. Analytical Chemistry 84 (1):171–8. doi: 10.1021/ac2022772.
  • Chilaka, C. A., M. De Boevre, O. O. Atanda, and S. D. Saeger. 2017. The status of fusarium mycotoxins in Sub-Saharan Africa: A review of emerging trends and post-harvest mitigation strategies towards food control. Toxins 9 (1):19–36. doi: 10.3390/toxins9010019.
  • Chinnappan, R., S. AlAmer, S. Eissa, A. A. Rahamn, K. M. Abu Salah, and M. Zourob. 2018. Fluorometric graphene oxide-based detection of Salmonella enteritis using a truncated DNA aptamer. Microchimica Acta. 185 (1):1–9. doi: 10.1007/s00604-017-2601-9.
  • Choudhary, R. P., S. Shukla, K. Vaibhav, P. B. Pawar, and S. Saxena. 2015. Optical properties of few layered graphene quantum dots. Materials Research Express 2 (9):095024. doi: 10.1088/2053-1591/2/9/095024.
  • Cui, M., S. Liu, W. J. Lian, J. Li, W. Xu, and J. D. Huang. 2013. A molecularly-imprinted electrochemical sensor based on a graphene-Prussian blue composite-modified glassy carbon electrode for the detection of butylated hydroxyanisole in foodstuffs. The Analyst 138 (20):5949–55. doi: 10.1039/c3an01190a.
  • de Boer, A. 2021. Fifteen years of regulating nutrition and health claims in Europe: The past, the present and the future. Nutrients 13 (5):1725. doi: 10.3390/nu13051725.
  • Dehghani, Z., J. Mohammadnejad, M. Hosseini, B. Bakhshi, and A. H. Rezayan. 2020. Whole cell FRET immunosensor based on graphene oxide and graphene dot for Campylobacter jejuni detection. Food Chemistry. 309:125690–7. doi: 10.1016/j.foodchem.2019.125690.
  • Diez-Pascual, A. M., D. Garcia-Garcia, M. P. San Andres, and S. Vera. 2016. Determination of riboflavin based on fluorescence quenching by graphene dispersions in polyethylene glycol. RSC Advances 6 (24):19686–99. doi: 10.1039/C5RA25547C.
  • Ding, G. H., S. Xie, Y. Liu, L. Wang, and F. G. Xu. 2015. Graphene oxide-silver nanocomposite as SERS substrate for dye detection: Effects of silver loading amount and composite dosage. Applied Surface Science. 345:310–8. doi: 10.1016/j.apsusc.2015.03.175.
  • Dinshaw, I. J., S. Muniandy, S. J. Teh, F. Ibrahim, B. F. Leo, and K. L. Thong. 2017. Development of an aptasensor using reduced graphene oxide chitosan complex to detect Salmonella. Journal of Electroanalytical Chemistry. 806:88–96. doi: 10.1016/j.jelechem.2017.10.054.
  • Eissa, S., C. Tlili, L. L’Hocine, and M. Zourob. 2012. Electrochemical immunosensor for the milk allergen beta-lactoglobulin based on electrografting of organic film on graphene modified screen-printed carbon electrodes. Biosensors & Bioelectronics 38 (1):308–13. doi: 10.1016/j.bios.2012.06.008.
  • Eissa, S., and M. Zourob. 2017. In vitro selection of DNA aptamers targeting beta-lactoglobulin and their integration in graphene-based biosensor for the detection of milk allergen. Biosensors and Bioelectronics. 91:169–74. doi: 10.1016/j.bios.2016.12.020.
  • Ferrari, A. G. M., C. W. Foster, D. A. C. Brownson, K. A. Whitehead, and C. E. Banks. 2019. Exploring the reactivity of distinct electron transfer sites at CVD grown monolayer graphene through the selective electrodeposition of MoO2 nanowires. Scientific Reports. 9:1–9. doi: 10.1038/s41598-019-48022-6.
  • Gan, T., J. Y. Sun, S. Q. Cao, F. X. Gao, Y. X. Zhang, and Y. Q. Yang. 2012. One-step electrochemical approach for the preparation of graphene wrapped-phosphotungstic acid hybrid and its application for simultaneous determination of sunset yellow and tartrazine. Electrochim. Acta. 74:151–7. doi: 10.1016/j.electacta.2012.04.039.
  • Gan, T., J. Y. Sun, W. Meng, L. Song, and Y. X. Zhang. 2013. Electrochemical sensor based on graphene and mesoporous TiO2 for the simultaneous determination of trace colourants in food. Food Chemistry 141 (4):3731–7. doi: 10.1016/j.foodchem.2013.06.084.
  • Gao, R., Z. Zhong, X. Gao, and L. Jia. 2018. Graphene oxide quantum dots assisted construction of fluorescent aptasensor for rapid detection of Pseudomonas aeruginosa in food samples. Journal of Agricultural and Food Chemistry 66 (41):10898–905. doi: 10.1021/acs.jafc.8b02164.
  • Geim, A. K., and K. S. Novoselov. 2007. The rise of graphene. Nature Materials 6 (3):183–91. doi: 10.1038/nmat1849.
  • Güell, A. G., N. Ebejer, M. E. Snowden, J. V. Macpherson, and P. R. Unwin. 2012. Structural correlations in heterogeneous electron transfer at monolayer and multilayer graphene electrodes. Journal of the American Chemical Society 134 (17):7258–61. doi: 10.1021/ja3014902.
  • Guo, W., F. W. Pi, H. X. Zhang, J. D. Sun, Y. Z. Zhang, and X. L. Sun. 2017. A novel molecularly imprinted electrochemical sensor modified with carbon dots, chitosan, gold nanoparticles for the determination of patulin. Biosensors & Bioelectronics 98:299–304. doi: 10.1016/j.bios.2017.06.036.
  • Ha, N. R., I. P. Jung, I. J. La, H. S. Jung, and M. Y. Yoon. 2017. Ultra-sensitive detection of kanamycin for food safety using a reduced graphene oxide-based fluorescent aptasensor. Scientific Reports 7:1–10. doi: 10.1038/srep40305.
  • Hai, X., J. Feng, X. Chen, and J. Wang. 2018. Tuning the optical properties of graphene quantum dots for biosensing and bioimaging. Journal of Materials Chemistry B 6 (20):3219–34. doi: 10.1039/C8TB00428E.
  • He, B., Y. L. Mao, Y. Zhang, W. Yin, C. J. Hou, D. Q. Huo, and H. B. Fa. 2017. A porphyrin molecularly imprinted biomimetic electrochemical sensor based on gold nanoparticles and carboxyl graphene composite for the highly efficient detection of methyl parathion. Nano 12 (04):1750046–9. doi: 10.1142/S1793292017500461.
  • He, L. L., L. Cheng, Y. Lin, H. F. Cui, N. Hong, H. Peng, D. R. Kong, C. D. Chen, J. Zhang, G. B. Wei, et al. 2018. A sensitive biosensor for mercury ions detection based on hairpin hindrance by thymine-Hg(II)-thymine structure. Journal of Electroanalytical Chemistry. 814:161–7. doi: 10.1016/j.jelechem.2018.02.050.
  • Huang, X. J., S. L. Wei, S. Yao, H. S. Zhang, C. L. He, and J. F. Cao. 2019. Development of molecularly imprinted electrochemical sensor with reduced graphene oxide and titanium dioxide enhanced performance for the detection of toltrazuril in chicken muscle and egg. Journal of Pharmaceutical and Biomedical Analysis. 164:607–14. doi: 10.1016/j.jpba.2018.11.020.
  • Hummers, W. S., and R. E. Offeman. 1958. Preparation of graphitic oxide. Journal of the American Chemical Society 80 (6):1339. doi: 10.1021/ja01539a017.
  • Jampasa, S., W. Siangproh, K. Duangmal, and O. Chailapakul. 2016. Electrochemically reduced graphene oxide-modified screen-printed carbon electrodes for a simple and highly sensitive electrochemical detection of synthetic colorants in beverages. Talanta 160:113–24. doi: 10.1016/j.talanta.2016.07.011.
  • Jian, J. M., Y. Y. Liu, Y. L. Zhang, X. S. Guo, and Q. Cai. 2013. Fast and sensitive detection of Pb2+ in foods using disposable screen-printed electrode modified by reduced graphene oxide. Sensors (Basel, Switzerland) 13 (10):13063–75. doi: 10.3390/s131013063.
  • Jiang, L., Y. P. Ding, F. Jiang, L. Li, and F. Mo. 2014. Electrodeposited nitrogen-doped graphene/carbon nanotubes nanocomposite as enhancer for simultaneous and sensitive voltammetric determination of caffeine and vanillin. Analytica Chimica Acta 833:22–8. doi: 10.1016/j.aca.2014.05.010.
  • Kampeera, J., P. Pasakon, C. Karuwan, N. Arunrut, A. Sappat, S. Sirithammajak, N. Dechokiattawan, T. Sumranwanich, P. Chaivisuthangkura, P. Ounjai, et al. 2019. Point-of-care rapid detection of Vibrio parahaemolyticus in seafood using loop-mediated isothermal amplification and graphene-based screen-printed electrochemical sensor. Biosensors & Bioelectronics 132:271–8. doi: 10.1016/j.bios.2019.02.060.
  • Kempegowda, R., D. Antony, and P. Malingappa. 2014. Graphene–platinum nanocomposite as a sensitive and selective voltammetric sensor for trace level arsenic quantification. International Journal of Smart and Nano Materials 5 (1):17–32. doi: 10.1080/19475411.2014.898710.
  • Kim, K. S., Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong. 2009. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457 (7230):706–10. doi: 10.1038/nature07719.
  • Krittayavathananon, A., and M. Sawangphruk. 2017. Impedimetric sensor of ss-HSDNA/reduced graphene oxide aerogel electrode toward aflatoxin B1 detection: effects of redox mediator charges and hydrodynamic diffusion. Analytical Chemistry 89 (24):13283–9. doi: 10.1021/acs.analchem.7b03329.
  • Ladeira, C., C. Frazzoli, and O. E. Orisakwe. 2017. Engaging one health for non-communicable diseases in Africa: Perspective for mycotoxins. Frontiers in Public Health 5:266–15. doi: 10.3389/fpubh.2017.00266.
  • Lee, C., X. D. Wei, J. W. Kysar, and J. Hone. 2008. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science (New York, N.Y.) 321 (5887):385–8. doi: 10.1126/science.1157996.
  • Li, D., and R. B. Kaner. 2008. Materials science. Graphene-based materials. Science (New York, N.Y.) 320 (5880):1170–1. doi: 10.1126/science.1158180.
  • Li, D., M. B. Muller, S. Gilje, R. B. Kaner, and G. G. Wallace. 2008. Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology 3 (2):101–5. doi: 10.1038/nnano.2007.451.
  • Li, G., G. X. Sun, P. N. Williams, L. Nunes, and Y. G. Zhu. 2011. Inorganic arsenic in Chinese food and its cancer risk. Environment International 37 (7):1219–25. doi: 10.1016/j.envint.2011.05.007.
  • Li, H. H., X. Q. Huang, M. M. Hassan, M. Zuo, X. Y. Wu, Y. P. Chen, and Q. S. Chen. 2020. Dual-channel biosensor for Hg2+ sensing in food using Au@Ag/graphene-upconversion nanohybrids as metal-enhanced fluorescence and SERS indicators. Microchemical Journal. 154:104563–9. doi: 10.1016/j.microc.2019.104563.
  • Li, J. B., X. J. Wang, H. M. Duan, Y. H. Wang, Y. N. Bu, and C. N. Luo. 2016. Based on magnetic graphene oxide highly sensitive and selective imprinted sensor for determination of sunset yellow. Talanta 147:169–76. doi: 10.1016/j.talanta.2015.09.056.
  • Li, T. F., T. Yao, C. Zhang, G. Y. Liu, Y. X. She, M. J. Jin, F. Jin, S. S. Wang, H. Shao, and J. Wang. 2016. Electrochemical detection of ractopamine based on a molecularly imprinted poly-o-phenylenediamine/gold nanoparticle-ionic liquid-graphene film modified glass carbon electrode. RSC Advances 6 (71):66949–56. doi: 10.1039/C6RA11999A.
  • Li, Z. B., N. Xue, H. Y. Ma, Z. Y. Cheng, and X. M. Miao. 2018. An ultrasensitive and switch-on platform for aflatoxin B1 detection in peanut based on the fluorescence quenching of graphene oxide-gold nanocomposites. Talanta 181:346–51. doi: 10.1016/j.talanta.2018.01.039.
  • Lian, W. J., S. Liu, J. H. Yu, X. R. Xing, J. Li, M. Cui, and J. D. Huang. 2012. Electrochemical sensor based on gold nanoparticles fabricated molecularly imprinted polymer film at chitosan-platinum nanoparticles/graphene-gold nanoparticles double nanocomposites modified electrode for detection of erythromycin. Biosensors & Bioelectronics 38 (1):163–9. doi: 10.1016/j.bios.2012.05.017.
  • Lin, W. Y., B. Tian, P. P. Zhuang, J. Yin, C. K. Zhang, Q. Y. Li, T. M. Shih, and W. W. Cai. 2016. Graphene-based fluorescence-quenching-related fermi level elevation and electron-concentration surge. Nano Letters 16 (9):5737–41. doi: 10.1021/acs.nanolett.6b02430.
  • Lin, X. Y., Y. N. A. Ni, and S. Kokot. 2013. A novel electrochemical sensor for the analysis of β-agonists: the poly(acid chrome blue K)/graphene oxide-nafion/glassy carbon electrode. Journal of Hazardous Materials 260:508–17. doi: 10.1016/j.jhazmat.2013.06.004.
  • Liu, J. J., Y. L. Chen, W. F. Wang, J. Feng, M. J. Liang, S. D. Ma, and X. G. Chen. 2016. “Switch-On” fluorescent sensing of ascorbic acid in food samples based on carbon quantum dots-MnO2 probe. Journal of Agricultural and Food Chemistry 64 (1):371–80. doi: 10.1021/acs.jafc.5b05726.
  • Liu, X. H., D. K. Grandy, and A. Janowsky. 2014. Ractopamine, a livestock feed additive, is a full agonist at trace amine-associated receptor 1. The Journal of Pharmacology and Experimental Therapeutics 350 (1):124–9. doi: 10.1124/jpet.114.213116.
  • Liu, Y. X., Y. Z. Liang, H. Lian, C. Z. Zhang, and J. Y. Peng. 2015. Sensitive voltammetric determination of vanillin with an electrolytic manganese dioxide-graphene composite modified electrode. International Journal of Electrochemical Science. 10 (5):4129–37.
  • Liu, Z. P., C. S. Tian, L. H. Lu, and X. G. Su. 2016. A novel aptamer-mediated CuInS2 quantum dots@graphene oxide nanocomposites-based fluorescence “turn off-on” nanosensor for highly sensitive and selective detection of kanamycin. RSC Advances 6 (12):10205–14. doi: 10.1039/C5RA22753D.
  • Lofstedt, R. 2009. Risk communication and the FSA: The food colourings case. Journal of Risk Research 12 (5):537–57. doi: 10.1080/13669870903132695.
  • Lotya, M., Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. M. Wang, I. T. McGovern, et al. 2009. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. Journal of the American Chemical Society 131 (10):3611–20. doi: 10.1021/ja807449u.
  • Lu, Z. S., X. J. Chen, Y. Wang, X. T. Zheng, and C. M. Li. 2015. Aptamer based fluorescence recovery assay for aflatoxin B1 using a quencher system composed of quantum dots and graphene oxide. Microchimica Acta 182 (3–4):571–8. doi: 10.1007/s00604-014-1360-0.
  • Markovic, Z. M., L. M. Harhaji-Trajkovic, B. M. Todorovic-Markovic, D. P. Kepic, K. M. Arsikin, S. P. Jovanovic, A. C. Pantovic, M. D. Dramicanin, and V. S. Trajkovic. 2011. In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes. Biomaterials 32 (4):1121–9. doi: 10.1016/j.biomaterials.2010.10.030.
  • McCreery, R. L. 2008. Advanced carbon electrode materials for molecular electrochemistry. Chemical Reviews 108 (7):2646–87. doi: 10.1021/cr068076m.
  • Meyer, J. C., A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth. 2007. The structure of suspended graphene sheets. Nature 446 (7131):60–3. doi: 10.1038/nature05545.
  • Mostafa, A. A., A. E.-H G. Abu-Hassiba, M. T. ElRouby, F. Abou-Hashim, and H. S. Omar. 2022. Food adulteration with genetically modified soybeans and maize, meat of animal species and ractopamine residues in different food products. Electronic Journal of Biotechnology 55:65–77. doi: 10.1016/j.ejbt.2021.11.005.
  • Muhammad, I., X. Q. Sun, H. Wang, W. Li, X. H. Wang, P. Cheng, S. H. Li, X. Y. Zhang, and S. Hamid. 2017. Curcumin successfully inhibited the computationally identified CYP2A6 enzyme-mediated bioactivation of aflatoxin B1 in arbor acres broiler. Frontiers in Pharmacology 8:1–11. doi: 10.3389/fphar.2017.00143.
  • Muniandy, S., S. J. Teh, J. N. Appaturi, K. L. Thong, C. W. Lai, F. Ibrahim, and B. F. Leo. 2019. A reduced graphene oxide-titanium dioxide nanocomposite based electrochemical aptasensor for rapid and sensitive detection of Salmonella enterica. Bioelectrochemistry (Amsterdam, Netherlands) 127:136–44. doi: 10.1016/j.bioelechem.2019.02.005.
  • Nair, R. R., P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim. 2008. Fine structure constant defines visual transparency of graphene. Science (New York, N.Y.) 320 (5881):1308–doi: 10.1126/science.1156965.
  • Narayanan, J., M. K. Sharma, S. Ponmariappan, M. Shaik, and S. Upadhyay. 2015. Electrochemical immunosensor for botulinum neurotoxin type-E using covalently ordered graphene nanosheets modified electrodes and gold nanoparticles-enzyme conjugate. Biosensors and Bioelectronics. 69:249–56. doi: 10.1016/j.bios.2015.02.039.
  • Nebol’sin, V. A.,V. Galstyan, andY. E. Silina. 2020. Graphene oxide and its chemical nature: Multi-stage interactions between the oxygen and graphene. Surfaces and Interfaces 21:100763 doi:10.1016/j.surfin.2020.100763.
  • Nemati, F., M. Hosseini, R. Zare-Dorabei, and M. R. Ganjali. 2018. Sensitive recognition of ethion in food samples using turn-on fluorescence N and S co-doped graphene quantum dots. Analytical Methods 10 (15):1760–6. doi: 10.1039/C7AY02850D.
  • Ning, J. H., Q. G. He, X. Luo, M. Wang, D. L. Liu, J. H. Wang, J. Liu, and G. L. Li. 2018. Rapid and sensitive determination of vanillin based on a glassy carbon electrode modified with Cu2O-electrochemically reduced graphene oxide nanocomposite film. Sensors 18 (9):1–17.2762. doi: 10.3390/s1809:.
  • Novoselov, K. S., A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov. 2005. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438 (7065):197–200. doi: 10.1038/nature04233.
  • Park, S., and R. S. Ruoff. 2009. Chemical methods for the production of graphenes. Nature Nanotechnology 4 (4):217–24. doi: 10.1038/nnano.2009.58.
  • Patterson, G. T., L. F. Thomas, L. A. Coyne, and J. Rushton. 2020. Moving health to the heart of agri-food policies; Mitigating risk from our food systems. Global Food Security 26:100424. doi: 10.1016/j.gfs.2020.100424.
  • Peng, J. Y., C. T. Hou, and X. Y. Hu. 2012. A graphene-based electrochemical sensor for sensitive detection of vanillin. International Journal of Electrochemical Science. 7 (2):1724–33.
  • Poo-arporn, Y., S. Pakapongpan, N. Chanlek, and R. P. Poo-arporn. 2019. The development of disposable electrochemical sensor based on Fe3O4-doped reduced graphene oxide modified magnetic screen-printed electrode for ractopamine determination in pork sample. Sensors and Actuators B: Chemical 284:164–71. doi: 10.1016/j.snb.2018.12.121.
  • Qi, P. P., J. Wang, Z. W. Wang, X. Wang, X. Y. Wang, X. H. Xu, H. Xu, S. S. Di, H. Zhang, Q. Wang, et al. 2018. Construction of a probe-immobilized molecularly imprinted electrochemical sensor with dual signal amplification of thiol graphene and gold nanoparticles for selective detection of tebuconazole in vegetable and fruit samples. Electrochimica Acta. 274:406–14. doi: 10.1016/j.electacta.2018.04.128.
  • Qi, S. P., B. Zhao, B. Zhou, and X. Q. Jiang. 2017. An electrochemical immunosensor based on pristine graphene for rapid determination of ractopamine. Chemical Physics Letters. 685:146–50. doi: 10.1016/j.cplett.2017.07.055.
  • Qin, X. L., W. J. Guo, H. J. Yu, J. Zhao, and M. S. Pei. 2015. A novel electrochemical aptasensor based on MWCNTs-BMIMPF6 and amino functionalized graphene nanocomposite films for determination of kanamycin. Analytical Methods 7 (13):5419–27. doi: 10.1039/C5AY00713E.
  • Qin, X. L., Y. Yin, H. J. Yu, W. J. Guo, and M. S. Pei. 2016. A novel signal amplification strategy of an electrochemical aptasensor for kanamycin, based on thionine functionalized graphene and hierarchical nanoporous PtCu. Biosensors & Bioelectronics 77:752–8. doi: 10.1016/j.bios.2015.10.050.
  • Roushani, M., M. Ghanbarzadeh, F. Shahdost-fard, R. Sahraei, and E. Soheyli. 2020. AgNPs/QDs@GQDs nanocomposites developed as an ultrasensitive impedimetric aptasensor for ractopamine detection. Materials Science and Engineering: C 108:110507–8. doi: 10.1016/j.msec.2019.110507.
  • Saghatforoush, L., M. Hasanzadeh, and N. Shadjou. 2014. Polystyrene-graphene oxide modified glassy carbon electrode as a new class of polymeric nanosensors for electrochemical determination of histamine. Chinese Chemical Letters. 25 (4):655–8. doi: 10.1016/j.cclet.2014.01.014.
  • Savas, S., and Z. Altintas. 2019. Graphene quantum dots as nanozymes for electrochemical sensing of yersinia enterocolitica in milk and human serum. Materials 12 (13):2189. doi: 10.3390/ma1213.
  • Shabnam, L., S. N. Faisal, A. K. Roy, E. Haque, A. I. Minett, and V. G. Gomes. 2017. Doped graphene/Cu nanocomposite: A high sensitivity non-enzymatic glucose sensor for food. Food Chemistry 221:751–9. doi: 10.1016/j.foodchem.2016.11.107.
  • Shao, Y. Y., J. Wang, H. Wu, J. Liu, I. A. Aksay, and Y. H. Lin. 2010. Graphene based electrochemical sensors and biosensors: A review. Electroanalysis 22 (10):1027–36. doi: 10.1002/elan.200900571.
  • Sharma, R., J. H. Baik, C. J. Perera, and M. S. Strano. 2010. Anomalously large reactivity of single graphene layers and edges toward electron transfer chemistries. Nano Letters 10 (2):398–405. doi: 10.1021/nl902741x.
  • Shi, J. Y., J. B. Guo, G. X. Bai, C. Y. Chan, X. Liu, W. W. Ye, J. H. Hao, S. Chen, and M. Yang. 2015. A graphene oxide based fluorescence resonance energy transfer (FRET) biosensor for ultrasensitive detection of botulinum neurotoxin A (BoNT/A) enzymatic activity. Biosensors & Bioelectronics 65:238–44. doi: 10.1016/j.bios.2014.10.050.
  • Silva, M. L. S., M. B. Q. Garcia, J. Lima, and E. Barrado. 2007. Voltammetric determination of food colorants using a polyallylamine modified tubular electrode in a multicommutated flow system. Talanta 72 (1):282–8. doi: 10.1016/j.talanta.2006.10.032.
  • Singh, J., A. Rathi, M. Rawat, and M. Gupta. 2018. Graphene: From synthesis to engineering to biosensor applications. Frontiers of Materials Science 12 (1):1–20. doi: 10.1007/s11706-018-0409-0.
  • Soares, R. R. A., R. G. Hjort, C. C. Pola, K. Parate, E. L. Reis, N. F. F. Soares, E. S. McLamore, J. C. Claussen, and C. L. Gomes. 2020. Laser-induced graphene electrochemical immunosensors for rapid and label-free monitoring of Salmonella enterica in chicken broth. ACS Sensors 5 (7):1900–11. doi: 10.1021/acssensors.9b02345.
  • Srivastava, S., S. Abraham, C. Singh, M. A. Ali, A. Srivastava, G. Sumana, and B. D. Malhotra. 2015. Protein conjugated carboxylated gold@reduced graphene oxide for aflatoxin B-1 detection. RSC Advances 5 (7):5406–14. doi: 10.1039/C4RA12713G.
  • Srivastava, S., V. Kumar, K. Arora, C. Singh, M. A. Ali, N. K. Puri, and B. D. Malhotra. 2016. Antibody conjugated metal nanoparticle decorated graphene sheets for a mycotoxin sensor. RSC Advances 6 (61):56518–26. doi: 10.1039/C6RA04469G.
  • Stoller, M. D., S. J. Park, Y. W. Zhu, J. H. An, and R. S. Ruoff. 2008. Graphene-based ultracapacitors. Nano Letters 8 (10):3498–502. doi: 10.1021/nl802558y.
  • Sun, A. L., Y. F. Zhang, G. P. Sun, X. N. Wang, and D. Tang. 2017. Homogeneous electrochemical detection of ochratoxin A in foodstuff using aptamer-graphene oxide nanosheets and DNase I-based target recycling reaction. Biosensors & Bioelectronics 89 (Pt 1):659–65. doi: 10.1016/j.bios.2015.12.032.
  • Sun, X. L., M. Jia, L. Guan, J. Ji, Y. Z. Zhang, L. L. Tang, and Z. J. Li. 2015. Multilayer graphene-gold nanocomposite modified stem-loop DNA biosensor for peanut allergen-Ara h1 detection. Food Chemistry 172:335–42. doi: 10.1016/j.foodchem.2014.09.042.
  • Sun, X., F. L. Li, G. H. Shen, J. D. Huang, and X. Y. Wang. 2014. Aptasensor based on the synergistic contributions of chitosan-gold nanoparticles, graphene-gold nanoparticles and multi-walled carbon nanotubes-cobalt phthalocyanine nanocomposites for kanamycin detection. The Analyst 139 (1):299–308. doi: 10.1039/c3an01840g.
  • Tan, X. C., Q. Hu, J. W. Wu, X. Y. Li, P. F. Li, H. C. Yu, X. Y. Li, and F. H. Lei. 2015. Electrochemical sensor based on molecularly imprinted polymer reduced graphene oxide and gold nanoparticles modified electrode for detection of carbofuran. Sensors and Actuators B: Chemical 220:216–21. doi: 10.1016/j.snb.2015.05.048.
  • Toloza, C. A. T., S. Khan, R. L. D. Silva, E. C. Romani, D. G. Larrude, S. R. W. Louro, F. L. Freire, and R. Q. Aucelio. 2017. Photoluminescence suppression effect caused by histamine on amino-functionalized graphene quantum dots with the mediation of Fe3+, Cu2+, Eu3+: Application in the analysis of spoiled tuna fish. Microchemical Journal. 133:448–59. doi: 10.1016/j.microc.2017.04.013.
  • Tung, T. T.,M. J. Nine,M. Krebsz,T. Pasinszki,C. J. Coghlan,D. N. H. Tran, andD. Losic. 2017. Recent Advances in Sensing Applications of Graphene Assemblies and Their Composites. Advanced Functional Materials 27 (46):1702891 doi:10.1002/adfm.201702891.
  • Valota, A. T., I. A. Kinloch, K. S. Novoselov, C. Casiraghi, A. Eckmann, E. W. Hill, and R. A. W. Dryfe. 2011. Electrochemical behavior of monolayer and bilayer graphene. ACS Nano 5 (11):8809–15. doi: 10.1021/nn202878f.
  • Vikraman, A. E., Z. Rasheed, L. Rajith, L. A. Lonappan, and G. K. Krishnapillai. 2013. MWCNT-modified gold electrode sensor for the determination of propyl gallate in vegetable oils. Food Analytical Methods 6 (3):775–80. doi: 10.1007/s12161-012-9485-4.
  • Wang, D., W. H. Hu, Y. H. Xiong, Y. Xu, and C. M. Li. 2015. Multifunctionalized reduced graphene oxide-doped polypyrrole/pyrrolepropylic acid nanocomposite impedimetric immunosensor to ultra-sensitively detect small molecular aflatoxin B₁. Biosensors & Bioelectronics 63:185–9. doi: 10.1016/j.bios.2014.06.070.
  • Wang, H., Y. Zhang, H. Li, B. Du, H. M. Ma, D. Wu, and Q. Wei. 2013. A silver-palladium alloy nanoparticle-based electrochemical biosensor for simultaneous detection of ractopamine, clenbuterol and salbutamol. Biosensors & Bioelectronics 49:14–9. doi: 10.1016/j.bios.2013.04.041.
  • Wang, M. H., M. M. Kang, C. P. Guo, S. M. Fang, L. H. He, C. X. Jia, G. H. Zhang, B. Bai, W. Zong, and Z. H. Zhang. 2015. Electrochemical biosensor based on Cu/Cu2O nanocrystals and reduced graphene oxide nanocomposite for sensitively detecting ractopamine. Electrochimica Acta. 182:668–75. doi: 10.1016/j.electacta.2015.09.138.
  • Wang, M. Y., W. Zhu, L. Ma, J. J. Ma, D. E. Zhang, Z. W. Tong, and J. Chen. 2016. Enhanced simultaneous detection of ractopamine and salbutamol-Via electrochemical-facial deposition of MnO2 nanoflowers onto 3D RGO/Ni foam templates . Biosensors & Bioelectronics 78:259–66. doi: 10.1016/j.bios.2015.11.062.
  • Wang, S., F. Zhang, C. Y. Chen, and C. Q. Cai. 2019. Ultrasensitive graphene quantum dots-based catalytic hairpin assembly amplification resonance light scattering assay for p53 mutant DNA detection. Sensors and Actuators B: Chemical 291:42–7. doi: 10.1016/j.snb.2019.04.015.
  • Wang, X. J., C. N. Luo, L. L. Li, and H. M. Duan. 2015. An ultrasensitive molecularly imprinted electrochemical sensor based on graphene oxide/carboxylated multiwalled carbon nanotube/ionic liquid/gold nanoparticle composites for vanillin analysis. RSC Advances 5 (113):92932–9. doi: 10.1039/C5RA15521E.
  • Wang, Y., Y. Bi, R. Wang, L. Wang, H. Qu, and L. Zheng. 2021. DNA-gated graphene field-effect transistors for specific detection of arsenic(III) in rice. Journal of Agricultural and Food Chemistry 69 (4):1398–404. doi: 10.1021/acs.jafc.0c07052.
  • Wei, X.,Z. Zhang,L. Zhang, andX. Xu. 2019. Synthesis of molecularly imprinted polymers/NiCo2O4 nanoneedle arrays on 3D graphene electrode for determination of sulfadimidine residue in food. Journal of Materials Science 54 (3):2066–78. doi:10.1007/s10853-018-2975-z.
  • Wu, C., D. Sun, Q. Li, and K. B. Wu. 2012. Electrochemical sensor for toxic ractopamine and clenbuterol based on the enhancement effect of graphene oxide. Sensors and Actuators B: Chemical 168:178–84. doi: 10.1016/j.snb.2012.03.084.
  • Wu, L., W. Yin, K. Tang, D. Li, K. Shao, Y. Zuo, J. Ma, J. Liu, and H. Han. 2016. Enzymatic biosensor of horseradish peroxidase immobilized on Au-Pt nanotube/Au-graphene for the simultaneous determination of antioxidants. Analytica Chimica Acta 933:89–96. doi: 10.1016/j.aca.2016.06.020.
  • Wu, S. J., N. Duan, X. Y. Ma, Y. Xia, H. G. Wang, Z. P. Wang, and Q. Zhang. 2012. Multiplexed fluorescence resonance energy transfer aptasensor between upconversion nanoparticles and graphene oxide for the simultaneous determination of mycotoxins. Analytical Chemistry 84 (14):6263–70. doi: 10.1021/ac301534w.
  • Xie, T. J., M. Zhang, P. Chen, H. T. Zhao, X. Yang, L. Yao, H. Zhang, A. J. Dong, J. Wang, and Z. Y. Wang. 2017. A facile molecularly imprinted electrochemical sensor based on graphene: Application to the selective determination of thiamethoxam in grain. RSC Advances 7 (62):38884–94. doi: 10.1039/C7RA05167K.
  • Xie, Y. F., Y. Li, L. Niu, H. Y. Wang, H. Qian, and W. R. Yao. 2012. A novel surface-enhanced Raman scattering sensor to detect prohibited colorants in food by graphene/silver nanocomposite. Talanta 100:32–7. doi: 10.1016/j.talanta.2012.07.080.
  • Xing, X. R., S. Liu, J. H. Yu, W. J. Lian, and J. D. Huang. 2012. Electrochemical sensor based on molecularly imprinted film at polypyrrole-sulfonated graphene/hyaluronic acid-multiwalled carbon nanotubes modified electrode for determination of tryptamine. Biosensors & Bioelectronics 31 (1):277–83. doi: 10.1016/j.bios.2011.10.032.
  • Xu, G. L., Y. Chi, L. Li, S. H. Liu, and X. W. Kan. 2015. Imprinted propyl gallate electrochemical sensor based on graphene/single walled carbon nanotubes/sol-gel film. Food Chemistry 177:37–42. doi: 10.1016/j.foodchem.2014.12.097.
  • Yaeger, M. J., K. Mullin, S. M. Ensley, W. A. Ware, and R. E. Slavin. 2012. Myocardial toxicity in a group of greyhounds administered ractopamine. Veterinary Pathology 49 (3):569–73. doi: 10.1177/0300985811424752.
  • Yan, F., M. F. Wang, Q. F. Jin, H. X. Zhou, L. H. Xie, H. L. Tang, and J. Y. Liu. 2021. Vertically-ordered mesoporous silica films on graphene for anti-fouling electrochemical detection of tert-butylhydroquinone in cosmetics and edible oils. Journal of Electroanalytical Chemistry. 881:114969. doi: 10.1016/j.jelechem.2020.114969.
  • Yang, F., P. L. Wang, R. G. Wang, Y. Zhou, X. O. Su, Y. J. He, L. Shi, and D. S. Yao. 2016. Label free electrochemical aptasensor for ultrasensitive detection of ractopamine. Biosensors & Bioelectronics 77:347–52. doi: 10.1016/j.bios.2015.09.050.
  • Yang, G. M., and F. Q. Zhao. 2015. Electrochemical sensor for dimetridazole based on novel gold nanoparticles@molecularly imprinted polymer. Sensors and Actuators B: Chemical 220:1017–22. doi: 10.1016/j.snb.2015.06.051.
  • Yang, Y. K., Y. Y. Cao, X. M. Wang, G. Z. Fang, and S. Wang. 2015. Prussian blue mediated amplification combined with signal enhancement of ordered mesoporous carbon for ultrasensitive and specific quantification of metolcarb by a three-dimensional molecularly imprinted electrochemical sensor. Biosensors & Bioelectronics 64:247–54. doi: 10.1016/j.bios.2014.09.009.
  • Youn, H., K. Lee, J. Her, J. Jeon, J. Mok, J. I. So, S. Shin, and C. Ban. 2019. Aptasensor for multiplex detection of antibiotics based on FRET strategy combined with aptamer/graphene oxide complex. Scientific Reports. 9:1–9. doi: 10.1038/s41598-019-44051-3.
  • Youssef, Z., R. Vanderesse, L. Colombeau, F. Baros, T. Roques-Carmes, C. Frochot, H. Wahab, J. Toufaily, T. Hamieh, S. Acherar, et al. 2017. The application of titanium dioxide, zinc oxide, fullerene, and graphene nanoparticles in photodynamic therapy. Cancer Nanotechnology 8 (1):6–62. doi: 10.1186/s12645-017-0032-2.
  • Yu, S. J., Q. Wei, B. Du, D. Wu, H. Li, L. G. Yan, H. M. Ma, and Y. Zhang. 2013. Label-free immunosensor for the detection of kanamycin using Ag@Fe3O4 nanoparticles and thionine mixed graphene sheet. Biosensors & Bioelectronics 48:224–9. doi: 10.1016/j.bios.2013.04.025.
  • Yuan, W. J., Y. Zhou, Y. R. Li, C. Li, H. L. Peng, J. Zhang, Z. F. Liu, L. M. Dai, and G. Q. Shi. 2013. The edge- and basal-plane-specific electrochemistry of a single-layer graphene sheet. Scientific Reports. 3:1–7. doi: 10.1038/srep02248.
  • Yue, X., X. Luo, Z. Zhou, and Y. Bai. 2019. Selective electrochemical determination of tertiary butylhydroquinone in edible oils based on an in-situ assembly molecularly imprinted polymer sensor. Food Chemistry 289:84–94. doi: 10.1016/j.foodchem.2019.03.044.
  • Zhang, J. J., Z. M. Li, S. C. Zhao, and Y. Lu. 2016. Size-dependent modulation of graphene oxide-aptamer interactions for an amplified fluorescence-based detection of aflatoxin B1 with a tunable dynamic range. The Analyst 141 (13):4029–34. doi: 10.1039/c6an00368k.
  • Zhang, M., H. T. Zhao, T. J. Xie, X. Yang, A. J. Dong, H. Zhang, J. Wang, and Z. Y. Wang. 2017. Molecularly imprinted polymer on graphene surface for selective and sensitive electrochemical sensing imidacloprid. Sensors and Actuators B: Chemical 252:991–1002. doi: 10.1016/j.snb.2017.04.159.
  • Zhang, W., Y. W. Xu, and X. B. Zou. 2017. A ZnO-RGO-modified electrode coupled to microwave digestion for the determination of trace cadmium and lead in six species fish. Analytical Methods 9 (30):4418–24. doi: 10.1039/C7AY01574G.
  • Zhang, Y. B., Y. Wang, Y. F. Shi, H. Y. Huang, X. Y. Wang, and L. J. Zhao. 2019. One step synthesis of covalent connected three-dimensional graphene/carbon nanotube for olaquindox electrochemical sensor. Electrochemistry 87 (1):20–5. doi: 10.5796/electrochemistry.18-00040.
  • Zhao, L. J., F. Q. Zhao, and B. Z. Zeng. 2013. Electrochemical determination of methyl parathion using a molecularly imprinted polymer-ionic liquid-graphene composite film coated electrode. Sensors and Actuators B: Chemical 176:818–24. doi: 10.1016/j.snb.2012.10.003.
  • Zhao, L. J., F. Q. Zhao, and B. Z. Zeng. 2014. Electrochemical determination of carbaryl by using a molecularly imprinted polymer/graphene-ionic liquid-nano Au/chitosan-AuPt alloy nanoparticles composite film modified electrode. International Journal of Electrochemical Science. 9 (3):1366–77.
  • Zhao, X., L. Liu, X. Li, J. Zeng, X. Jia, and P. Liu. 2014. Biocompatible graphene oxide nanoparticle-based drug delivery platform for tumor microenvironment-responsive triggered release of doxorubicin. Langmuir: The ACS Journal of Surfaces and Colloids 30 (34):10419–29. doi: 10.1021/la502952f.
  • Zhou, H. Q., Z. Zhang, B. X. Chang, M. T. Ye, and Xu, Y. L. 2016. Simultaneous determination of clenbuterol and salbutamol with a graphene-nafion nanocomposite modified electrode. International Journal of Electrochemical Science 11 (6):5154–64. doi: 10.20964/2016.06.72.
  • Zhu, Q., H. X. Liu, J. Zhang, K. Wu, A. P. Deng, and J. G. Li. 2017. Ultrasensitive QDs based electrochemiluminescent immunosensor for detecting ractopamine using AuNPs and Au nanoparticles@PDDA-graphene as amplifier. Sensors and Actuators B: Chemical 243:121–9. doi: 10.1016/j.snb.2016.11.135.
  • Zhu, X. D., Y. B. Zeng, Z. L. Zhang, Y. W. Yang, Y. Y. Zhai, H. L. Wang, L. Y. Liu, J. Hu, and L. Li. 2018. A new composite of graphene and molecularly imprinted polymer based on ionic liquids as functional monomer and cross-linker for electrochemical sensing 6-benzylaminopurine. Biosensors & Bioelectronics 108:38–45. doi: 10.1016/j.bios.2018.02.032.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.