981
Views
7
CrossRef citations to date
0
Altmetric
Review Articles

Recent developments in the use of cold plasma, high hydrostatic pressure, and pulsed electric fields on microorganisms and viruses in seafood

ORCID Icon, ORCID Icon, , ORCID Icon &

References

  • Abel, N., B. T. Rotabakk, and J. Lerfall. 2022. Mild processing of seafood—A review. Comprehensive Reviews in Food Science and Food Safety 21 (1):340–70. doi: 10.1111/1541-4337.12876.
  • Aday, S., and M. S. Aday. 2020. Impact of COVID-19 on the food supply chain. Food Quality and Safety 4 (4):167–80. doi: 10.1093/fqsafe/fyaa024.
  • Agregán, R., P. E. Munekata, W. Zhang, J. Zhang, C. Perez-Santaescolástica, and J. M. Lorenzo. 2021. High-pressure processing in inactivation of Salmonella spp. in food products. Trends in Food Science & Technology 107:31–7. doi: 10.1016/j.tifs.2020.11.025.
  • Amroabadi, M. A., E. Rahimi, A. Shakerian, and H. Momtaz. 2021. Incidence of hepatitis A and hepatitis E viruses and norovirus and rotavirus in fish and shrimp samples caught from the Persian Gulf. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 73 (1):169–78. doi: 10.1590/1678-4162-11742.
  • Anggo, A. D, and S. Suharto. 2020. The effect of high voltage electric shock on the quality attribute of carp fish (Cyprinus carpio) meat. Paper presented at the IOP Conference Series: Earth and Environmental Science.
  • Aoude, C., A. Lammerskitten, O. Parniakov, R. Zhang, N. Grimi, H. El Zakhem, and E. Vorobiev. 2022. Equipment and recent advances in pulsed electric fields. In Innovative and emerging technologies in the bio-marine food sector, 149–72. London: Academic Press.
  • Bae, S.-C., S. Y. Park, W. Choe, and S.-D. Ha. 2015. Inactivation of murine norovirus-1 and hepatitis A virus on fresh meats by atmospheric pressure plasma jets. Food Research International (Ottawa, Ont.) 76 (Pt 3):342–7. doi: 10.1016/j.foodres.2015.06.039.
  • Bermudez-Aguirre, D. 2020. Advances in the inactivation of microorganisms and viruses in food and model systems using cold plasma. In Advances in Cold plasma applications for food safety and preservation, 49–91. London: Academic Press.
  • Cap, M., P. F. Paredes, D. Fernández, M. Mozgovoj, S. R. Vaudagna, and A. Rodriguez. 2020. Effect of high hydrostatic pressure on Salmonella spp inactivation and meat-quality of frozen chicken breast. LWT 118:108873. doi: 10.1016/j.lwt.2019.108873.
  • Capelli, F., S. Tappi, T. Gritti, A. C. de Aguiar Saldanha Pinheiro, R. Laurita, U. Tylewicz, F. Spataro, G. Braschi, R. Lanciotti, F. Gómez Galindo, et al. 2021. Decontamination of food packages from SARS-COV-2 RNA with a cold plasma-assisted system. Applied Sciences 11 (9):4177. doi: 10.3390/app11094177.
  • Chen, Y., G. Chen, R. Wei, Y. Zhang, S. Li, and Y. Chen. 2019. Quality characteristics of fresh wet noodles treated with nonthermal plasma sterilization. Food Chemistry 297:124900. doi: 10.1016/j.foodchem.2019.05.174.
  • Chen, Z., G. Garcia, Jr, V. Arumugaswami, and R. E. Wirz. 2020. Cold atmospheric plasma for SARS-CoV-2 inactivation. Physics of Fluids 32 (11):111702. doi: 10.1063/5.0031332.
  • Choi, M.-S., E. B. Jeon, J. Y. Kim, E. H. Choi, J. S. Lim, J. Choi, K. S. Ha, J. Y. Kwon, S. H. Jeong, and S. Y. Park. 2020. Virucidal effects of dielectric barrier discharge plasma on human norovirus infectivity in fresh oysters (Crassostrea gigas). Foods 9 (12):1731. https://www.mdpi.com/2304-8158/9/12/1731. doi: 10.3390/foods9121731.
  • Chotphruethipong, L., R. E. Aluko, and S. Benjakul. 2019. Effect of pulsed electric field-assisted process in combination with porcine lipase on defatting of seabass skin. Journal of Food Science 84 (7):1799–805. doi: 10.1111/1750-3841.14687.
  • Colejo, S., A. Alvarez-Ordóñez, M. Prieto, M. González-Raurich, and M. López. 2018. Evaluation of ultraviolet light (UV), non-thermal atmospheric plasma (NTAP) and their combination for the control of foodborne pathogens in smoked salmon and their effect on quality attributes. Innovative Food Science & Emerging Technologies 50:84–93. doi: 10.1016/j.ifset.2018.10.002.
  • Cong, W., N.-Z. Zhang, D.-Q. Yuan, Y. Zou, S. Li, and Z.-L. Liang. 2019. Detection and genetic characterization of Toxoplasma gondii in market-sold mussels (Mytilus edulis) in certain provinces of China. Microbial Pathogenesis 136:103687. doi: 10.1016/j.micpath.2019.103687.
  • Craighead, S., S. Hertrich, G. Boyd, J. Sites, B. A. Niemira, and K. E. Kniel. 2020. Cold atmospheric plasma jet inactivates Cryptosporidium parvum Oocysts on cilantro. Journal of Food Protection 83 (5):794–800. doi: 10.4315/0362-028X.JFP-19-442.
  • Cropotova, J., S. Tappi, J. Genovese, P. Rocculi, L. Laghi, M. Dalla Rosa, and T. Rustad. 2021. Study of the influence of pulsed electric field pre-treatment on quality parameters of sea bass during brine salting. Innovative Food Science & Emerging Technologies 70:102706.
  • Cullen, P. J. B. K. Tiwari, and V. P. Valdramidis. 2012. Chapter 1 - Status and trends of novel thermal and non-thermal technologies for fluid foods. In Novel thermal and non-thermal technologies for fluid foods, eds. P. J. Cullen, B. K. Tiwari, andV. P. Valdramidis, 1–6. San Diego: Academic Press.
  • Dai, M., H. Li, N. Yan, J. Huang, L. Zhao, S. Xu, J. Wu, S. Jiang, C. Pan, and M. Liao. 2021. Long-term survival of SARS-CoV-2 on salmon as a source for international transmission. The Journal of Infectious Diseases 223 (3):537–9. doi: 10.1093/infdis/jiaa712.
  • Daryaei, H. A. E. Yousef, and V. Balasubramaniam. 2016. Microbiological aspects of high-pressure processing of food: Inactivation of microbial vegetative cells and spores. In High pressure processing of food, 271–94. New York: Springer.
  • Devleesschauwer, B. J. A. Haagsma, J. Mangen, M.-J, R. J. Lake, and A. H. Havelaar. 2018. The global burden of foodborne disease. In Food safety economics, 107–22. Cham, Switzerland: Springer.
  • Dirks, R. A. M., C. C. C. Jansen, G. Hägele, A. J. T. Zwartkruis-Nahuis, A. S. L. Tijsma, and I. L. A. Boxman. 2021. Quantitative levels of norovirus and hepatitis A virus in bivalve molluscs collected along the food chain in the Netherlands, 2013-2017. International Journal of Food Microbiology 344:109089. doi: 10.1016/j.ijfoodmicro.2021.109089.
  • Dryzer, M., C. Niven, S. Wolter, C. Arena, E. Ngaboyamahina, C. Parker, and B. Stoner. 2019. Electropermeabilization of nematode eggs for parasite deactivation. Journal of Water, Sanitation, and Hygiene for Development: A Journal of the International Water Association 9 (1):49–55. doi: 10.2166/washdev.2019.100.
  • Ekonomou, S., and I. S. Boziaris. 2021. Non-thermal methods for ensuring the microbiological quality and safety of seafood. Applied Sciences 11 (2):833. doi: 10.3390/app11020833.
  • Ekonomou, S., S. Bulut, K. Karatzas, and I. Boziaris. 2020. Inactivation of Listeria monocytogenes in raw and hot smoked trout fillets by high hydrostatic pressure processing combined with liquid smoke and freezing. Innovative Food Science & Emerging Technologies 64:102427. doi: 10.1016/j.ifset.2020.102427.
  • Espinosa, M. F., A. N. Sancho, L. M. Mendoza, C. R. Mota, and M. E. Verbyla. 2020. Systematic review and meta-analysis of time-temperature pathogen inactivation. International Journal of Hygiene and Environmental Health 230:113595. doi: 10.1016/j.ijheh.2020.113595.
  • Esua, O. J., J.-H. Cheng, and D.-W. Sun. 2021. Novel technique for treating grass carp (Ctenopharyngodon idella) by combining plasma functionalized liquids and Ultrasound: Effects on bacterial inactivation and quality attributes. Ultrasonics Sonochemistry 76:105660.
  • Filipić, A., I. Gutierrez-Aguirre, G. Primc, M. Mozetič, and D. Dobnik. 2020. Cold plasma, a new hope in the field of virus inactivation. Trends in Biotechnology 38 (11):1278–91. doi: 10.1016/j.tibtech.2020.04.003.
  • Franssen, F., C. Gerard, A. Cozma-Petruţ, M. Vieira-Pinto, A. R. Jambrak, N. Rowan, P. Paulsen, M. Rozycki, K. Tysnes, D. Rodriguez-Lazaro, et al. 2019. Inactivation of parasite transmission stages: Efficacy of treatments on food of animal origin. Trends in Food Science & Technology 83:114–28. doi: 10.1016/j.tifs.2018.11.009.
  • Gérard, C., F. Franssen, S. La Carbona, S. Monteiro, A. Cozma-Petruţ, K. S. Utaaker, A. Režek Jambrak, N. Rowan, D. Rodríguez-Lazaro, A. Nasser, et al. 2019. Inactivation of parasite transmission stages: Efficacy of treatments on foods of non-animal origin. Trends in Food Science & Technology 91:12–23. doi: 10.1016/j.tifs.2019.06.015.
  • Ghosh, S. K., M. Lekshmi, O. Das, S. Kumar, and B. B. Nayak. 2019. Occurrence of human enteric adenoviruses in fresh tropical seafood from retail markets and landing centers. Journal of Food Science 84 (8):2256–60. doi: 10.1111/1750-3841.14735.
  • Godoy, M. G., M. J. Kibenge, and F. S. Kibenge. 2021. SARS-CoV-2 transmission via aquatic food animal species or their products: A review. Aquaculture 536:736460. doi: 10.1016/j.aquaculture.2021.736460.
  • Govaris, A., and A. Pexara. 2021. Inactivation of foodborne viruses by high-pressure processing (HPP). Foods 10 (2):215. https://www.mdpi.com/2304-8158/10/2/215. doi: 10.3390/foods10020215.
  • Gómez-Estaca, J., M. E. López-Caballero, M. Á. Martínez-Bartolomé, A. M. L. de Lacey, M. C. Gómez-Guillen, and M. P. Montero. 2018. The effect of the combined use of high pressure treatment and antimicrobial edible film on the quality of Salmon carpaccio. International Journal of Food Microbiology 283:28–36. doi: 10.1016/j.ijfoodmicro.2018.06.015.
  • Gómez-López, V. M., G. Pataro, B. Tiwari, M. Gozzi, M. Á. A. Meireles, S. Wang, B. Guamis, Z. Pan, H. Ramaswamy, S. Sastry, et al. 2021. Guidelines on reporting treatment conditions for emerging technologies in food processing. Critical Reviews in Food Science and Nutrition :1–25. doi: 10.1080/10408398.2021.1895058.
  • Gracia, M. J., R. Lázaro, C. Pérez-Arquillué, R. Pagán, S. Ramos, J. L. Garcia, and S. Bayarri. 2020. High-pressure processing (HPP) of raw and dry-cured ham from experimentally infected pigs as a potential tool for the risk control of Toxoplasma gondii. Innovative Food Science & Emerging Technologies 61:102315. doi: 10.1016/j.ifset.2020.102315.
  • Guo, L., Z. Yao, L. Yang, H. Zhang, Y. Qi, L. Gou, W. Xi, D. Liu, L. Zhang, Y. Cheng, et al. 2021. Plasma-activated water: An alternative disinfectant for S protein inactivation to prevent SARS-CoV-2 infection. Chemical Engineering Journal 421:127742. doi: 10.1016/j.cej.2020.127742.
  • Han, J., X. Zhang, S. He, and P. Jia. 2021. Can the coronavirus disease be transmitted from food? A review of evidence, risks, policies and knowledge gaps. Environmental Chemistry Letters 19 (1):5–16. doi: 10.1007/s10311-020-01101-x.
  • Hobbs, J. E. 2020. Food supply chains during the COVID‐19 pandemic. Canadian Journal of Agricultural Economics/Revue canadienne d’agroeconomie 68 (2):171–6. doi: 10.1111/cjag.12237.
  • Huang, Y.-M., W.-C. Chang, and C.-L. Hsu. 2021. Inactivation of norovirus by atmospheric pressure plasma jet on salmon sashimi. Food Research International 141:110108. doi: 10.1016/j.foodres.2021.110108.
  • Humaid, S., D. Nayyar, J. Bolton, B. Perkins, and D. I. Skonberg. 2020. Refrigerated shelf-life evaluation of high pressure processed, raw and sous vide cooked lobster. High Pressure Research 40 (3):444–63. doi: 10.1080/08957959.2020.1774753.
  • Humaid, S., D. Nayyar, J. Bolton, and D. I. Skonberg. 2019. Physicochemical properties and consumer acceptance of high-pressure processed, sous vide-cooked lobster tails. Journal of Food Science 84 (12):3454–62. doi: 10.1111/1750-3841.14954.
  • Imamura, S., H. Kanezashi, T. Goshima, A. Suto, Y. Ueki, N. Sugawara, H. Ito, B. Zou, C. Kawasaki, T. Okada, et al. 2018. Effect of high pressure processing on a wide variety of human noroviruses naturally present in aqua-cultured Japanese oysters. Foodborne Pathogens and Disease 15 (10):621–6. doi: 10.1089/fpd.2018.2444.
  • Imamura, S., H. Kanezashi, T. Goshima, A. Suto, Y. Ueki, N. Sugawara, H. Ito, B. Zou, M. Uema, M. Noda, et al. 2017. Effect of high-pressure processing on human noroviruses in laboratory-contaminated oysters by bio-accumulation. Foodborne Pathogens and Disease 14 (9):518–23. doi: 10.1089/fpd.2017.2294.
  • Jen, J. J.-S, and J. Chen. 2017. Food safety in China: Science, technology, management and regulation. Chichester, UK: John Wiley & Sons.
  • Jeon, E. B., M.-S. Choi, J. Y. Kim, E. H. Choi, J. S. Lim, J. Choi, K. S. Ha, J. Y. Kwon, S. H. Jeong, and S. Y. Park. 2021. Assessment of potential infectivity of human norovirus in the traditional Korean salted clam product “Jogaejeotgal” by floating electrode-dielectric barrier discharge plasma. Food Research International 141:110107. doi: 10.1016/j.foodres.2021.110107.
  • Johne, R., A. Wolff, A. K. Gadicherla, M. Filter, and O. Schlüter. 2021. Stability of hepatitis E virus at high hydrostatic pressure processing. International Journal of Food Microbiology 339:109013. doi: 10.1016/j.ijfoodmicro.2020.109013.
  • Katsaros, G., S. Koseki, T. Ding, and V. Valdramidis. 2021. Application of innovative technologies to produce activated safe ice. Current Opinion in Food Science 40:198–203. doi: 10.1016/j.cofs.2021.04.014.
  • Khadre, M. A., and A. E. Yousef. 2002. Susceptibility of human rotavirus to ozone, high pressure, and pulsed electric field. Journal of Food Protection 65 (9):1441–6. doi: 10.4315/0362-028x-65.9.1441.
  • Kim, J. Y., E. B. Jeon, M. G. Song, K. S. Ha, S. H. Jeong, Y. J. Jung, and S. Y. Park. 2021. Combination of ultrasonic waves and dielectric barrier discharge plasma for the viable reduction in human norovirus while retaining the quality of raw sea squirt. Journal of Food Process Engineering 44: (11):e13847. doi: 10.1111/jfpe.13847.
  • Kulawik, P., C. Alvarez, P. J. Cullen, R. Aznar-Roca, A. M. Mullen, and B. Tiwari. 2018. The effect of non-thermal plasma on the lipid oxidation and microbiological quality of sushi. Innovative Food Science & Emerging Technologies 45:412–7. doi: 10.1016/j.ifset.2017.12.011.
  • Kulawik, P., and D. Dordević. 2022. Sushi processing: Microbiological hazards and the use of emerging technologies. Critical Reviews in Food Science and Nutrition 62 (5):1270–14. doi: 10.1080/10408398.2020.1840332.
  • Kulawik, P., and B. Kumar Tiwari. 2019. Recent advancements in the application of non-thermal plasma technology for the seafood industry. Critical Reviews in Food Science and Nutrition 59 (19):3199–210. doi: 10.1080/10408398.2018.1510827.
  • Kumar, V., P. S. Rao, S. R. Purohit, and Y. Kumar. 2019. Effects of high pressure processing (HPP) and acid pre-treatment on quality attributes of hilsa (Tenualosa ilisha) fillets. LWT 111:647–52. doi: 10.1016/j.lwt.2019.05.084.
  • Kumar, Y. A. Bashir, N. Indore, R. Vishwakarma, and R. Singh. 2021. Pulsed electric field. In Sustainable food processing and engineering challenges, 137–79. London, UK: Academic Press.
  • Kung, H. F., Y. C. Lee, C. C. Hwang, Y. C. Wu, C. Y. Hsieh, and Y. H. Tsai. 2020. Inactivation of Morganella morganii by high hydrostatic pressure combined with lemon essential oil. Food Science & Nutrition 8 (7):3435–41. doi: 10.1002/fsn3.1626.
  • Lacombe, A., B. A. Niemira, J. B. Gurtler, J. Sites, G. Boyd, D. H. Kingsley, X. Li, and H. Chen. 2017. Nonthermal inactivation of norovirus surrogates on blueberries using atmospheric cold plasma. Food Microbiology 63:1–5. doi: 10.1016/j.fm.2016.10.030.
  • Lebow, N. K., L. D. DesRocher, F. L. Younce, M. J. Zhu, C. F. Ross, and D. M. Smith. 2017. Influence of high-pressure processing at low temperature and nisin on Listeria innocua survival and sensory preference of dry-cured cold-smoked salmon. Journal of Food Science 82 (12):2977–86. doi: 10.1111/1750-3841.13957.
  • Lehel, J., R. Yaucat-Guendi, L. Darnay, P. Palotás, and P. Laczay. 2021. Possible food safety hazards of ready-to-eat raw fish containing product (sushi, sashimi). Critical Reviews in Food Science and Nutrition 61 (5):867–88. doi: 10.1080/10408398.2020.1749024.
  • Leon, J. S., D. H. Kingsley, J. S. Montes, G. P. Richards, G. M. Lyon, G. M. Abdulhafid, S. R. Seitz, M. L. Fernandez, P. F. Teunis, G. J. Flick, et al. 2011. Randomized, double-blinded clinical trial for human norovirus inactivation in oysters by high hydrostatic pressure processing. Applied and Environmental Microbiology 77 (15):5476–82. doi: 10.1128/AEM.02801-10.
  • Li, X., and M. Farid. 2016. A review on recent development in non-conventional food sterilization technologies. Journal of Food Engineering 182:33–45. doi: 10.1016/j.jfoodeng.2016.02.026.
  • Liao, X., A. I. Muhammad, S. Chen, Y. Hu, X. Ye, D. Liu, and T. Ding. 2019. Bacterial spore inactivation induced by cold plasma. Critical Reviews in Food Science and Nutrition 59 (16):2562–72. doi: 10.1080/10408398.2018.1460797.
  • Liu, Z.-W., X.-A. Zeng, M. Ngadi, and Z. Han. 2017. Effect of cell membrane fatty acid composition of Escherichia coli on the resistance to pulsed electric field (PEF) treatment. LWT - Food Science and Technology 76:18–25. doi: 10.1016/j.lwt.2016.10.019.
  • López-Pérez, O., A. del Olmo, A. Picon, and M. Nuñez. 2020. Volatile compounds and odour characteristics during long-term storage of kombu seaweed (Laminaria ochroleuca) preserved by high pressure processing, freezing and salting. LWT 118:108710. doi: 10.1016/j.lwt.2019.108710.
  • Mai-Prochnow, A. 2020. Cold plasma to control biofilms on food and in the food-processing environment. In Advances in cold plasma applications for food safety and preservation, 109–43. London, UK: Academic Press.
  • Mendes-Oliveira, G., T. Z. Jin, and O. H. Campanella. 2020. Modeling the inactivation of Escherichia coli O157: H7 and Salmonella typhimurium in juices by pulsed electric fields: The role of the energy density. Journal of Food Engineering 282:110001. doi: 10.1016/j.jfoodeng.2020.110001.
  • Mirza Alizadeh, A., S. Jazaeri, B. Shemshadi, F. Hashempour-Baltork, Z. Sarlak, Z. Pilevar, and H. Hosseini. 2018. A review on inactivation methods of Toxoplasma gondii in foods. Pathogens and Global Health 112 (6):306–19. doi: 10.1080/20477724.2018.1514137.
  • Misra, N. N., and C. Jo. 2017. Applications of cold plasma technology for microbiological safety in meat industry. Trends in Food Science & Technology 64:74–86. doi: 10.1016/j.tifs.2017.04.005.
  • Misra, N. N., S. K. Pankaj, A. Segat, and K. Ishikawa. 2016. Cold plasma interactions with enzymes in foods and model systems. Trends in Food Science & Technology 55:39–47. doi: 10.1016/j.tifs.2016.07.001.
  • Mittal, A., K. Manjunath, R. K. Ranjan, S. Kaushik, S. Kumar, and V. Verma. 2020. COVID-19 pandemic: Insights into structure, function, and hACE2 receptor recognition by SARS-CoV-2. PLoS Pathogens 16 (8):e1008762. doi: 10.1371/journal.ppat.1008762.
  • Nayeri, T., S. Sarvi, and A. Daryani. 2021. Toxoplasma gondii in mollusks and cold-blooded animals: A systematic review. Parasitology 148 (8):895–33. doi: 10.1017/S0031182021000433.
  • Novickij, V., R. Stanevičienė, G. Staigvila, R. Gruškienė, J. Sereikaitė, I. Girkontaitė, J. Novickij, and E. Servienė. 2020. Effects of pulsed electric fields and mild thermal treatment on antimicrobial efficacy of nisin-loaded pectin nanoparticles for food preservation. LWT 120:108915. doi: 10.1016/j.lwt.2019.108915.
  • OECD, F. 2021. OECD-FAO Agricultural Outlook 2021-2030. Paris: OECD Publishing.
  • Olatunde, O. O., S. Benjakul, and K. Vongkamjan. 2019. Dielectric barrier discharge high voltage cold atmospheric plasma: An innovative nonthermal technology for extending the shelf‐life of Asian sea bass slices. Journal of Food Science 84 (7):1871–80. doi: 10.1111/1750-3841.14669.
  • Olatunde, O. O., S. Benjakul, and K. Vongkamjan. 2020a. Microbial diversity, shelf-life and sensory properties of Asian sea bass slices with combined treatment of liposomal encapsulated ethanolic coconut husk extract and high voltage cold plasma. LWT 134:110232. doi: 10.1016/j.lwt.2020.110232.
  • Olatunde, O. O., S. Benjakul, and K. Vongkamjan. 2020b. Shelf-life of refrigerated Asian sea bass slices treated with cold plasma as affected by gas composition in packaging. International Journal of Food Microbiology 324:108612. doi: 10.1016/j.ijfoodmicro.2020.108612.
  • Olatunde, O. O., K. A. Shiekh, and S. Benjakul. 2021. Pros and cons of cold plasma technology as an alternative non-thermal processing technology in seafood industry. Trends in Food Science & Technology 111:617–27. doi: 10.1016/j.tifs.2021.03.026.
  • Ortega Blázquez, I., M. J. Grande Burgos, R. Pérez-Pulido, A. Gálvez, and R. Lucas. 2018. Treatment with high-hydrostatic pressure, activated film packaging with thymol plus enterocin AS-48, and its combination modify the bacterial communities of refrigerated sea bream (Sparus aurata) fillets. Frontiers in Microbiology 9:314.
  • Osorio-González, D., V. Muñiz-Orozco, C. González, M. Fuentes-Acosta, J. Mulia-Rodríguez, and L. Mandujano-Rosas. 2021. Receptor Binding Domain (RBD) structural susceptibility in the SARS-CoV-2 virus spike protein exposed to a pulsed electric field. Journal of Nuclear Physics, Material Sciences, Radiation and Applications 8 (2):177–82. doi: 10.15415/jnp.2021.82023.
  • Park, S. Y., Y. J. Jung, J. Y. Kwon, S. E. Kim, M.-I. Jeong, and S.-D. Ha. 2019. Application of high hydrostatic pressure for the inactivation of norovirus and quality stability in fresh sea squirt (Halocynthia roretzi). Food Science and Technology International = Ciencia y tecnologia de los alimentos internacional 25 (7):573–8. doi: 10.1177/1082013219842439.
  • Patel, J., S. Al-Ghamdi, H. Zhang, R. Queiroz, J. Tang, T. Yang, and S. S. Sablani. 2019. Determining shelf life of ready-to-eat macaroni and cheese in high barrier and oxygen scavenger packaging sterilized via microwave-assisted thermal sterilization. Food and Bioprocess Technology 12 (9):1516–26. doi: 10.1007/s11947-019-02310-1.
  • Patil, S. P. Bourke, and P. Cullen. 2016. Principles of nonthermal plasma decontamination. In Cold plasma in food and agriculture, 143–77. London, UK: Academic Press.
  • Pexara, A., and A. Govaris. 2020. Foodborne viruses and innovative non-thermal food-processing technologies. Foods 9 (11):1520. doi: 10.3390/foods9111520.
  • Podolska, M., B. Pawlikowski, K. Nadolna-Ałtyn, J. Pawlak, K. Komar-Szymczak, and B. Szostakowska. 2019. How effective is freezing at killing Anisakis simplex, Pseudoterranova krabbei, and P. decipiens larvae? An experimental evaluation of time-temperature conditions. Parasitology Research 118 (7):2139–47. doi: 10.1007/s00436-019-06339-1.
  • Raghubeer, E. V., B. N. Phan, E. Onuoha, S. Diggins, V. Aguilar, S. Swanson, and A. Lee. 2020. The use of High-pressure processing (HPP) to improve the safety and quality of raw coconut (Cocos nucifera L) water. International Journal of Food Microbiology 331:108697. doi: 10.1016/j.ijfoodmicro.2020.108697.
  • Rathod, N. B., S. P. Kahar, R. C. Ranveer, and U. S. Annapure. 2021. Cold plasma an emerging nonthermal technology for milk and milk products: A review. International Journal of Dairy Technology 74 (4):615–26. doi: 10.1111/1471-0307.12771.
  • Rathod, N. B., P. Kulawik, Y. Ozogul, F. Ozogul, and A. E.-D A. Bekhit. 2021. Recent developments in non-thermal processing for seafood and seafood products: Cold plasma, pulsed electric field and high hydrostatic pressure. International Journal of Food Science & Technology 57:(2):774–90. doi: 10.1111/ijfs.15392.
  • Rathod, N. B., R. C. Ranveer, P. K. Bhagwat, F. Ozogul, S. Benjakul, S. Pillai, and U. S. Annapure. 2021c. Cold plasma for the preservation of aquatic food products: An overview. Comprehensive Reviews in Food Science and Food Safety 20 (5):4407–25. doi: 10.1111/1541-4337.12815.
  • Romulo, A. 2021. The impact of high-pressure processing treatment on microbial inactivation of seafood–a review. Food Research 5 (2):38–44. doi: 10.26656/fr.2017.5(2).352.
  • Ruchusatsawat, K., C. Nuengjamnong, A. Tawatsin, L. Thiemsing, C. Kawidam, N. Somboonna, and S. Nuanualsuwan. 2021. Quantitative risk assessments of hepatitis A virus and hepatitis E virus from raw oyster consumption. Risk Analysis. doi: https://doi.org/10.1111/risa.13832.
  • Shamsi, S. 2019. Seafood-borne parasitic diseases: A “one-health” approach is needed. Fishes 4 (1):9. doi: 10.3390/fishes4010009.
  • Shiekh, K. A., and S. Benjakul. 2020a. Effect of high voltage cold atmospheric plasma processing on the quality and shelf-life of Pacific white shrimp treated with Chamuang leaf extract. Innovative Food Science & Emerging Technologies 64:102435. doi: 10.1016/j.ifset.2020.102435.
  • Shiekh, K. A., and S. Benjakul. 2020b. Effect of pulsed electric field treatments on melanosis and quality changes of Pacific white shrimp during refrigerated storage. Journal of Food Processing and Preservation 44 (1):e14292. doi: 10.1111/jfpp.14292.
  • Shiekh, K. A., and S. Benjakul. 2020c. Melanosis and quality changes during refrigerated storage of Pacific white shrimp treated with Chamuang (Garcinia cowa Roxb.) leaf extract with the aid of pulsed electric field. Food Chemistry 309:125516. doi: 10.1016/j.foodchem.2019.125516.
  • Shiekh, K. A., S. Benjakul, and S. Gulzar. 2021. Impact of pulsed electric field and vacuum impregnation with Chamuang leaf extract on quality changes in Pacific white shrimp packaged under modified atmosphere. LWT 149:111899. doi: 10.1016/j.lwt.2021.111899.
  • Shiekh, K. A., S. Benjakul, H. Qi, B. Zhang, and S. Deng. 2021. Combined hurdle effects of pulsed electric field and vacuum impregnation of Chamuang leaf extract on quality and shelf-life of Pacific white shrimp subjected to high voltage cold atmospheric plasma. Food Packaging and Shelf Life 28:100660. doi: 10.1016/j.fpsl.2021.100660.
  • Shiekh, K. A., P. Zhou, and S. Benjakul. 2021. Combined effects of pulsed electric field, Chamuang leaf extract and cold plasma on quality and shelf-life of Litopenaeus vannamei. Food Bioscience 41:100975. doi: 10.1016/j.fbio.2021.100975.
  • Siegrist, M., and C. Hartmann. 2020. Consumer acceptance of novel food technologies. Nature Food 1 (6):343–50. doi: 10.1038/s43016-020-0094-x.
  • Singh, A., and S. Benjakul. 2020. The combined effect of squid pen chitooligosaccharides and high voltage cold atmospheric plasma on the shelf-life extension of Asian sea bass slices stored at 4 °C. Innovative Food Science & Emerging Technologies 64:102339. doi: 10.1016/j.ifset.2020.102339.
  • Stankus, A. 2021. State of World Aquaculture 2020 and Regional Reviews: FAO Webinar Series. FAO Aquaculture Newsletter 63:17–8.
  • Suther, C., and M. D. Moore. 2019. Quantification and discovery of PCR inhibitors found in food matrices commonly associated with foodborne viruses. Food Science and Human Wellness 8 (4):351–5. doi: 10.1016/j.fshw.2019.09.002.
  • Szili, E. J., S.-H. Hong, J.-S. Oh, N. Gaur, and R. D. Short. 2018. Tracking the penetration of plasma reactive species in tissue models. Trends in Biotechnology 36 (6):594–602. doi: 10.1016/j.tibtech.2017.07.012.
  • Szymkowiak, A., P. Gaczek, K. Jeganathan, and P. Kulawik. 2021. The impact of emotions on shopping behavior during epidemic. What a business can do to protect customers. Journal of Consumer Behaviour 20 (1):48–60. doi: 10.1002/cb.1853.
  • Szymkowiak, A., P. Guzik, P. Kulawik, and M. Zając. 2020. Attitude-behaviour dissonance regarding the importance of food preservation for customers. Food Quality and Preference 84:103935. doi: 10.1016/j.foodqual.2020.103935.
  • Takahashi, M., Y. Okakura, H. Takahashi, H. Yamane, S. Akashige, T. Kuda, and B. Kimura. 2019. Evaluation of inactivation of murine norovirus in inoculated shell oysters by high hydrostatic pressure treatment. Journal of Food Protection 82 (12):2169–73. doi: 10.4315/0362-028x.Jfp-19-186.
  • Tang, J., Y.-K. Hong, S. Inanoglu, and F. Liu. 2018. Microwave pasteurization for ready-to-eat meals. Current Opinion in Food Science 23:133–41. doi: 10.1016/j.cofs.2018.10.004.
  • Timmermans, R., H. Mastwijk, L. Berendsen, A. Nederhoff, A. Matser, M. Van Boekel, and M. N. Groot. 2019. Moderate intensity Pulsed Electric Fields (PEF) as alternative mild preservation technology for fruit juice. International Journal of Food Microbiology 298:63–73. doi: 10.1016/j.ijfoodmicro.2019.02.015.
  • Tokur, B., and K. Korkmaz. 2021. Seafood associated human pathogenic non-enveloped viruses. Su Ürünleri Dergisi 38 (2):1–
  • Troeger, C., I. A. Khalil, P. C. Rao, S. Cao, B. F. Blacker, T. Ahmed, G. Armah, J. E. Bines, T. G. Brewer, D. V. Colombara, et al. 2018. Rotavirus vaccination and the global burden of rotavirus diarrhea among children younger than 5 years. JAMA Pediatrics 172 (10):958–65. doi: 10.1001/jamapediatrics.2018.1960.
  • Tsironi, T., D. Houhoula, and P. Taoukis. 2020. Hurdle technology for fish preservation. Aquaculture and Fisheries 5 (2):65–71. doi: 10.1016/j.aaf.2020.02.001.
  • Ueki, Y., M. Amarasiri, S. Kamio, A. Sakagami, H. Ito, S. Uprety, A. N. Umam, T. Miura, T. H. Nguyen, and D. Sano. 2021. Human norovirus disease burden of consuming Crassostrea gigas oysters: A case-study from Japan. Food Control 121:107556. doi: 10.1016/j.foodcont.2020.107556.
  • USDA and USDHHS. 2020. Dietary Guidelines for Americans, 2020-2025.
  • Van Impe, J., C. Smet, B. Tiwari, R. Greiner, S. Ojha, V. Stulić, T. Vukušić, and A. Režek Jambrak. 2018. State of the art of nonthermal and thermal processing for inactivation of micro‐organisms. Journal of Applied Microbiology 125 (1):16–35. doi: 10.1111/jam.13751.
  • Vorobiev, E., N. Lebovka, and N. A. F. Ovcharenko. 2019. Pulsed electric field in green processing and preservation of food products. In: Green Food Processing Techniques: Preservation, Transformation and Extraction:403–430. London, UK: Academic Press.
  • Wang, L., Q. Xia, and Y. Li. 2017. Synergistic effects of high pressure processing and slightly acidic electrolysed water on the inactivation of Bacillus cereus spores. International Journal of Food Science & Technology 52 (11):2429–35. doi: 10.1111/ijfs.13527.
  • Wang, M.-S., L.-H. Wang, A. E.-D A. Bekhit, J. Yang, Z.-P. Hou, Y.-Z. Wang, Q.-Z. Dai, and X.-A. Zeng. 2018. A review of sublethal effects of pulsed electric field on cells in food processing. Journal of Food Engineering 223:32–41. doi: 10.1016/j.jfoodeng.2017.11.035.
  • WHO. 2021. Weekly epidemiological update on COVID-19 - 10 August 2021.
  • Zeng, D.-Y., J.-M. Li, S. Lin, X. Dong, J. You, Q.-Q. Xing, Y.-D. Ren, W.-M. Chen, Y.-Y. Cai, K. Fang, et al. 2021. Global burden of acute viral hepatitis and its association with socioeconomic development status, 1990-2019. Journal of Hepatology 75 (3):547–56. doi: 10.1016/j.jhep.2021.04.035.
  • Zhang, B., M. Pérez-Won, G. Tabilo-Munizaga, and S. P. Aubourg. 2021. Inhibition of lipid damage in refrigerated salmon (Oncorhynchus kisutch) by a combined treatment of CO2 packaging and high-pressure processing. International Journal of Food Science & Technology 56(11):5968–76. doi: 10.1111/ijfs.15179.
  • Zhang, H., M. Chen, L. Huang, L. Guo, S. Xu, J. Zhang, W. Xi, Z. Wang, D. Liu, M. G. Kong, et al. 2021. Using cold atmospheric plasma treated-air for COVID-19 disinfection in cold-chain environment. Journal of Physics D: Applied Physics 54 (40):40LT01. doi: 10.1088/1361-6463/ac13f7.
  • Zhang, Y., J. Wei, Y. Yuan, H. Chen, L. Dai, X. Wang, and T. Yue. 2019. Bactericidal effect of cold plasma on microbiota of commercial fish balls. Innovative Food Science & Emerging Technologies 52:394–405. doi: 10.1016/j.ifset.2019.01.019.
  • Zhu, Y., C. Li, H. Cui, and L. Lin. 2020. Feasibility of cold plasma for the control of biofilms in food industry. Trends in Food Science & Technology 99:142–51. doi: 10.1016/j.tifs.2020.03.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.