704
Views
5
CrossRef citations to date
0
Altmetric
Review Articles

Application of oligosaccharides in meat processing and preservation

ORCID Icon, , , , ORCID Icon & ORCID Icon
Pages 10947-10958 | Published online: 01 Jun 2022

References

  • Alirezalu, K., M. Pateiro, M. Yaghoubi, A. Alirezalu, S. H. Peighambardoust, and J. M. Lorenzo. 2020. Phytochemical constituents, advanced extraction technologies and techno-functional properties of selected Mediterranean plants for use in meat products. A comprehensive review. Trends in Food Science & Technology 100:292–306. doi: 10.1016/j.tifs.2020.04.010.
  • Alves, R., A. de, A. M. B. de Sousa, D. S. S. Madeira, R. M. Santos, A. L. F. Pereira, T. Lemos, O. de, and V. K. G. Abreu. 2020. Low-fat beef burgers containing fructooligosaccharides: Physicochemical properties, cooking characteristics, and sensory evaluation. Journal of Food Processing and Preservation 44 (9):e14649. doi: 10.1111/jfpp.14649.
  • Amorim, C., S. C. Silvério, K. L. J. Prather, and L. R. Rodrigues. 2019. From lignocellulosic residues to market: Production and commercial potential of xylooligosaccharides. Biotechnology Advances 37 (7):107397. . doi: 10.1016/j.biotechadv.2019.05.003.
  • Balthazar, C. F., H. L. A. Silva, R. M. S. Celeguini, R. Santos, G. M. Pastore, C. A. Conte Junior, M. Q. Freitas, L. C. Nogueira, M. C. Silva, and A. G. Cruz. 2015. Effect of galactooligosaccharide addition on the physical, optical, and sensory acceptance of vanilla ice cream. Journal of Dairy Science 98 (7):4266–72. doi: 10.3168/jds.2014-9018.
  • Balthazar, C. F., H. L. A. Silva, A. H. Vieira, R. P. C. Neto, L. P. Cappato, P. T. Coimbra, J. Moraes, M. M. Andrade, V. M. A. Calado, D. Granato, et al. 2017. Assessing the effects of different prebiotic dietary oligosaccharides in sheep milk ice cream. Food Research International (Ottawa, Ont.) 91:38–46. doi: 10.1016/j.foodres.2016.11.008.
  • Bellucci, E. R. B., J. M. dos Santos, L. T. Carvalho, T. F. Borgonovi, J. M. Lorenzo, and A. C. d. Silva-Barretto. 2022. Açaí extract powder as natural antioxidant on pork patties during the refrigerated storage. Meat Science 184:108667. doi: 10.1016/j.meatsci.2021.108667.
  • Benjakul, S., A. Singh, and A. Mittal. 2022. Chitooligosaccharides: Preparation and applications in food and nutraceuticals. In Chitooligosaccharides, ed. S. K. Kim, 203–21. Cham: Springer. doi: 10.1007/978-3-030-92806-3_13.
  • Benkeblia, N. 2013. Fructooligosaccharides and fructans analysis in plants and food crops. Journal of Chromatography. A 1313:54–61. doi: 10.1016/j.chroma.2013.08.013.
  • Bis-Souza, C., F. J. Barba, J. M. Lorenzo, A. L. B. Penna, and A. C. S. Barretto. 2019. New strategies for the development of innovative fermented meat products: A review regarding the incorporation of probiotics and dietary fibers. Food Reviews International 35 (5):467–84. doi: 10.1080/87559129.2019.1584816.
  • Bis-Souza, C., M. Pateiro, R. Domínguez, A. L. B. Penna, J. M. Lorenzo, and A. C. Silva Barretto. 2020. Impact of fructooligosaccharides and probiotic strains on the quality parameters of low-fat Spanish Salchichón. Meat Science 159:107936. doi: 10.1016/j.meatsci.2019.107936.
  • Boonviset, P., and T. Pirak. 2020. Physicochemical and sensory characteristics of reduced fat-low sugar Chinese pork sausage as produced by chitooligosaccharide using commercial pectinase hydrolysis. International Journal of Food Properties 23 (1):22–33. doi: 10.1080/10942912.2019.1702998.
  • Câmara, A. K. F. I., C. Paglarini, S. de, V. A. S. Vidal, M. dos Santos, and M. A. R. Pollonio. 2020. Meat products as prebiotic food carrier. Advances in Food and Nutrition Research 94:223–65. doi: 10.1016/BS.AFNR.2020.06.009.
  • Carvalho, A. F. A., P. Neto, O. de, D. F. da Silva, and G. M. Pastore. 2013. Xylo-oligosaccharides from lignocellulosic materials: Chemical structure, health benefits and production by chemical and enzymatic hydrolysis. Food Research International 51 (1):75–85. doi: 10.1016/j.foodres.2012.11.021.
  • Catenza, K. F., and K. K. Donkor. 2021. Recent approaches for the quantitative analysis of functional oligosaccharides used in the food industry: A review. Food Chemistry 355:129416. doi: 10.1016/j.foodchem.2021.129416.
  • Chapelle, C., G. David, S. Caillol, C. Negrell, and M. Desroches Le Foll. 2021. Advances in chitooligosaccharides chemical modifications. Biopolymers 112 (9):23461. doi: 10.1002/bip.23461.
  • Chen, G., C. Li, and K. Chen. 2016. Fructooligosaccharides: A review on their mechanisms of action and effects. In Studies in natural products chemistry, ed. A. Rahman, 209–29. UK: Elsevier. doi: 10.1016/B978-0-444-63602-7.00006-0.
  • Cheng, Z., W. Zhang, X. Hou, B. Wang, Y. Zhu, P. Zhang, F. Zhao, and D. Chen. 2019. Synthesis, characterization, and evaluation of redox-sensitive chitosan oligosaccharide nanoparticles coated with phycocyanin for drug delivery. Nanoscale Research Letters 14 (1):389. doi: 10.1186/s11671-019-3207-4.
  • Chou, Y.-T., and K. W. Lin. 2010. Effects of xylooligosaccharides and sugars on the functionality of porcine myofibrillar proteins during heating and frozen storage. Food Chemistry 121 (1):127–31. doi: 10.1016/j.foodchem.2009.12.017.
  • Das, A. K., P. K. Nanda, P. Madane, S. Biswas, A. Das, W. Zhang, and J. M. Lorenzo. 2020. A comprehensive review on antioxidant dietary fibre enriched meat-based functional foods. Trends in Food Science & Technology 99:323–36. doi: 10.1016/j.tifs.2020.03.010.
  • de la Rosa, O., A. C. Flores-Gallegos, D. Muñíz-Marquez, C. Nobre, J. C. Contreras-Esquivel, and C. N. Aguilar. 2019. Fructooligosaccharides production from agro-wastes as alternative low-cost source. Trends in Food Science & Technology 91:139–46. doi: 10.1016/j.tifs.2019.06.013.
  • de Sousa, A. M. B., R. de Araujo Alves, D. S. S. Madeira, R. M. Santos, A. L. F. Pereira, T. de Oliveira Lemos, and V. K. G. Abreu. 2020. Storage of beef burgers containing fructooligosaccharides as fat replacer and potassium chloride as replacing sodium chloride. Journal of Food Science and Technology 57 (9):3232–43. doi: 10.1007/s13197-020-04354-0.
  • Delgado-Pando, G., S. I. Ekonomou, A. C. Stratakos, and T. Pintado. 2021. Clean label alternatives in meat products. Foods 10 (7):1615. doi: 10.3390/foods10071615.
  • Delzenne, N. M. 2003. Oligosaccharides: State of the art. The Proceedings of the Nutrition Society 62 (1):177–82. doi: 10.1079/pns2002225.
  • dos Santos, B. A., P. C. B. Campagnol, M. T. B. Pacheco, and M. A. R. Pollonio. 2012. Fructooligosaccharides as a fat replacer in fermented cooked sausages. International Journal of Food Science & Technology 47 (6):1183–92. doi: 10.1111/j.1365-2621.2012.02958.x.
  • Duran, A., and H. I. Kahve. 2020. The effect of chitosan coating and vacuum packaging on the microbiological and chemical properties of beef. Meat Science 162:107961. doi: 10.1016/j.meatsci.2019.107961.
  • Eskandarloo, H., and A. Abbaspourrad. 2018. Production of galacto-oligosaccharides from whey permeate using β-galactosidase immobilized on functionalized glass beads. Food Chemistry 251:115–24. doi: 10.1016/j.foodchem.2018.01.068.
  • Essa, R. Y., and E. M. Elsebaie. 2022. New fat replacement agent comprised of gelatin and soluble dietary fibers derived from date seed powder in beef burger preparation. LWT, 156, 113051 156:113051. doi: 10.1016/j.lwt.2021.113051.
  • Farias, D., P. de, F. F. de Araújo, I. A. Neri-Numa, and G. M. Pastore. 2019. Prebiotics: Trends in food, health and technological applications. Trends in Food Science & Technology 93:23–35. doi: 10.1016/j.tifs.2019.09.004.
  • Fernandes, L. M., J. T. Guimarães, R. Silva, R. S. Rocha, N. M. Coutinho, C. F. Balthazar, R. N. Calvalcanti, C. W. Piler, T. C. Pimentel, R. P. C. Neto, et al. 2020. Whey protein films added with galactooligosaccharide and xylooligosaccharide. Food Hydrocolloids 104:105755. doi: 10.1016/j.foodhyd.2020.105755.
  • Fernández-de Castro, L., M. Mengíbar, Á. Sánchez, L. Arroyo, M. C. Villarán, E. Díaz de Apodaca, and Á. Heras. 2016. Films of chitosan and chitosan-oligosaccharide neutralized and thermally treated: Effects on its antibacterial and other activities. LWT 73:368–74. doi: 10.1016/j.lwt.2016.06.038.
  • Flores-Maltos, D. A., S. I. Mussatto, J. C. Contreras-Esquivel, R. Rodríguez-Herrera, J. A. Teixeira, and C. N. Aguilar. 2016. Biotechnological production and application of fructooligosaccharides. Critical Reviews in Biotechnology 36 (2):259–67. doi: 10.3109/07388551.2014.953443.
  • Hamer, S. N., S. Cord-Landwehr, X. Biarnés, A. Planas, H. Waegeman, B. M. Moerschbacher, and S. Kolkenbrock. 2015. Enzymatic production of defined chitosan oligomers with a specific pattern of acetylation using a combination of chitin oligosaccharide deacetylases. Scientific Reports 5:8716. doi: 10.1038/srep08716.
  • Ibrahim, O. O. 2018. Functional oligo-saccharides: Chemicals structure, manufacturing, health benefits, applications and regulations. Journal Food Chemistry and Nanotechnolgy 4 (4):65–76. doi: 10.17756/jfcn.2018-060.
  • Jeroense, F. M. D., L. Michel, C. Zeder, I. Herter-Aeberli, and M. B. Zimmermann. 2019. Consumption of glacto-oligosaccharides increases iron absorption from ferrous fumarate: A stable iron isotope study in iron-depleted young women. The Journal of Nutrition 149 (5):738–46. doi: 10.1093/jn/nxy327.
  • Johnstone, N., C. Milesi, O. Burn, B. van den Bogert, A. Nauta, K. Hart, P. Sowden, P. W. J. Burnet, and K. Cohen Kadosh. 2021. Anxiolytic effects of a galacto-oligosaccharides prebiotic in healthy females (18–25 years) with corresponding changes in gut bacterial composition. Scientific Reports 11 (1):1–11. doi: 10.1038/s41598-021-87865-w.
  • Karlsson, E. N., E. Schmitz, J. A. Linares-Pastén, and P. Adlercreutz. 2018. Endo-xylanases as tools for production of substituted xylooligosaccharides with prebiotic properties. Applied Microbiology and Biotechnology 102 (21):9081–8. doi: 10.1007/s00253-018-9343-4.
  • Kaur, R, and P. S. Panesar. 2022. Galactooligosaccharides as potential prebiotic. In Probiotics, prebiotics and synbiotics: Technological advancements towards safety and industrial applications, eds. P. S. Panesa & A. K. Anal, 5, 272–306. New Jersey: John Wiley & Sons. doi: 10.1016/j.biotechadv.2008.05.001.
  • Khanvilkar, S. S., and S. S. Arya. 2015. Fructooligosaccharides: Applications and health benefits-A review. Agro Food Industry Hi-Tech 26 (6):8–12.
  • Kherade, M., S. Solanke, M. Tawar, and S. Wankhede. 2021. Fructooligosaccharides: A comprehensive review. Journal of Ayurvedic and Herbal Medicine 7 (3):193–200., . doi: 10.31254/jahm.2021.7305.
  • Kumar, C. G., S. Sripada, and Y. Poornachandra. 2018. Status and future prospects of fructooligosaccharides as nutraceuticals. In Role of materials science in food bioengineering, eds. A. M. Grumezescu and A. M. Holban, 451–503. UK: Elsevier. doi: 10.1016/B978-0-12-811448-3.00014-0.
  • Kumar, S., A. Mukherjee, and J. Dutta. 2020. Chitosan based nanocomposite films and coatings: Emerging antimicrobial food packaging alternatives. Trends in Food Science & Technology 97:196–209. doi: 10.1016/j.tifs.2020.01.002.
  • Kumar, V., A. Bahuguna, S. Ramalingam, and M. Kim. 2021. Developing a sustainable bioprocess for the cleaner production of xylooligosaccharides: An approach towards lignocellulosic waste management. Journal of Cleaner Production 316:128332. doi: 10.1016/j.jclepro.2021.128332.
  • Lamsal, B. P. 2012. Production, health aspects and potential food uses of dairy prebiotic galactooligosaccharides. Journal of the Science of Food and Agriculture 92 (10):2020–8. doi: 10.1002/jsfa.5712.
  • Laokuldilok, T., T. Potivas, N. Kanha, S. Surawang, P. Seesuriyachan, S. Wangtueai, Y. Phimolsiripol, and J. M. Regenstein. 2017. Physicochemical, antioxidant, and antimicrobial properties of chitooligosaccharides produced using three different enzyme treatments. Food Bioscience 18:28–33. doi: 10.1016/j.fbio.2017.03.004.
  • Liaqat, F., and R. Eltem. 2018. Chitooligosaccharides and their biological activities: A comprehensive review. Carbohydrate Polymers 184:243–59. doi: 10.1016/j.carbpol.2017.12.067.
  • Lin, K.-W., and J.-Y. Chao. 2001. Quality characteristics of reduced-fat Chinese-style sausage as related to chitosan’s molecular weight. Meat Science 59 (4):343–51. doi: 10.1016/S0309-1740(01)00084-5.
  • Liu, H., Y. Li, B. Tang, Y. Peng, X. Wu, L. Che, S. Y. Quek, and N. He. 2021. Effects of xylooligosaccharide on angiotensin I-converting enzyme inhibitory activity of fish actomyosin and quality of snakehead balls with or without high hydrostatic pressure treatment. LWT 140:110803. doi: 10.1016/j.lwt.2020.110803.
  • Liu, X., S. Yang, J. Ma, J. Yu, Q. Yan, and Z. Jiang. 2020. Efficient production of acetylated xylooligosaccharides from Hawthorn kernels by a xylanase from Paecilomyces aerugineus. Industrial Crops and Products 158:112962. doi: 10.1016/j.indcrop.2020.112962.
  • Luo, J., M. van Yperselle, S. W. Rizkalla, F. Rossi, F. R. J. Bornet, and G. Slama. 2000. Chronic consumption of short-chain fructooligosaccharides does not affect basal hepatic glucose production or insulin resistance in type 2 diabetics. The Journal of Nutrition 130 (6):1572–7. doi: 10.1093/jn/130.6.1572.
  • Manassi, C. F., S. Steinmetz De Souza, G. de Souza Hassemer, S. Sartor, C. Mariana, G. Lima, M. Miotto, J. de Dea, D. Lindner, K. Rezzadori, et al. 2022. Functional meat products: Trends in pro-, pre-, syn-, para- and post-biotic use. Food Research International (Ottawa, Ont.) 154:111035. doi: 10.1016/j.foodres.2022.111035.
  • Mano, M. C. R., I. A. Neri-Numa, J. B. da Silva, B. N. Paulino, M. G. Pessoa, and G. M. Pastore. 2018. Oligosaccharide biotechnology: An approach of prebiotic revolution on the industry. Applied Microbiology and Biotechnology 102 (1):17–37. doi: 10.1007/s00253-017-8564-2.
  • Martins, G. N., M. M. Ureta, E. E. Tymczyszyn, P. C. Castilho, and A. Gomez-Zavaglia. 2019. Technological aspects of the production of fructo and galacto-oligosaccharides. Enzymatic synthesis and hydrolysis. Frontiers in Nutrition 6:78. doi: 10.3389/fnut.2019.00078.
  • Meyer, T. S. M., A. S. M. Miguel, D. E. R. Fernández, and G. M. D. Ortiz. 2015. Biotechnological production of oligosaccharides: Applications in the food industry. In Food production and industry, ed. A. H. A. Eisa, 25–78. Rijeka, Croatia: InTech. doi: 10.5772/60934.
  • Mikami, N., Y. Tsukada, S. W. Pelpolage, K. H. Han, M. Fukushima, and K. Shimada. 2020. Effects of Sake lees (Sake-kasu) supplementation on the quality characteristics of fermented dry sausages. Heliyon 6 (2):e03379. doi: 10.1016/j.heliyon.2020.e03379.
  • Mourya, V. K., N. N. Inamdar, and Y. M. Choudhari. 2011. Chitooligosaccharides: Synthesis, characterization and applications. Polymer Science Series A 53 (7):583–612. doi: 10.1134/S0965545X11070066.
  • Muanprasat, C., and V. Chatsudthipong. 2017. Chitosan oligosaccharide: Biological activities and potential therapeutic applications. Pharmacology & Therapeutics 170:80–97. doi: 10.1016/j.pharmthera.2016.10.013.
  • Mukarram, M., M. Naeem, T. Aftab, and M. M A. Khan. 2022. Chitin, chitosan, and chitooligosaccharides: Recent advances and future perspectives. In Radiation-processed polysaccharides, eds. M. Naeem, T. Aftab, and M. M. A. Khan, 339–53. UK: Elsevier. doi: 10.1016/b978-0-323-85672-0.00012-x.
  • Naveed, M., L. Phil, M. Sohail, M. Hasnat, M. M. F. A. Baig, A. U. Ihsan, M. Shumzaid, M. U. Kakar, T. Mehmood Khan, M. D. Akabar, et al. 2019. Chitosan oligosaccharide (COS): An overview. International Journal of Biological Macromolecules 129:827–43. doi: 10.1016/j.ijbiomac.2019.01.192.
  • Nielsen, B., M. J. Colle, and G. Ünlü. 2021. Meat safety and quality: A biological approach. International Journal of Food Science & Technology 56 (1):39–51. doi: 10.1111/ijfs.14602.
  • Nobre, C., L. S. Simões, D. A. Gonçalves, P. Berni, and J. A. Teixeira. 2022. Fructooligosaccharides production and the health benefits of prebiotics. In Current developments in biotechnology and bioengineering, eds. E. K. Rau, S. P. Singh, A. Pandey, C. Larroche, and C. R. Soccol, 109–38. UK: Elsevier. doi: 10.1016/B978-0-12-823506-5.00002-3.
  • Nurhayati, Y., A. A. Manaf, H. Osman, A. Bakar, C. Abdullah, J. Yew, and H. Tang. 2016. Effect of chitosan oligosaccharides on the growth of Bifidobacterium species. Malaysian Journal of Applied Sciences 1 (1):13–23.
  • Oladzadabbasabadi, N., A. Mohammadi Nafchi, F. Ariffin, M. M. J. O. Wijekoon, A. A. Al-Hassan, M. A. Dheyab, and M. Ghasemlou. 2022. Recent advances in extraction, modification, and application of chitosan in packaging industry. Carbohydrate Polymers 277:118876. doi: 10.1016/j.carbpol.2021.118876.
  • Özer, C. O., and B. Kılıç. 2020. Utilization of optimized processing conditions for high yield synthesis of conjugated linoleic acid by L. plantarum AB20–961 and L. plantarum DSM2601 in semi-dry fermented sausage. Meat Science 169:108218. doi: 10.1016/j.meatsci.2020.108218.
  • Palaniappan, A., U. Antony, and M. Naushad Emmambux. 2021. Current status of xylooligosaccharides: Production, characterization, health benefits and food application. Trends in Food Science & Technology 111:506–19. doi: 10.1016/j.tifs.2021.02.047.
  • Park, H. H., S. C. Ko, G. W. Oh, Y. M. Jang, Y. M. Kim, W. S. Park, I. W. Choi, and W. K. Jung. 2018. Characterization and biological activity of PVA hydrogel containing chitooligosaccharides conjugated with gallic acid. Carbohydrate Polymers 198:197–205. doi: 10.1016/j.carbpol.2018.06.070.
  • Pavli, F. G., A. A. Argyri, N. G. Chorianopoulos, G. J. E. Nychas, and C. C. Tassou. 2020. Effect of Lactobacillus plantarum L125 strain with probiotic potential on physicochemical, microbiological and sensorial characteristics of dry-fermented sausages. LWT 118:108810. doi: 10.1016/j.lwt.2019.108810.
  • Prapulla, S. G., V. Subhaprada, and N. G. Karanth. 2000. Microbial production of oligosaccharides: A review. Advances in Applied Microbiology 47:299–343.
  • Rajabi, M. 2019. Chitooligosaccharides infood industry. Open Access Journal of Biomedical Science 1 (3):130–1. doi: 10.38125/OAJBS.000130.
  • Rao, M. S., R. Chander, and A. Sharma. 2006. Radiation processed chitosan a potent antioxidant. BARC Newsletter 273:188–94.
  • Rao, M. S., R. Chander, and A. Sharma. 2008. Synergistic effect of chitooligosaccharides and lysozyme for meat preservation. LWT - Food Science and Technology 41 (10):1995–2001. doi: 10.1016/j.lwt.2008.01.013.
  • Resconi, V. C., D. F. Keenan, M. Barahona, L. Guerrero, J. P. Kerry, and R. M. Hamill. 2016. Rice starch and fructo-oligosaccharides as substitutes for phosphate and dextrose in whole muscle cooked hams: Sensory analysis and consumer preferences. LWT - Food Science and Technology 66:284–92. doi: 10.1016/j.lwt.2015.10.048.
  • Resconi, V. C., D. F. Keenan, S. Gough, L. Doran, P. Allen, J. P. Kerry, and R. M. Hamill. 2015. Response surface methodology analysis of rice starch and fructooligosaccharides as substitutes for phosphate and dextrose in whole muscle cooked hams. LWT - Food Science and Technology 64 (2):946–58. doi: 10.1016/j.lwt.2015.06.053.
  • Richards, P. J., G. M. Flaujac Lafontaine, P. L. Connerton, L. Liang, K. Asiani, N. M. Fish, and I. F. Connerton. 2020. Galacto-oligosaccharides modulate the juvenile gut microbiome and innate immunity to improve broiler chicken performance. Host-Microbe Biology 5 (1):e0082719. doi: 10.1128/MSYSTEMS.00827-19/SUPPL_FILE/MSYSTEMS.00827-19-SF002.TIF.
  • Roberfroid, M. B. 2007. Inulin and oligofrucose: Health benefits and claims-A critical review. The Journal of Nutrition 137 (11):2493S–2502. https://academic.oup.com/jn/article-abstract/137/11/2493S/4664495. doi: 10.1093/jn/137.11.2493S.
  • Rudd, P. M., M. R. Wormald, R. L. Stanfield, M. Huang, N. Mattsson, J. A. Speir, J. A. Digennaro, J. S. Fetrow, R. A. Dwek, and I. A. Wilson. 1999. Roles for glycosylation of cell surface receptors involved in cellular immune recognition. Journal of Molecular Biology 293 (2):351–66. doi: 10.1006/jmbi.1999.3104.
  • Sako, T., K. Matsumoto, and R. Tanaka. 1999. Recent progress on research and applications of non-digestible galacto-oligosaccharides. International Dairy Journal 9 (1):69–80. doi: 10.1016/S0958-6946(99)00046-1.
  • Salazar, P., M. L. García, and M. D. Selgas. 2009. Short-chain fructooligosaccharides as potential functional ingredient in dry fermented sausages with different fat levels. International Journal of Food Science & Technology 44 (6):1100–7. doi: 10.1111/j.1365-2621.2009.01923.x.
  • Sánchez-Martínez, M. J., S. Soto-Jover, V. Antolinos, G. B. Martínez-Hernández, and A. López-Gómez. 2020. Manufacturing of short-chain fructooligosaccharides: From laboratory to industrial scale. Food Engineering Reviews 12 (2):149–72. doi: 10.1007/s12393-020-09209-0.
  • Santibáñez, L., C. Henríquez, R. Corro-Tejeda, S. Bernal, B. Armijo, and O. Salazar. 2021. Xylooligosaccharides from lignocellulosic biomass: A comprehensive review. Carbohydrate Polymers 251:117118. doi: 10.1016/j.carbpol.2020.117118.
  • Shin, H. S., H. Park, and D. Park. 2003. Influence of different oligosaccharides and inulin on heterocyclic aromatic amine formation and overall mutagenicity in fried ground beef patties. Journal of Agricultural and Food Chemistry 51 (23):6726–30. doi: 10.1021/jf0345797.
  • Singh, A., A. Mittal, and S. Benjakul. 2021. Chitosan, chitooligosaccharides and their polyphenol conjugates: Preparation, bioactivities, functionalities and applications in food systems. Food Reviews International, 2021, 2021:1–23. doi: 10.1080/87559129.2021.1950176.
  • Sinha, S., S. Chand, and P. Tripathi. 2016. Recent progress in chitosanase production of monomer-free chitooligosaccharides: Bioprocess strategies and future applications. Applied Biochemistry and Biotechnology 180 (5):883–99. doi: 10.1007/s12010-016-2140-6.
  • Sirini, N., P. E. S. Munekata, J. M. Lorenzo, M. Á. Stegmayer, M. Pateiro, J. Á. Pérez-Álvarez, N. Sepúlveda, M. E. Sosa-Morales, A. Teixeira, J. Fernández-López, et al. 2022. Development of healthier and functional dry fermented Sausages: Present and future. Foods 11 (8):1128. doi: 10.3390/foods11081128.
  • Sirini, N., A. Roldán, R. Lucas-González, J. Fernández-López, M. Viuda-Martos, J. A. Pérez-Álvarez, L. S. Frizzo, and M. R. Rosmini. 2020. Effect of chestnut flour and probiotic microorganism on the functionality of dry-cured meat sausages. LWT 134:110197. doi: 10.1016/j.lwt.2020.110197.
  • Surek, E., A. O. Buyukkileci, and S. Yegin. 2021. Processing of hazelnut (Corylus avellana L.) shell autohydrolysis liquor for production of low molecular weight xylooligosaccharides by Aureobasidium pullulans NRRL Y–2311–1 xylanase. Industrial Crops and Products 161:113212. doi: 10.1016/j.indcrop.2020.113212.
  • Tabassum, N., S. Ahmed, and M. A. Ali. 2021. Chitooligosaccharides and their structural-functional effect on hydrogels: A review. Carbohydrate Polymers 261:117882. doi: 10.1016/j.carbpol.2021.117882.
  • Tavaniello, S., A. Slawinska, D. Prioriello, V. Petrecca, M. Bertocchi, M. Zampiga, G. Salvatori, and G. Maiorano. 2020. Effect of galactooligosaccharides delivered in ovo on meat quality traits of broiler chickens exposed to heat stress. Poultry Science 99 (1):612–9. doi: 10.3382/ps/pez556.
  • Thøgersen, R., and H. C. Bertram. 2021. Reformulation of processed meat to attenuate potential harmful effects in the gastrointestinal tract: A review of current knowledge and evidence of health prospects. Trends in Food Science & Technology 108:111–8. doi: 10.1016/j.tifs.2020.12.015.
  • Torres, D. P. M., M. Gonçalves, P. F. do, J. A. Teixeira, and L. R. Rodrigues. 2010. Galacto-oligosaccharides: Production, properties, applications, and significance as prebiotics. Comprehensive Reviews in Food Science and Food Safety 9 (5):438–54. doi: 10.1111/j.1541-4337.2010.00119.x.
  • Vázquez, M. J., J. L. Alonso, H. Domı́nguez, and J. C. Parajó. 2000. Xylooligosaccharides: Manufacture and applications. Trends in Food Science & Technology 11 (11):387–93. doi: 10.1016/S0924-2244(01)00031-0.
  • Vera, C., A. Córdova, C. Aburto, C. Guerrero, S. Suárez, and A. Illanes. 2016. Synthesis and purification of galacto-oligosaccharides: State of the art. World Journal of Microbiology & Biotechnology 32 (12):197. doi: 10.1007/s11274-016-2159-4.
  • Watanuki, M., Y. Wada, and K. Matsumoto. 1996. Digestibility and physiological heat of combustion of β1-4 and β1-6 galactooligosaccharides in vitro. Annual Reports of the Yakult Central Institute for Microbiological Research 16:1–12.
  • Wu, Y. B., and K. W. Lin. 2011. Influences of xylooligosaccharides on the quality of Chinese-style meatball (kung-wan). Meat Science 88 (3):575–9. doi: 10.1016/j.meatsci.2011.02.018.
  • Wu, Y. B., and K. W. Lin. 2014. Influences of xylooligosaccharides and saccharides on the properties of meat batter during frozen storage. Journal of Food Processing and Preservation 38 (4):1439–46. doi: 10.1111/jfpp.12103.
  • Younis, K., O. Yousuf, O. S. Qadri, K. Jahan, K. Osama, and R. U. Islam. 2022. Incorporation of soluble dietary fiber in comminuted meat products: Special emphasis on changes in textural properties. Bioactive Carbohydrates and Dietary Fibre 27:100288. doi: 10.1016/j.bcdf.2021.100288.
  • Zhang, B., G. Hao, H. Cao, H. Tang, Y. Zhang, and S. Deng. 2018. The cryoprotectant effect of xylooligosaccharides on denaturation of peeled shrimp (Litopenaeus vannamei) protein during frozen storage. Food Hydrocolloids 77:228–37. doi: 10.1016/j.foodhyd.2017.09.038.
  • Ziółkowska, E., J. Bogucka, M. Rawski, J. Mazurkiewicz, G. Maiorano, and M. Stanek. 2022. The first insights on trans-galactooligosaccharide effects on fatty acids profile and microstructure of muscle in common carp. Annals of Animal Science 22 (1):305–24. doi: 10.2478/aoas-2021-0030.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.