568
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

Advances in drying techniques for retention of antioxidants in agro produces

, , , , &
Pages 10849-10865 | Published online: 02 Jun 2022

References

  • Abd Rahman, N. H., N. R. Jaafar, N. A. Shamsul Annuar, R. A. Rahman, A. M. Abdul Murad, H. A. El-Enshasy, and R. M. Illias. 2021. Efficient substrate accessibility of cross-linked levanase aggregates using dialdehyde starch as a macromolecular cross-linker. Carbohydrate Polymers 267, 118159. doi: 10.1016/j.carbpol.2021.118159.
  • Adams, G. D. J., I. Cook, and K. R. Ward. 2015. Chapter 4: The principles of freeze-drying. In: Cryopreservation and freeze-drying protocols, Vol. 1257, 121–43. Springer Nature. doi: 10.1007/978-1-4939-2193-5.
  • Ade-Omowaye, B. I. O., N. K. Rastogi, A. Angersbach, and D. Knorr. 2001. Effects of high hydrostatic pressure or high intensity electrical field pulse pre-treatment on dehydration characteristics of red paprika. Innovative Food Science & Emerging Technologies 2 (1):1–7. doi: 10.1016/S1466-8564(00)00022-9.
  • Alam, M. R., J. G. Lyng, D. Frontuto, F. Marra, and L. Cinquanta. 2018. Effect of pulsed electric field pretreatment on drying kinetics, color, and texture of parsnip and carrot. Journal of Food Science 83 (8):2159–66. doi: 10.1111/1750-3841.14216.
  • Al-Khuseibi, M. K., S. S. Sablani, and C. O. Perera. 2005. Comparison of water blanching and high hydrostatic pressure effects on drying kinetics and quality of potato. Drying Technology 23 (12):2449–61. doi: 10.1080/07373930500340734.
  • Amanor-Atiemoh, R., C. Zhou, M. Abdullaleef Taiye, F. Sarpong, H. Wahia, A. Amoa-Owusu, H. Ma, and L. Chen. 2020. Effect of ultrasound-ethanol pretreatment on drying kinetics, quality parameters, functional group, and amino acid profile of apple slices using pulsed vacuum drying. Journal of Food Process Engineering 43 (2). doi: 10.1111/jfpe.13347.
  • An, K., D. Zhao, Z. Wang, J. Wu, Y. Xu, and G. Xiao. 2016. Comparison of different drying methods on Chinese ginger (Zingiber officinale Roscoe): Changes in volatiles, chemical profile, antioxidant properties, and microstructure. Food Chemistry 197:1292–300. doi: 10.1016/j.foodchem.2015.11.033.
  • Annuar, A. S., R. A. Rahman, A. Munir, A. Murad, H. Ali El-Enshasy, and R. Illias. 2021. Carbohydrate Polymers: 118159.
  • Antal, T. 2015. Comparative study of three drying methods: Freeze, hot air assisted freeze and infrared-assisted freeze modes. Agronomy Research 13 (4):863–78.
  • Araya-Farias, M., J. Makhlouf, and C. Ratti. 2011. Drying of seabuckthorn (Hippophae rhamnoides L.) Berry: Impact of dehydration methods on kinetics and quality. Drying Technology 29 (3):351–9. doi: 10.1080/07373937.2010.497590.
  • Arshad, R. N., Z. Abdul-Malek, U. Roobab, M. A. Munir, A. Naderipour, M. I. Qureshi, A. El-Din Bekhit, Z.-W. Liu, and R. M. Aadil. 2021. Pulsed electric field: A potential alternative towards a sustainable food processing. Trends in Food Science & Technology 111:43–54. doi: 10.1016/j.tifs.2021.02.041.
  • Arslan, D., M. M. Özcan, and H. O. Mengeş. 2010. Evaluation of drying methods with respect to drying parameters, some nutritional and colour characteristics of peppermint (Mentha x piperita L.). Energy Conversion and Management 51 (12):2769–75. doi: 10.1016/j.enconman.2010.06.013.
  • Bai, Y., and Z. Luan. 2018. The effect of high-pulsed electric field pretreatment on vacuum freeze drying of sea cucumber. International Journal of Applied Electromagnetics and Mechanics 57 (2):247–56. doi: 10.3233/JAE-180009.
  • Belc, N., I. Smeu, A. Macri, D. Vallauri, and K. Flynn. 2019. Reformulating foods to meet current scientific knowledge about salt, sugar and fats. Trends in Food Science & Technology 84:25–8. doi: 10.1016/j.tifs.2018.11.002.
  • Belmiro, R. H., A. A. L. Tribst, and M. Cristianini. 2018. Impact of high pressure processing in hydration and drying curves of common beans (Phaseolus vulgaris L.). Innovative Food Science & Emerging Technologies 47:279–85. doi: 10.1016/j.ifset.2018.03.013.
  • Bevilacqua, A., L. Petruzzi, M. Perricone, B. Speranza, D. Campaniello, M. Sinigaglia, and M. R. Corbo. 2018. Nonthermal technologies for fruit and vegetable juices and beverages: Overview and advances. Comprehensive Reviews in Food Science and Food Safety 17 (1):2–62. doi: 10.1111/1541-4337.12299.
  • Bhatta, S., T. Stevanovic Janezic, and C. Ratti. 2020. Freeze-drying of plant-based foods. Foods 9 (1):87. doi: 10.3390/foods9010087.
  • Bozkir, H., A. Rayman Ergün, Y. Tekgül, and T. Baysal. 2019. Ultrasound as pretreatment for drying garlic slices in microwave and convective dryer. Food Science and Biotechnology 28 (2):347–54. doi: 10.1007/s10068-018-0483-1.
  • Bozkir, H., Y. Tekgül, and E. Seda Erten. 2021. Effects of tray drying, vacuum infrared drying, and vacuum microwave drying techniques on quality characteristics and aroma profile of orange peels. Journal of Food Process Engineering 44 (1). doi: 10.1111/jfpe.13611.
  • Braga, A. M. P., M. P. Pedroso, F. Augusto, and M. A. Silva. 2009. Volatiles identification in pineapple submitted to drying in an ethanolic atmosphere. Drying Technology 27 (2):248–57. doi: 10.1080/07373930802606097.
  • Celejewska, K., M. Mieszczakowska-Frąc, D. Konopacka, and T. Krupa. 2018. The influence of ultrasound and cultivar selection on the biocompounds and physicochemical characteristics of dried blueberry (Vaccinium corymbosum L.) snacks. Journal of Food Science 83 (9):2305–16. doi: 10.1111/1750-3841.14292.
  • Chauhan, O. P., S. Sayanfar, and S. Toepfl. 2018. Effect of pulsed electric field on texture and drying time of apple slices. Journal of Food Science and Technology 55 (6):2251–8. doi: 10.1007/s13197-018-3142-x.
  • Chuang, S., and S. Shiowshuh. 2022. High pressure processing of raw meat with essential oils-microbial survival, meat quality, and models: A review. Food Control 132:108529.
  • Choe, E., and D. B. Min. 2009. Mechanisms of antioxidants in the oxidation of foods. Comprehensive Reviews in Food Science and Food Safety 8 (4):345–58. doi: 10.1111/j.1541-4337.2009.00085.x.
  • Choo, C. O., B. L. Chua, A. Figiel, K. Jałoszyński, A. Wojdyło, A. Szumny, J. Łyczko, and C. H. Chong. 2020. Hybrid drying of murraya koenigii leaves: Energy consumption, antioxidant capacity, profiling of volatile compounds and quality studies. Processes 8 (2):240. doi: 10.3390/pr8020240.
  • Cömert, E. D., and V. Gökmen. 2018. Evolution of food antioxidants as a core topic of food science for a century. Food Research International (Ottawa, ON) 105:76–93. doi: 10.1016/j.foodres.2017.10.056.
  • Cruz, L., G. Clemente, A. Mulet, M. H. Ahmad-Qasem., E. Barrajón-Catalán, and J. V. García-Pérez. 2016. Air-borne ultrasonic application in the drying of grape skin: Kinetic and quality considerations. Journal of Food Engineering 168:251–258.
  • da Cunha, R. M. C., S. C. R. Brandão, R. A. B. de Medeiros, E. V. da SilvaJr., J. H. Fernandes da Silva, and P. M. Azoubel. 2020. Effect of ethanol pretreatment on melon convective drying. Food Chemistry 333 (April):127502. doi: 10.1016/j.foodchem.2020.127502.
  • da Silva, E. S., S. C. Rupert Brandão, A. Lopes da Silva, J. H. Fernandes da Silva, A. C. Duarte Coêlho, and P. M. Azoubel. 2019. Ultrasound-assisted vacuum drying of nectarine. Journal of Food Engineering 246:119–24. doi: 10.1016/j.jfoodeng.2018.11.013.
  • Dermesonlouoglou, E., I. Zachariou, V. Andreou, and P. S. Taoukis. 2016. Effect of pulsed electric fields on mass transfer and quality of osmotically dehydrated kiwifruit. Food and Bioproducts Processing 100:535–544.
  • de la Rosa, L. A., J. O. Moreno-Escamilla, J. Rodrigo-García, and E. Alvarez-Parrilla. 2018. Phenolic compounds. Postharvest physiology and biochemistry of fruits and vegetables. Elsevier Inc, Woodhead Publishing. doi: 10.1016/B978-0-12-813278-4.00012-9.
  • de Oliveira, M. M., A. A. L. Tribst, B. R. d. C. Leite Júnior, R. A. d. Oliveira, and M. Cristianini. 2015. Effects of high pressure processing on cocoyam, Peruvian carrot, and sweet potato: Changes in microstructure, physical characteristics, starch, and drying rate. Innovative Food Science & Emerging Technologies 31:45–53. doi: 10.1016/j.ifset.2015.07.004.
  • de Torres, C., M. C. Díaz-Maroto, I. Hermosín-Gutiérrez, and M. S. Pérez-Coello. 2010. Effect of freeze-drying and oven-drying on volatiles and phenolics composition of grape skin. Analytica Chimica Acta 660 (1–2):177–82. doi: 10.1016/j.aca.2009.10.005.
  • Deepika, S., and P. P. Sutar. 2018. Combining osmotic–steam blanching with infrared–microwave–hot air drying: Production of dried lemon (Citrus limon L.) slices and enzyme inactivation. Drying Technology 36 (14):1719–37. doi: 10.1080/07373937.2017.1422744.
  • Deng, L.-Z., A. S. Mujumdar, Q. Zhang, X.-H. Yang, J. Wang, Z.-A. Zheng, Z.-J. Gao, and H.-W. Xiao. 2019. Chemical and physical pretreatments of fruits and vegetables: Effects on drying characteristics and quality attributes - A comprehensive review. Critical Reviews in Food Science and Nutrition 59 (9):1408–32. doi: 10.1080/10408398.2017.1409192.
  • Divya, P., B. Puthusseri, and B. Neelwarne. 2012. Carotenoid content, its stability during drying and the antioxidant activity of commercial coriander (Coriandrum sativum L.) varieties. Food Research International 45 (1):342–50. doi: 10.1016/j.foodres.2011.09.021.
  • Dong, W., K. Cheng, R. Hu, Z. Chu, J. Zhao, and Y. Long. 2018. Effect of microwave vacuum drying on the drying characteristics, color, microstructure, and antioxidant activity of green coffee beans. Molecules 23 (5): 1146. doi: 10.3390/molecules23051146.
  • Dong, Z. 2018. Experimental study of pathogenic microorganisms inactivated by venturi-type hydrodynamic cavitation with different throat lengths. In Journal of the civil engineering forum 4: (3).
  • Doymaz, I. 2008. Influence of blanching and slice thickness on drying characteristics of leek slices. Chemical Engineering and Processing: Process Intensification 47 (1):41–7. doi: 10.1016/j.cep.2007.09.002.
  • Duan, X., X. Yang, G. Ren, Y. Pang, L. Liu, and Y. Liu. 2016. Technical aspects in freeze-drying of foods. Drying Technology 34 (11):1271–85. doi: 10.1080/07373937.2015.1099545.
  • Embuscado, M. E. 2015. Spices and herbs: Natural sources of antioxidants - A mini review. Journal of Functional Foods 18:811–9. doi: 10.1016/j.jff.2015.03.005.
  • Fauster, T., M. Giancaterino, P. Pittia, and H. Jaeger. 2020. Effect of pulsed electric field pretreatment on shrinkage, rehydration capacity and texture of freeze-dried plant materials. LWT 121:108937. doi: 10.1016/j.lwt.2019.108937.
  • Fayose, F., and Z. Huan. 2016. Heat pump drying of fruits and vegetables: Principles and potentials for sub-Saharan Africa. International Journal of Food Science 2016:1–8. doi: 10.1155/2016/9673029.
  • Feng, H., Y. Yin, and J. Tang. 2012. Microwave drying of food and agricultural materials: Basics and heat and mass transfer modeling. Food Engineering Reviews 4 (2):89–106. doi: 10.1007/s12393-012-9048-x.
  • Fernandes, F. A. N., F. E. Linhares, Jr., and S. Rodrigues. 2008. Ultrasound as pre-treatment for drying of pineapple. Ultrasonics Sonochemistry 15 (6):1049–54. doi: 10.1016/j.ultsonch.2008.03.009.
  • Gachovska, T. K., M. V. Simpson, M. O. Ngadi, and G. S. Raghavan. 2009. Pulsed electric field treatment of carrots before drying and rehydration. Journal of the Science of Food and Agriculture 89 (14):2372–6. doi: 10.1002/jsfa.3730.
  • Gani, A., W. N. Baba, M. Ahmad, U. Shah, A. A. Khan, I. A. Wani, F. A. Masoodi, and A. Gani. 2016. Effect of ultrasound treatment on physico-chemical, nutraceutical and microbial quality of strawberry. LWT - Food Science and Technology 66:496–502. doi: 10.1016/j.lwt.2015.10.067.
  • Garcia-Perez, J. V., C. Ortuño, A. Puig, J. A. Carcel, and I. Perez-Munuera. 2012. Enhancement of water transport and microstructural changes induced by high-intensity ultrasound application on orange peel drying. Food and Bioprocess Technology 5 (6):2256–65. doi: 10.1007/s11947-011-0645-0.
  • Gowe, C. 2015. Review on potential use of fruit and vegetables by-products as a valuable source of natural food additives. Food Science and Quality Management 45 (5):47–61.
  • Gulcin, İ. 2020. Antioxidants and antioxidant methods: An updated overview. Archives of Toxicology 94 (3):651–715. doi: 10.1007/s00204-020-02689-3.
  • Gümüşay, Ö. A., A. Akpinar Borazan, N. Ercal, and O. Demirkol. 2015. Drying effects on the antioxidant properties of tomatoes and ginger. Food Chemistry 173:156–62. doi: 10.1016/j.foodchem.2014.09.162.
  • Guo, Q., D. W. Sun, J. H. Cheng, and Z. Han. 2017. Microwave processing techniques and their recent applications in the food industry. Trends in Food Science & Technology 67:236–47. doi: 10.1016/j.tifs.2017.07.007.
  • Hamrouni-Sellami, I., F. Z. Rahali, I. B. Rebey, S. Bourgou, F. Limam, and B. Marzouk. 2013. Total phenolics, flavonoids, and antioxidant activity of sage (Salvia officinalis L.) plants as affected by different drying methods. Food and Bioprocess Technology 6 (3):806–17. doi: 10.1007/s11947-012-0877-7.
  • Hawlader, M. N., C. O. Perera, M. Tian, and K. L. Yeo. 2006. Drying of guava and papaya: Impact of different drying methods. Drying Technology 24 (1):77–87. doi: 10.1080/07373930500538725.
  • Hii, C. L., S. P. Ong, J. Y. Yap, A. Putranto, and D. Mangindaan. 2021. Hybrid drying of food and bioproducts: A review. Drying Technology 39 (11):1554–76. doi: 10.1080/07373937.2021.1914078.
  • Horuz, E., H. Bozkurt, H. Karataş, and M. Maskan. 2017. Effects of hybrid (microwave-convectional) and convectional drying on drying kinetics, total phenolics, antioxidant capacity, vitamin c, color and rehydration capacity of sour cherries. Food Chemistry 230:295–305. doi: 10.1016/j.foodchem.2017.03.046.
  • Horuz, E., H. J. Jaafar, and M. Maskan. 2017. Ultrasonication as pretreatment for drying of tomato slices in a hot air–microwave hybrid oven. Drying Technology 35 (7):849–59. doi: 10.1080/07373937.2016.1222538.
  • Huang, D., K. Men, D. Li, T. Wen, Z. Gong, B. Sunden, and Z. Wu. 2020. Application of ultrasound technology in the drying of food products. Ultrasonics Sonochemistry 63:104950. doi: 10.1016/j.ultsonch.2019.104950.
  • Jiang, N., C. Liu, D. Li, Z. Zhang, C. Liu, D. Wang, L. Niu, and M. Zhang. 2017. Evaluation of freeze drying combined with microwave vacuum drying for functional okra snacks: Antioxidant properties, sensory quality, and energy consumption. LWT - Food Science and Technology 82:216–26. doi: 10.1016/j.lwt.2017.04.015.
  • Jin, W., M. Zhang, and W. Shi. 2019. Evaluation of ultrasound pretreatment and drying methods on selected quality attributes of bitter melon (Momordica charantia L.). Drying Technology 37 (3):387–96. doi: 10.1080/07373937.2018.1458735.
  • Joardder, M. U. H., C. Kumar, R. J. Brown, and M. A. Karim. 2015. A micro-level investigation of the solid displacement method for porosity determination of dried food. Journal of Food Engineering 166:156–64. doi: 10.1016/j.jfoodeng.2015.05.034.
  • Kalpana, S., S. R. Priyadarshini, M. Maria Leena, J. A. Moses, and C. Anandharamakrishnan. 2019. Trends in food science & technology intelligent packaging : Trends and applications in food systems. Trends in Food Science & Technology 93 (October 2018):145–57. doi: 10.1016/j.tifs.2019.09.008.
  • Karam, M. C., J. Petit, D. Zimmer, E. Baudelaire Djantou, and J. Scher. 2016. Effects of drying and grinding in production of fruit and vegetable powders: A review. Journal of Food Engineering 188:32–49. doi: 10.1016/j.jfoodeng.2016.05.001.
  • Khoshtaghaza, M. H., H. Darvishi, and S. Minaei. 2015. Effects of microwave - Fluidized bed drying on quality, energy consumption and drying kinetics of soybean kernels. Journal of Food Science and Technology 52 (8):4749–60. doi: 10.1007/s13197-014-1557-6.
  • Kohli, G., G. Jain, A. Bisht, A. Upadhyay, A. Kumar, and S. Dabir. 2019. Effect of non-thermal hurdles in shelf life enhancement of sugarcane juice. LWT 112 (June):108233. doi: 10.1016/j.lwt.2019.05.131.
  • Kowalski, S. J., and D. Mierzwa. 2011. Hybrid drying of red bell pepper: energy and quality issues. Drying Technology 29 (10):1195–1203.
  • Kraujalytė, V., E. Pelvan, and C. Alasalvar. 2016. Volatile compounds and sensory characteristics of various instant teas produced from black tea. Food Chemistry 194:864–72. doi: 10.1016/j.foodchem.2015.08.051.
  • Krumova, K., and G. Cosa. 2016. Overview of reactive oxygen species. In Singlet oxygen: applications in biosciences and nano sciences, Vol. 1, 1–21. Royal Society of Chemistry.
  • Kumar, C., M. A. Karim, and M. UH Joardder. 2014. Intermittent drying of food products: A critical review. Journal of Food Engineering 121:48–57.
  • Lammerskitten, A., A. Wiktor, C. Siemer, S. Toepfl, V. Mykhailyk, E. Gondek, K. Rybak, D. Witrowa-Rajchert, and O. Parniakov. 2019. The effects of pulsed electric fields on the quality parameters of freeze-dried apples. Journal of Food Engineering 252:36–43. doi: 10.1016/j.jfoodeng.2019.02.006.
  • Leong, S. Y., and I. Oey. 2012. Effects of processing on anthocyanins, carotenoids and vitamin c in summer fruits and vegetables. Food Chemistry 133 (4):1577–87. doi: 10.1016/j.foodchem.2012.02.052.
  • Liu, C., N. Grimi, N. Lebovka, and E. Vorobiev. 2020a. Impacts of preliminary vacuum drying and pulsed electric field treatment on characteristics of fried potatoes. Journal of Food Engineering 276 (vember 2019):109898. doi: 10.1016/j.jfoodeng.2019.109898.
  • Liu, C., A. Pirozzi, G. Ferrari, E. Vorobiev, and N. Grimi. 2020b. Effects of pulsed electric fields on vacuum drying and quality characteristics of dried carrot. Food and Bioprocess Technology 13 (1):45–52. doi: 10.1007/s11947-019-02364-1.
  • Liu, Y.-y., Y. Wang, W.-q. Lv, D. Li, and L.-j. Wang. 2021. Freeze-thaw and ultrasound pretreatment before microwave combined drying affects drying kinetics, cell structure and quality parameters of platycodon grandiflorum. Industrial Crops and Products 164 (February):113391. doi: 10.1016/j.indcrop.2021.113391.
  • Lourenço, S. C., M. Moldão-Martins, and V. D. Alves. 2019. Antioxidants of natural plant origins: From sources to food industry applications. Molecules 24 (22):4132. doi: 10.3390/molecules24224132.
  • Maftoonazad, N., M. R. Dehghani, and H. S. Ramaswamy. 2020. Hybrid microwave-hot air tunnel drying of onion slices: Drying kinetics, energy efficiency, product rehydration, color, and flavor characteristics. Drying Technology 40 (5):1–21.
  • Magalhães, M. L., S. J. Cartaxo, M. I. Gallão, J. V. García-Pérez, J. A. Cárcel, S. Rodrigues, and F. A. Fernandes. 2017. Drying intensification combining ultrasound pre-treatment and ultrasound-assisted air drying. Journal of Food Engineering 215:72–7. doi: 10.1016/j.jfoodeng.2017.07.027.
  • Malekjani, N., and S. M. Jafari. 2018. Simulation of food drying processes by computational fluid dynamics (CFD); recent advances and approaches. Trends in Food Science & Technology 78:206–23. doi: 10.1016/j.tifs.2018.06.006.
  • Menon, A., V. Stojceska, and S. A. Tassou. 2020. A systematic review on the recent advances of the energy efficiency improvements in nonconventional food drying technologies. Trends in Food Science and Technology 100:67–76.
  • Michalska, A., A. Wojdyło, K. Lech, G. P. Łysiak, and A. Figiel. 2016. Physicochemical properties of whole fruit plum powders obtained using different drying technologies. Food Chemistry 207:223–32. doi: 10.1016/j.foodchem.2016.03.075.
  • Mierzwa, D., S. J. Kowalski, and J. Kroehnke. 2017. Hybrid drying of carrot preliminary processed with ultrasonically assisted osmotic dehydration. Food Technology and Biotechnology 55 (2):197–205. doi: 10.17113/ftb.55.02.17.4942.
  • Mierzwa, D., J. Szadzińska, A. Pawłowski, R. Pashminehazar, and A. Kharaghani. 2019. Nonstationary convective drying of raspberries, assisted by microwaves and ultrasound. Drying Technology 37 (8):988–1001. doi: 10.1080/07373937.2018.1481087.
  • Motevali, A., H. Jafari, and J. Hashemi. 2018. Effect of IR intensity and air temperature on exergy and energy at hybrid infrared-hot air dryer. Chemical Industry and Chemical Engineering Quarterly 24 (1):31–42. doi: 10.2298/CICEQ170123015M.
  • Mothibe, K. J., C.-Y. Wang, A. S. Mujumdar, and M. Zhang. 2014. Microwave-assisted pulse-spouted vacuum drying of apple cubes. Drying Technology 32 (15):1762–8. doi: 10.1080/07373937.2014.934830.
  • Murunganandam, C., R. Ezhilnilavu, and S. Sivasankar. 2017. Plant archives. Plant Archives 17 (1):261–6.
  • Nalawade, S. A., A. Sinha, and H. U. Hebbar. 2018. Infrared based dry blanching and hybrid drying of bitter gourd slices: Process efficiency evaluation. Journal of Food Process Engineering 41 (4):e12672. doi: 10.1111/jfpe.12672.
  • Nandhu Lal, A. M., S. Krishnamurthy, M. S. Girinandagopal, A. Kothakota, R. kumar, V. V. Venugopalan, S. Padma Ishwarya, and T. Venkatesh. 2022. A comparison of the Refrigerated Adsorption Drying of Daucus carota with fluidized bed drying. LWT 154:112749. doi: 10.1016/j.lwt.2021.112749.
  • Nowacka, M., and M. Wedzik. 2016. Effect of ultrasound treatment on microstructure, colour and carotenoid content in fresh and dried carrot tissue. Applied Acoustics 103:163–71. doi: 10.1016/j.apacoust.2015.06.011.
  • Nuñez-Mancilla, Y., M. Perez-Won, A. Vega-Gálvez, V. Arias, G. Tabilo-Munizaga, V. Briones-Labarca, R. Lemus-Mondaca, and K. Di Scala. 2011. Modeling mass transfer during osmotic dehydration of strawberries under high hydrostatic pressure conditions. Innovative Food Science & Emerging Technologies 12 (3):338–43. doi: 10.1016/j.ifset.2011.03.005.
  • Nurlaila, W., Mat Desa, M. Mohammad, and A. Fudholi. 2019. Trends in food science & technology review of drying technology of fig. Trends in Food Science & Technology 88 (March):93–103. doi: 10.1016/j.tifs.2019.03.018.
  • Oliveira, S. M., T. R. Brandão, and C. L. Silva. 2016. Influence of drying processes and pretreatments on nutritional and bioactive characteristics of dried vegetables: A review. Food Engineering Reviews 8 (2):134–63. doi: 10.1007/s12393-015-9124-0.
  • Onwude, D. I., N. Hashim, K. Abdan, R. Janius, and G. Chen. 2019. The effectiveness of combined infrared and hot-air drying strategies for sweet potato. Journal of Food Engineering 241:75–87. doi: 10.1016/j.jfoodeng.2018.08.008.
  • Orphanides, A., V. Goulas, and V. Gekas. 2013. Effect of drying method on the phenolic content and antioxidant capacity of spearmint. Czech Journal of Food Sciences 31 (5):509–13. doi: 10.17221/526/2012-CJFS.
  • Ostermeier, R., O. Parniakov, S. Töpfl, and H. Jäger. 2020. Applicability of pulsed electric field (PEF) pre-treatment for a convective two-step drying process. Foods 9 (4):512. doi: 10.3390/foods9040512.
  • Pallarés, N., A. Sebastià, V. Martínez-Lucas, M. González-Angulo, F. J. Barba, H. Berrada, and E. Ferrer. 2021. High pressure processing impact on alternariol and aflatoxins of grape juice and fruit juice-milk based beverages. Molecules 26 (12):3769.
  • Patras, A., N. Brunton, S. Da Pieve, F. Butler, and G. Downey. 2009. Effect of thermal and high pressure processing on antioxidant activity and instrumental colour of tomato and carrot purées. Innovative Food Science & Emerging Technologies 10 (1):16–22. doi: 10.1016/j.ifset.2008.09.008.
  • Pellicer, J. A., M. I. Fortea, J. Trabal, M. I. Rodríguez-López, J. A. Gabaldón, and E. Núñez-Delicado. 2019. Stability of microencapsulated strawberry flavour by spray drying, freeze drying and fluid bed. Powder Technology 347:179–85. doi: 10.1016/j.powtec.2019.03.010.
  • Pinela, J., and I. C. Ferreira. 2017. Nonthermal physical technologies to decontaminate and extend the shelf-life of fruits and vegetables: Trends aiming at quality and safety. Critical Reviews in Food Science and Nutrition 57 (10):2095–111. doi: 10.1080/10408398.2015.1046547.
  • Qadri, O. S., A. K. Srivastava, and B. Yousuf. 2020. Trends in foam mat drying of foods: Special emphasis on hybrid foam mat drying technology. Critical Reviews in Food Science and Nutrition 60 (10):1667–76. doi: 10.1080/10408398.2019.1588221.
  • Rajkumar, G., S. Shanmugam, M. d. S. Galvâo, M. T. S. Leite Neta, R. D. Dutra Sandes, A. S. Mujumdar, and N. Narain. 2017. Comparative evaluation of physical properties and aroma profile of carrot slices subjected to hot air and freeze drying. Drying Technology 35 (6):699–708. doi: 10.1080/07373937.2016.1206925.
  • Rani, P., and P. P. Tripathy. 2019. Effect of ultrasound and chemical pretreatment on drying characteristics and quality attributes of hot air dried pineapple slices. Journal of Food Science and Technology 56 (11):4911–24. doi: 10.1007/s13197-019-03961-w.
  • Ratti, C., M. Araya-Farias, L. Mendez-Lagunas, and J. Makhlouf. 2007. Drying of garlic (Allium sativum) and its effect on allicin retention. Drying Technology 25 (2):349–56. doi: 10.1080/07373930601120100.
  • Reis, F. R. 2014. Applied sciences and technology vacuum drying for extending food shelf-life.
  • Rojas, M. L., P. E. Augusto, and J. A. Cárcel. 2020. Ethanol pre-treatment to ultrasound-assisted convective drying of apple. Innovative Food Science & Emerging Technologies 61 (November 2019):102328. doi: 10.1016/j.ifset.2020.102328.
  • Rojas, M. L., I. Silveira, and P. E. Augusto. 2019. Improving the infrared drying and rehydration of potato slices using simple approaches: Perforations and ethanol. Journal of Food Process Engineering 42 (5):1–7. doi: 10.1111/jfpe.13089.
  • Rojas, M. L., and P. E. Augusto. 2018. Ethanol and ultrasound pre-treatments to improve infrared drying of potato slices. Innovative Food Science & Emerging Technologies 49:65–75. doi: 10.1016/j.ifset.2018.08.005.
  • Rojas, M. L., I. Silveira, and P. E. D. Augusto. 2020. Ultrasound and ethanol pre-treatments to improve convective drying: Drying, rehydration and carotenoid content of pumpkin. Food and Bioproducts Processing 119:20–30. doi: 10.1016/j.fbp.2019.10.008.
  • Roratto, T. B., R. L. Monteiro, B. A. Carciofi, and J. B. Laurindo. 2021. An innovative hybrid-solarvacuum dryer to produce high-quality dried fruits and vegetables. LWT 140:110777. doi: 10.1016/j.lwt.2020.110777.
  • Rux, G., O. Schlüter, M. Geyer, and W. B. Herppich. 2017. Characterization of high hydrostatic pressure effects on fresh produce cell turgor using pressure probe analyses. Postharvest Biology and Technology 132:188–94. doi: 10.1016/j.postharvbio.2017.03.020.
  • Salehi, F. 2021. Recent applications of heat pump dryer for drying of fruit crops: A review. International Journal of Fruit Science 21 (1):546–55. doi: 10.1080/15538362.2021.1911746.
  • Sánchez-Moreno, C., L. Plaza, P. Elez-Martínez, B. De Ancos, O. Martín-Belloso, and M. P. Cano. 2005. Impact of high pressure and pulsed electric fields on bioactive compounds and antioxidant activity of orange juice in comparison with traditional thermal processing. Journal of Agricultural and Food Chemistry 53 (11):4403–9. doi: 10.1021/jf048839b.
  • Sehrawat, R., A. Chandra, P. K. Nema, and V. K. Arora. 2019. Drying of fruits and vegetables in a developed multimode drying unit and comparison with commercially available systems. Journal of the Institution of Engineers (India): Series A 100 (3):381–6. doi: 10.1007/s40030-019-00371-1.
  • Shaheer, C. A., P. Hafeeda, R. Kumar, T. Kathiravan, D. Kumar, and S. Nadanasabapathi. 2014. Effect of thermal and thermosonication on anthocyanin stability in jamun (Eugenia jambolana) fruit juice. International Food Research Journal 21 (6):2189.
  • Shahidi, F., and Y. Zhong. 2010. Novel antioxidants in food quality preservation and health promotion. European Journal of Lipid Science and Technology 112 (9):930–40. doi: 10.1002/ejlt.201000044.
  • Shofian, N. M., A. A. Hamid, A. Osman, N. Saari, F. Anwar, M. S. Pak Dek, and M. R. Hairuddin. 2011. Effect of freeze-drying on the antioxidant compounds and antioxidant activity of selected tropical fruits. International Journal of Molecular Sciences 12 (7):4678–92. doi: 10.3390/ijms12074678.
  • Silva, J. L., A. C. Oliveira, T. C. R. G. Vieira, G. A. P. de Oliveira, M. C. Suarez, and D. Foguel. 2014. High-pressure chemical biology and biotechnology. Chemical Reviews 114 (14):7239–67. doi: 10.1021/cr400204z.
  • Silva, M. G., R. M. Celeghini, and M. A. Silva. 2018. Effect of ethanol on the drying characteristics and on the coumarin yield of dried guaco leaves (Mikania laevigata schultz BIP. Ex Baker). Brazilian Journal of Chemical Engineering 35 (3):1095–104. doi: 10.1590/0104-6632.20180353s20160481.
  • Sindhi, V., V. Gupta, K. Sharma, S. Bhatnagar, R. Kumari, and N. Dhaka. 2013. Potential applications of antioxidants – A review. Journal of Pharmacy Research 7 (9):828–35. doi: 10.1016/j.jopr.2013.10.001.
  • Singh, A., J. Sarkar, and R. R. Sahoo. 2019. Comparative analyses on a batch-type heat pump dryer using low GWP refrigerants. Food and Bioproducts Processing 117 (2008):1–13. doi: 10.1016/j.fbp.2019.06.009.
  • Singh, A., J. Sarkar, and R. R. Sahoo. 2020a. Experiment on waste heat recovery-assisted heat pump drying of food chips: Performance, economic, and exergoeconomic analyses. Journal of Food Processing and Preservation 44 (9):1–13. doi: 10.1111/jfpp.14699.
  • Singh, A., J. Sarkar, and R. R. Sahoo. 2020b. Experimental performance analysis of novel indirect-expansion solar-infrared assisted heat pump dryer for agricultural products. Solar Energy 206:907–17. doi: 10.1016/j.solener.2020.06.065.
  • Śledź, M., P. Nowak, and D. Witrowa-Rajchert. 2014. Drying of parsley leaves pre-treated by ultrasound. ZPPNR 579:91–9.
  • Sobukola, O. P., O. U. Dairo, and A. V. Odunewu. 2008. Convective hot air drying of blanched yam slices. International Journal of Food Science & Technology 43 (7):1233–8. doi: 10.1111/j.1365-2621.2007.01597.x.
  • Soliva-Fortuny, R., M. Vendrell-Pacheco, O. Martín-Belloso, and P. Elez-Martínez. 2017. Effect of pulsed electric fields on the antioxidant potential of apples stored at different temperatures. Postharvest Biology and Technology 132:195–201. doi: 10.1016/j.postharvbio.2017.03.015.
  • Szadzińska, J., J. Łechtańska, R. Pashminehazar, A. Kharaghani, and E. Tsotsas. 2019. Microwave-and ultrasound-assisted convective drying of raspberries: Drying kinetics and microstructural changes. Drying Technology 37 (1):1–12. doi: 10.1080/07373937.2018.1433199.
  • Tao, Y., D.-W. Sun, E. Hogan, and A. L. Kelly. 2014. High-pressure processing of foods: An overview. In Emerging technologies for food processing, 3–24. Elseiver, Academic press.
  • Thamkaew, G., and F. Gómez Galindo. 2020. Influence of pulsed and moderate electric field protocols on the reversible permeabilization and drying of Thai basil leaves. Innovative Food Science & Emerging Technologies 64:102430. doi: 10.1016/j.ifset.2020.102430.
  • Toor, R. K., and G. P. Savage. 2006. Effect of semi-drying on the antioxidant components of tomatoes. Food Chemistry 94 (1):90–7. doi: 10.1016/j.foodchem.2004.10.054.
  • Vega-Gálvez, A., J. Poblete, R. Rojas-Carmona, E. Uribe, A. Pastén, and M. G. Goñi. 2021. Vacuum drying of Chilean papaya (Vasconcellea pubescens) fruit pulp: Effect of drying temperature on kinetics and quality parameters. Journal of Food Science and Technology 58 (9):3482–92. doi: 10.1007/s13197-021-05005-8.
  • Vega-Gálvez, A., E. Uribe, M. Perez, G. Tabilo-Munizaga, J. Vergara, P. Garcia-Segovia, E. Lara, and K. Di Scala. 2011. Effect of high hydrostatic pressure pretreatment on drying kinetics, antioxidant activity, firmness and microstructure of aloe vera (Aloe barbadensis Miller) gel. LWT - Food Science and Technology 44 (2):384–91. doi: 10.1016/j.lwt.2010.08.004.
  • Vidinamo, F., S. Fawzia, and M. A. Karim. 2022. Effect of drying methods and storage with agro-ecological conditions on phytochemicals and antioxidant activity of fruits: A review. Critical Reviews in Food Science and Nutrition 62 (2):353–61. doi: 10.1080/10408398.2020.1816891.
  • Wang, J., H. W. Xiao, J. Hua Ye, J. Wang, and V. Raghavan. 2019. Ultrasound pretreatment to enhance drying kinetics of kiwifruit (Actinidia deliciosa) slices: Pros and cons. Food and Bioprocess Technology 12 (5):865–76. doi: 10.1007/s11947-019-02256-4.
  • Wang, L., B. Xu, B. Wei, and R. Zeng. 2018. Low frequency ultrasound pretreatment of carrot slices: Effect on the moisture migration and quality attributes by intermediate-wave infrared radiation drying. Ultrasonics Sonochemistry 40:619–28. doi: 10.1016/j.ultsonch.2017.08.005.
  • Wang, X., Y. Feng, C. Zhou, Y. Sun, B. Wu, A. E. A. Yagoub, and E. A. A. Aboagarib. 2019. Effect of vacuum and ethanol pretreatment on infrared-hot air drying of scallion (Allium fistulosum). Food Chemistry 295:432–40. doi: 10.1016/j.foodchem.2019.05.145.
  • Ward, K. R., and P. Matejtschuk. 2021. The principles of freeze-drying and application of analytical technologies. In Cryopreservation and freeze-drying protocols, 99–127. Springer.
  • Witrowa-Rajchert, D., A. Wiktor, M. Sledz, and M. Nowacka. 2014. Selected emerging technologies to enhance the drying process: A review. Drying Technology 32 (11):1386–96. doi: 10.1080/07373937.2014.903412.
  • Wu, X-f., M. Zhang, and B. Bhandari. 2019. A novel infrared freeze drying (IRFD) technology to lower the energy consumption and keep the quality of Cordyceps militaris. Innovative Food Science & Emerging Technologies 54 (March):34–42. doi: 10.1016/j.ifset.2019.03.003.
  • Wu, Y., Y. Guo, and D. Zhang. 2011. Study of the effect of high-pulsed electric field treatment on vacuum freeze-drying of apples. Drying Technology 29 (14):1714–20. doi: 10.1080/07373937.2011.601825.
  • Xu, B., E. Sylvain Tiliwa, W. Yan, S. M. R. Azam, B. Wei, C. Zhou, H. Ma, and B. Bhandari. 2021. Recent development in high quality drying of fruits and vegetables assisted by ultrasound: A review. Food Research International: 110744.
  • Yu, Y., T. Z. Jin, X. Fan, and Y. Xu. 2017. Osmotic dehydration of blueberries pretreated with pulsed electric fields: Effects on dehydration kinetics, and microbiological and nutritional qualities. Drying Technology 35 (13):1543–51. doi: 10.1080/07373937.2016.1260583.
  • Yucel, U., H. Alpas, and A. Bayindirli. 2010. Evaluation of high pressure pretreatment for enhancing the drying rates of carrot, apple, and green bean. Journal of Food Engineering 98 (2):266–72. doi: 10.1016/j.jfoodeng.2010.01.006.
  • Zhai, Y., I. M. Pérez-Díaz, and J. T. Diaz. 2018. Viability of commercial cucumber fermentation without nitrogen or air purging. Trends in Food Science & Technology 81:185–92. doi: 10.1016/j.tifs.2018.05.017.
  • Zhang, Z., L. Niu, D. Li, C. Liu, R. Ma, J. Song, and J. Zhao. 2017. Low intensity ultrasound as a pretreatment to drying of daylilies: Impact on enzyme inactivation, color changes and nutrition quality parameters. Ultrasonics Sonochemistry 36:50–8. doi: 10.1016/j.ultsonch.2016.11.007.
  • Zielinska, M., E. Ropelewska, H.-W. Xiao, A. S. Mujumdar, and C. L. Law. 2020. Review of recent applications and research progress in hybrid and combined microwave-assisted drying of food products: quality properties. Critical Reviews in Food Science and Nutrition 60 (13):2212–2264.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.