1,268
Views
5
CrossRef citations to date
0
Altmetric
Review Articles

Modification of flavonoids: methods and influences on biological activities

, , ORCID Icon, , , , & ORCID Icon show all
Pages 10637-10658 | Published online: 10 Jun 2022

References

  • Alseekh, S., L. P. de Souza, M. Benina, and A. R. Fernie. 2020. The style and substance of plant flavonoid decoration; towards defining both structure and function. Phytochemistry 174:112347.
  • Ambigaipalan, P., W. Y. Oh, and F. Shahidi. 2020. Epigallocatechin (EGC) esters as potential sources of antioxidants. Food Chemistry 309:125609.
  • Amic, D., and B. Lucic. 2010. Reliability of bond dissociation enthalpy calculated by the PM6 method and experimental TEAC values in antiradical QSAR of flavonoids. Bioorganic & Medicinal Chemistry 18:28–35.
  • Bae, E. A., M. J. Han, M. Lee, and D. H. Kim. 2000. In vitro inhibitory effect of some flavonoids on rotavirus infectivity. Biological and Pharmaceutical Bulletin 23 (9):1122–4. doi: 10.1248/bpb.23.1122.
  • Bartmańska, A., E. Huszcza, and T. Tronina. 2009. Transformation of isoxanthohumol by fungi. Journal of Molecular Catalysis B: Enzymatic 61 (34):221–4. doi: 10.1016/j.molcatb.2009.07.008.
  • Bernini, R., F. Crisante, and M. C. Ginnasi. 2011. A convenient and safe O-methylation of flavonoids with dimethyl carbonate (DMC). Molecules (Basel, Switzerland) 16 (2):1418–25.
  • Bernini, R., M. Pasqualetti, G. Provenzano, and S. Tempesta. 2015. Ecofriendly synthesis of halogenated flavonoids and evaluation of their antifungal activity. New Journal of Chemistry 39 (4):2980–7. doi: 10.1039/C5NJ00258C.
  • Bock, J. H., and D. O. Norris. 2016. Introduction to Forensic Plant Science. Forensic Plant Science 2016: 1–22.
  • Boozari, M., S. Soltani, and M. Iranshahi. 2019. Biologically active prenylated flavonoids from the genus Sophora and their structure-activity relationship-A review. Phytotherapy Research 33 (3):546–60.
  • Boumendjel, A., A.-M. Mariette, D. Bresson-Rival, and E. Perrier. 2003. Hesperitin esters: Highly stable flavanones with both free radical scavenging and anti-elastase activities. Pharmaceutical Biology 41 (7):546–9. doi: 10.1080/13880200308951351.
  • Braune, A., and M. Blaut. 2011. Deglycosylation of puerarin and other aromatic C-glucosides by a newly isolated human intestinal bacterium. Environmental Microbiology 13 (2):482–94.
  • Buchner, N., A. Krumbein, S. Rohn, and L. W. Kroh. 2006. Effect of thermal processing on the flavonols rutin and quercetin. Rapid Communications in Mass Spectrometry 20 (21):3229–35.
  • Büchter, C., D. Ackermann, S. Honnen, N. Arnold, S. Havermann, K. Koch, and W. Wätjen. 2015. Methylated derivatives of myricetin enhance life span in Caenorhabditis elegans dependent on the transcription factor DAF-16. Food & Function 6 (10):3383–92.
  • Burda, S., and W. Oleszek. 2001. Antioxidant and antiradical activities of flavonoids. Journal of Agricultural and Food Chemistry 49 (6):2774–9.
  • Cao, H., X. Chen, A. R. Jassbi, and J. Xiao. 2015. Microbial biotransformation of bioactive flavonoids. Biotechnology Advances 33 (1):214–23.
  • Cao, H., X. Jing, D. Wu, and Y. Shi. 2013. Methylation of genistein and kaempferol improves their affinities for proteins. International Journal of Food Sciences and Nutrition 64 (4):437–43.
  • Cao, L., L. van Langen, and R. A. Sheldon. 2003. Immobilised enzymes: Carrier-bound or carrier-free? Current Opinion in Biotechnology 14 (4):387–94. doi: 10.1016/s0958-1669(03)00096-x.
  • Chebil, L., C. Humeau, A. Falcimaigne, J. M. Engasser, and M. Ghoul. 2006. Enzymatic acylation of flavonoids. Process Biochemistry 41 (11):2237–51. doi: 10.1016/j.procbio.2006.05.027.
  • Chen, L., H. Teng, Z. Xie, H. Cao, W. S. Cheang, K. Skalicka-Woniak, M. I. Georgiev, and J. Xiao. 2018. Modifications of dietary flavonoids towards improved bioactivity: An update on structure-activity relationship. Critical Reviews in Food Science and Nutrition 58 (4):513–27.
  • Chen, M., and S. Yu. 2019. Lipophilic grape seed proanthocyanidin exerts anti-proliferative and pro-apoptotic effects on PC3 Human Prostate cancer cells and suppresses PC3 xenograft tumor growth in vivo. Journal of Agricultural and Food Chemistry 67 (1):229–35. doi: 10.1021/acs.jafc.8b05936.
  • Chen, Y., J. Liu, S. Geng, Y. Liu, H. Ma, J. Zheng, B. Liu, and G. Liang. 2019. Lipase-catalyzed synthesis mechanism of tri-acetylated phloridzin and its antiproliferative activity against HepG2 cancer cells. Food Chemistry 277:186–94. doi: 10.1016/j.foodchem.2018.10.111.
  • Chen, Y. H., Z. S. Yang, C. C. Wen, Y. S. Chang, B. C. Wang, C. A. Hsiao, and T. L. Shih. 2012. Evaluation of the structure-activity relationship of flavonoids as antioxidants and toxicants of zebrafish larvae. Food Chemistry 134 (2):717–24.
  • Choi, J. S., H. Y. Chung, S. S. Kang, M. J. Jung, J. W. Kim, J. K. No, and H. A. Jung. 2002. The structure-activity relationship of flavonoids as scavengers of peroxynitrite. Phytotherapy Research 16 (3):232–5.
  • Choi, J. S., M. N. Islam, M. Y. Ali, Y. M. Kim, H. J. Park, H. S. Sohn, and H. A. Jung. 2014. The effects of C-glycosylation of luteolin on its antioxidant, anti-Alzheimer’s disease, anti-diabetic, and anti-inflammatory activities. Archives of Pharmacal Research 37 (10):1354–63.
  • Choi, S. J., B. H. Tai, C. Nguyen Manh, Y. H. Kim, and H. D. Jang. 2012. Antioxidative and anti-inflammatory effect of quercetin and its glycosides isolated from mampat (Cratoxylum formosum). Food Science and Biotechnology 21 (2):587–95. doi: 10.1007/s10068-012-0075-4.
  • Chorfa, N., S. Savard, and K. Belkacemi. 2016. An efficient method for high-purity anthocyanin isomers isolation from wild blueberries and their radical scavenging activity. Food Chemistry 197:1226–34. doi: 10.1016/j.foodchem.2015.11.076.
  • Chu, L. L., D. Dhakal, H. J. Shin, H. J. Jung, T. Yamaguchi, and J. K. Sohng. 2018. Metabolic engineering of Escherichia coli for enhanced production of naringenin 7-sulfate and its biological activities. Frontiers in Microbiology 9:01678. doi: 10.3389/fmicb.2018.01671.
  • Copmans, D., A. M. Orellana-Paucar, G. Steurs, Y. Zhang, A. Ny, K. Foubert, V. Exarchou, A. Siekierska, Y. Kim, W. De Borggraeve, et al. 2018. Methylated flavonoids as anti-seizure agents: Naringenin 4’,7-dimethyl ether attenuates epileptic seizures in zebrafish and mouse models. Neurochemistry International 112:124–33. doi: 10.1016/j.neuint.2017.11.011.
  • Correia-da-Silva, M., E. Sousa, and M. M. M. Pinto. 2014. Emerging sulfated flavonoids and other polyphenols as drugs: Nature as an inspiration. Medicinal Research Reviews 34 (2):223–79.
  • Crauste, C., M. Rosell, T. Durand, and J. Vercauteren. 2016. Omega-3 polyunsaturated lipophenols, how and why? Biochimie 120:62–74.
  • Dai, Y., S. Zhang, D. C. Liu, H. M. Li, T. Ma, Q. Huo, and C. Z. Wu. 2018. Enzymatic biosynthesis of novel bavachin glucosides via Bacillus UDP-glycosyltransferase. Phytochemistry Letters 23:9–14. doi: 10.1016/j.phytol.2017.11.005.
  • Davis, J. P., M. Koyanagi, R. R. Maronpot, L. Recio, and S-m. Hayashi. 2020. Identification of compound causing yellow bone discoloration following alpha-glycosyl isoquercitrin exposure in Sprague-Dawley rats. Archives of Toxicology 94 (7):2413–21.
  • de Araujo, M. E. M. B., Y. E. M. Franco, M. C. F. Messias, G. B. Longato, J. A. Pamphile, and P. d O. Carvalho. 2017. Biocatalytic synthesis of flavonoid esters by lipases and their biological benefits. Planta Medica 83 (1–02):7–22.
  • Deng, D., J. Zhang, J. M. Cooney, M. A. Skinner, A. Adaim, D. J. Jensen, and D. E. Stevenson. 2006. Methylated polyphenols are poor "chemical" antioxidants but can still effectively protect cells from hydrogen peroxide-induced cytotoxicity. FEBS Letters 580 (22):5247–50.
  • Di Majo, D., M. Giammanco, M. La Guardia, E. Tripoli, S. Giammanco, and E. Finotti. 2005. Flavanones in citrus fruit: Structure-antioxidant activity relationships. Food Research International 38 (10):1161–6. doi: 10.1016/j.foodres.2005.05.001.
  • Dias, T. A., C. L. Duarte, C. F. Lima, M. Fernanda Proenca, and C. Pereira-Wilson. 2013. Superior anticancer activity of halogenated chalcones and flavonols over the natural flavonol quercetin. European Journal of Medicinal Chemistry 65:500–10.
  • Du, L., Z. Jiang, L. Xu, N. Zhou, J. Shen, Z. Dong, L. Shen, H. Wang, and X. Luo. 2018. Microfluidic reactor for lipase-catalyzed regioselective synthesis of neohesperidin ester derivatives and their antimicrobial activity research. Carbohydrate Research 455:32–8.
  • Duan, Y., N. Sun, M. Xue, X. Wang, and H. Yang. 2017. Synthesis of regioselectively acylated quercetin analogues with improved antiplatelet activity. Molecular Medicine Reports 16 (6):9735–40.
  • Duenas, M., S. Gonzalez-Manzano, A. Gonzalez-Paramas, and C. Santos-Buelga. 2010. Antioxidant evaluation of O-methylated metabolites of catechin, epicatechin and quercetin. Journal of Pharmaceutical and Biomedical Analysis 51 (2):443–9.
  • Duenas, M., F. Surco-Laos, S. Gonzalez-Manzano, A. M. Gonzalez-Paramas, E. Gomez-Orte, J. Cabello, and C. Santos-Buelga. 2013. Deglycosylation is a key step in biotransformation and lifespan effects of quercetin-3-O-glucoside in Caenorhabditis elegans. Pharmacological Research 76:41–8.
  • During, A., and Y. Larondelle. 2013. The O-methylation of chrysin markedly improves its intestinal anti-inflammatory properties: Structure-activity relationships of flavones. Biochemical Pharmacology 86 (12):1739–46. doi: 10.1016/j.bcp.2013.10.003.
  • El Daibani, A. A., Y. Xi, L. Luo, X. Mei, C. Zhou, S. Yasuda, and M.-C. Liu. 2020. Sulfation of hesperetin, naringenin and apigenin by the human cytosolic sulfotransferases: A comprehensive analysis. Natural Product Research 34 (6):797–803.
  • Enaud, E., C. Humeau, B. Piffaut, and M. Girardin. 2004. Enzymatic synthesis of new aromatic esters of phloridzin. Journal of Molecular Catalysis B: Enzymatic 27 (1):1–6. doi: 10.1016/j.molcatb.2003.08.002.
  • Engen, A., J. Maeda, D. E. Wozniak, C. A. Brents, J. J. Bell, M. Uesaka, Y. Aizawa, and T. A. Kato. 2015. Induction of cytotoxic and genotoxic responses by natural and novel quercetin glycosides. Mutation Research-Genetic Toxicology and Environmental Mutagenesis 784:15–22.
  • Feng, Y., M. Yao, Y. Wang, M. Ding, J. Zha, W. Xiao, and Y. Yuan. 2020. Advances in engineering UDP-sugar supply for recombinant biosynthesis of glycosides in microbes. Biotechnology Advances 41:107538.
  • Fernandes, I., F. Marques, V. de Freitas, and N. Mateus. 2013. Antioxidant and antiproliferative properties of methylated metabolites of anthocyanins. Food Chemistry 141 (3):2923–33.
  • Guimaraes, M., N. Mateus, V. de Freitas, and L. Cruz. 2018. Improvement of the color stability of cyanidin-3-glucoside by fatty acid enzymatic acylation. Journal of Agricultural and Food Chemistry 66 (38):10003–10.
  • Hasan, F., A. A. Shah, and A. Hameed. 2006. Industrial applications of microbial lipases. Enzyme and Microbial Technology 39 (2):235–51. doi: 10.1016/j.enzmictec.2005.10.016.
  • Haskins, A. H., C. Su, A. Engen, V. A. Salinas, J. Maeda, M. Uesaka, Y. Aizawa, and T. A. Kato. 2016. Data for induction of cytotoxic response by natural and novel quercetin glycosides. Data in Brief 6:262–6.
  • Hirade, Y., N. Kotoku, K. Terasaka, Y. Saijo-Hamano, A. Fukumoto, and H. Mizukami. 2015. Identification and functional analysis of 2-hydroxyflavanone C-glucosyltransferase in soybean (Glycirte max). FEBS Letters 589 (15):1778–86.
  • Hoang, T. K. D., T. K. C. Huynh, and N. Thanh-Danh. 2015. Synthesis, characterization, anti-inflammatory and anti-proliferative activity against MCF-7 cells of O-alkyl and O-acyl flavonoid derivatives. Bioorganic Chemistry 63:45–52. doi: 10.1016/j.bioorg.2015.09.005.
  • Hobbs, C. A., M. Koyanagi, C. Swartz, J. Davis, S. Kasamoto, R. Maronpot, L. Recio, and S.-M. Hayashi. 2018. Comprehensive evaluation of the flavonol anti-oxidants, alpha-glycosyl isoquercitrin and isoquercitrin, for genotoxic potential. Food and Chemical Toxicology 113:218–27.
  • Hong, S., and S. Liu. 2016. Targeted acylation for all the hydroxyls of (+)-catechin and evaluation of their individual contribution to radical scavenging activity. Food Chemistry 197 (Pt A):415–21. doi: 10.1016/j.foodchem.2015.10.134.
  • Hostetler, G., K. Riedl, H. Cardenas, M. Diosa-Toro, D. Arango, S. Schwartz, and A. I. Doseff. 2012. Flavone deglycosylation increases their anti-inflammatory activity and absorption. Molecular Nutrition & Food Research 56 (4):558–69. doi: 10.1002/mnfr.201100596.
  • Huber, G. M., H. P. Vasantha Rupasinghe, and F. Shahidi. 2009. Inhibition of oxidation of omega-3 polyunsaturated fatty acids and fish oil by quercetin glycosides. Food Chemistry 117 (2):290–5. doi: 10.1016/j.foodchem.2009.04.007.
  • Ishiyama, K., M. Nishimura, M. Deguchi, E. Terasaka, T. Miyase, and M. Sano. 2013. Enzymatic preparation of methylated theaflavins and their antioxidant activities. Nippon Shokuhin Kagaku Kogaku Kaishi 60 (7):339–46. doi: 10.3136/nskkk.60.339.
  • Jawed, K., S. S. Yazdani, and M. A. Koffas. 2019. Advances in the development and application of microbial consortia for metabolic engineering. Metabolic Engineering Communications 9:e00095.
  • Jeong, Y. J., S. G. Woo, C. H. An, H. J. Jeong, Y. S. Hong, Y. M. Kim, Y. B. Ryu, M. C. Rho, W. S. Lee, and C. Y. Kim. 2015. Metabolic engineering for resveratrol derivative biosynthesis in Escherichia coli. Molecules and Cells 38 (4):318–26.
  • Ji, Y., B. Li, M. Qiao, J. Li, H. Xu, L. Zhang, and X. Zhang. 2020. Advances on the in vivo and in vitro glycosylations of flavonoids. Applied Microbiology and Biotechnology 104 (15):6587–600.
  • Jing, P., B. Qian, S. Zhao, X. Qi, L. Ye, M. Monica Giusti, and X. Wang. 2015. Effect of glycosylation patterns of Chinese eggplant anthocyanins and other derivatives on antioxidant effectiveness in human colon cell lines. Food Chemistry 172:183–9.
  • Juca, M. M., F. M. Sales Cysne Filho, J. C. de Almeida, D. D. S. Mesquita, J. R. de Moraes Barriga, D. K. Cilene Ferreira, T. M. Barbosa, L. C. Vasconcelos, L. K. Almeida Moreira Leal, J. E. Ribeiro Honorio Junior, et al. 2020. Flavonoids: Biological activities and therapeutic potential. Natural Product Research 34 (5):692–705. doi: 10.1080/14786419.2018.1493588.
  • Justino, G. C., M. Rodrigues, M. H. Florencio, and L. Mira. 2009. Structure and antioxidant activity of brominated flavonols and flavanones. Journal of Mass Spectrometry 44 (10):1459–68.
  • Kashiwada, Y., A. Aoshima, Y. Ikeshiro, Y. P. Chen, H. Furukawa, M. Itoigawa, T. Fujioka, K. Mihashi, L. M. Cosentino, S. L. Morris-Natschke, et al. 2005. Anti-HIV benzylisoquinoline alkaloids and flavonoids from the leaves of Nelumbo nucifera, and structure-activity correlations with related alkaloids. Bioorganic & Medicinal Chemistry 13 (2):443–8. doi: 10.1016/j.bmc.2004.10.020.
  • Kawaii, S., Y. Ishikawa, and Y. Yoshizawa. 2018. Relationship between the structure of methoxylated and hydroxylated flavones and their antiproliferative activity in HL60 cells. Anticancer Research 38 (10):5679–84.
  • Kim, B. G., B. R. Jung, Y. Lee, H. G. Hur, Y. Lim, and J. H. Ahn. 2006a. Regiospecific flavonoid 7-O-methylation with Streptomyces avermitilis O-methyltransferase expressed in Escherichia coli. Journal of Agricultural and Food Chemistry 54 (3):823–8.
  • Kim, B. G., H. Kim, H. G. Hur, Y. Lim, and J. H. Ahn. 2006b. Regioselectivity of 7-O-methyltransferase of poplar to flavones. Journal of Biotechnology 126 (2):241–7.
  • Kim, B. G., Y. Lee, H. G. Hur, Y. Lim, and J. H. Ahn. 2006c. Flavonoid 3’-O-methyltransferase from rice: CDNA cloning, characterization and functional expression. Phytochemistry 67 (4):387–94.
  • Kim, B. G., K. H. Shin, Y. Lee, H. G. Hur, Y. Lim, and J. H. Ahn. 2005a. Multiple regiospecific methylations of a flavonoid by plant O-methyltransferases expressed in E-coli. Biotechnology Letters 27 (23–24):1861–4.
  • Kim, D. H., B.-G. Kim, Y. Lee, J. Y. Ryu, Y. Lim, H.-G. Hur, and J.-H. Ahn. 2005b. Regiospecific methylation of naringenin to ponciretin by soybean O-methyltransferase expressed in Escherichia coli. Journal of Biotechnology 119 (2):155–62. doi: 10.1016/j.jbiotec.2005.04.004. PMID: 15961179
  • Kim, D. Y., S. J. Yeom, C. S. Park, and Y. S. Kim. 2016. Effect of high hydrostatic pressure treatment on isoquercetin production from rutin by commercial alpha-l-rhamnosidase. Biotechnology Letters 38 (10):1775–80.
  • Kim, M., J. Lee, and J. Han. 2015. Deglycosylation of isoflavone C-glycosides by newly isolated human intestinal bacteria. Journal of the Science of Food and Agriculture 95 (9):1925–31.
  • Kim, M. J., B. G. Kim, and J. H. Ahn. 2013. Biosynthesis of bioactive O-methylated flavonoids in Escherichia coli. Applied Microbiology and Biotechnology 97 (16):7195–204.
  • Kirita, M., D. Honma, Y. Tanaka, S. Usui, T. Shoji, M. Sami, T. Yokota, M. Tagashira, A. Muranaka, M. Uchiyama, et al. 2010. Cloning of a novel O-methyltransferase from Camellia sinensis and synthesis of O-methylated EGCG and evaluation of their bioactivity. Journal of Agricultural and Food Chemistry 58 (12):7196–201.
  • Koirala, N., R. P. Pandey, N. H. Thuan, G. P. Ghimire, H. J. Jung, T.-J. Oh, and J. K. Sohng. 2019. Metabolic engineering of Escherichia coli for the production of isoflavonoid-4’-O-methoxides and their biological activities. Biotechnology and Applied Biochemistry 66 (4):484–93.
  • Krych, J., and L. Gebicka. 2013. Catalase is inhibited by flavonoids. International Journal of Biological Macromolecules 58:148–53.
  • Ku, S. K., T. H. Kim, and J. S. Bae. 2013. Anticoagulant activities of persicarin and isorhamnetin. Vascular Pharmacology 58 (4):272–9.
  • Kwon, Y. S., S. S. Kim, S. J. Sohn, P. J. Kong, I. Y. Cheong, C. M. Kim, and W. J. Chun. 2004. Modulation of suppressive activity of lipopolysaccharide-induced nitric oxide production by glycosidation of flavonoids. Archives of Pharmacal Research 27 (7):751–6.
  • Laguerre, M., C. Bayrasy, J. Lecomte, B. Chabi, E. A. Decker, C. Wrutniak-Cabello, G. Cabello, and P. Villeneuve. 2013. How to boost antioxidants by lipophilization? Biochimie 95 (1):20–6.
  • Landis-Piwowar, K. R., V. Milacic, and Q. P. Dou. 2008. Relationship between the methylation status of dietary flavonoids and their growth-inhibitory and apoptosis-inducing activities in human cancer cells. Journal of Cellular Biochemistry 105 (2):514–23. doi: 10.1002/jcb.21853.
  • Lee, H., B. G. Kim, and J. H. Ahn. 2014. Production of bioactive hydroxyflavones by using monooxygenase from Saccharothrix espanaensis. Journal of Biotechnology 176:11–7.
  • Lee, Y. S., J. B. Woo, S. I. Ryu, S. K. Moon, N. S. Han, and S. B. Lee. 2017. Glucosylation of flavonol and flavanones by Bacillus cyclodextrin glucosyltransferase to enhance their solubility and stability. Food Chemistry 229:75–83.
  • Lesjak, M., I. Beara, N. Simin, D. Pintac, T. Majkic, K. Bekvalac, D. Orcic, and N. Mimica Dukic. 2018. Antioxidant and anti-inflammatory activities of quercetin and its derivatives. Journal of Functional Foods 40:68–75. doi: 10.1016/j.jff.2017.10.047.
  • Lespade, L., and S. Bercion. 2012. Theoretical investigation of the effect of sugar substitution on the antioxidant properties of flavonoids. Free Radical Research 46 (3):346–58. doi: 10.3109/10715762.2012.658514.
  • Li, S., M. H. Pan, C. S. Lai, C. Y. Lo, S. Dushenkov, and C. T. Ho. 2007. Isolation and syntheses of polymethoxyflavones and hydroxylated polymethoxyflavones as inhibitors of HL-60 cell lines. Bioorganic & Medicinal Chemistry 15 (10):3381–9. doi: 10.1016/j.bmc.2007.03.021.
  • Li, X., T. Yuan, H. Xu, X. Xin, G. Zhao, H. Wu, and X. Xiao. 2019. Whole-cell catalytic synthesis of puerarin monoesters and analysis of their antioxidant activities. Journal of Agricultural and Food Chemistry 67 (1):299–307.
  • Liao, H., X. Bao, J. Zhu, J. Qu, Y. Sun, X. Ma, E. Wang, X. Guo, Q. Kang, and Y. Zhen. 2015. O-Alkylated derivatives of quercetin induce apoptosis of MCF-7 cells via a caspase-independent mitochondrial pathway. Chemico-Biological Interactions 242:91–8. doi: 10.1016/j.cbi.2015.09.022.
  • Liu, B., and W. Yan. 2019. Lipophilization of EGCG and effects on antioxidant activities. Food Chemistry 272:663–9.
  • Liu, L., C. Jin, and Y. Zhang. 2014. Lipophilic phenolic compounds (Lipo-PCs): Emerging antioxidants applied in lipid systems. RSC Advances 4 (6):2879–91. doi: 10.1039/C3RA44792H.
  • Liu, L., X. Xu, D. Cheng, X. Yao, and S. Pan. 2012. Structure-activity relationship of Citrus polymethoxylated flavones and their inhibitory effects on Aspergillus niger. Journal of Agricultural and Food Chemistry 60 (17):4336–41.
  • Liu, X., Y. Wang, Y. Chen, S. Xu, Q. Gong, C. Zhao, J. Cao, and C. Sun. 2020. Characterization of a flavonoid 3’/5’/7-O-methyltransferase from Citrus reticulata and evaluation of the in vitro cytotoxicity of its methylated products. Molecules 25 (4):858. doi: 10.3390/molecules25040858.
  • Liu, Y., R. Kakani, and M. G. Nair. 2012. Compounds in functional food fenugreek spice exhibit anti-inflammatory and antioxidant activities. Food Chemistry 131 (4):1187–92. doi: 10.1016/j.foodchem.2011.09.102.
  • Lue, B. M., N. S. Nielsen, C. Jacobsen, L. Hellgren, Z. Guo, and X. Xu. 2010. Antioxidant properties of modified rutin esters by DPPH, reducing power, iron chelation and human low density lipoprotein assays. Food Chemistry 123 (2):221–30. doi: 10.1016/j.foodchem.2010.04.009.
  • Luo, S., X. Hu, L. Pan, Z. Zheng, Y. Zhao, L. Cao, M. Pang, Z. Hou, and S. Jiang. 2019. Preparation of camellia oil-based W/O emulsions stabilized by tea polyphenol palmitate: Structuring camellia oil as a potential solid fat replacer. Food Chemistry 276:209–17. doi: 10.1016/j.foodchem.2018.09.161.
  • Lyu, Y., S. Liu, S. Gao, and J. Zhou. 2020. Identification and characterization of three flavonoid 3-O-glycosyltransferases from Epimedium koreanum Nakai. Biochemical Engineering Journal 163:107759. doi: 10.1016/j.bej.2020.107759.
  • Mainini, F., A. Contini, D. Nava, P. A. Corsetto, A. M. Rizzo, E. Agradi, and E. Pini. 2013. Synthesis, molecular characterization and preliminary antioxidant activity evaluation of quercetin fatty esters. Journal of the American Oil Chemists’ Society 90 (11):1751–9. doi: 10.1007/s11746-013-2314-0.
  • Mamadalieva, N. Z., F. Herrmann, M. Z. El-Readi, A. Tahrani, R. Hamoud, D. R. Egamberdieva, S. S. Azimova, and M. Wink. 2011. Flavonoids in Scutellaria immaculata and S. ramosissima (Lamiaceae) and their biological activity. The Journal of Pharmacy and Pharmacology 63 (10):1346–57.
  • Marzec, E., M. Świtalska, M. Winiewska-Szajewska, J. Wójcik, J. Wietrzyk, A. M. Maciejewska, J. Poznański, and A. Mieczkowski. 2020. The halogenation of natural flavonoids, baicalein and chrysin, enhances their affinity to human protein kinase CK2. IUBMB Life 72 (6):1250–61.
  • Matsuda, H., T. Morikawa, S. Ando, I. Toguchida, and M. Yoshikawa. 2003. Selective methylation of kaempferol via benzylation and deacetylation of kaempferol acetates. Bioorganic & Medicinal Chemistry 11:288–93.
  • Matsumura, K., K. Kaihatsu, S. Mori, H. H. Cho, N. Kato, and S. H. Hyon. 2008. Enhanced antitumor activities of (-)-epigallocatechin-3-O-gallate fatty acid monoester derivatives in vitro and in vivo. Biochemical and Biophysical Research Communications 377 (4):1118–22.
  • Mellou, F., H. Loutrari, H. Stamatis, C. Roussos, and F. N. Kolisis. 2006. Enzymatic esterification of flavonoids with unsaturated fatty acids: Effect of the novel esters on vascular endothelial growth factor release from K562 cells. Process Biochemistry 41 (9):2029–34. doi: 10.1016/j.procbio.2006.05.002.
  • Melo Branco de Araujo, M. E., Y. E. Moreira Franco, T. G. Alberto, M. A. Sobreiro, M. A. Conrado, D. G. Priolli, A. C. H. Frankland Sawaya, A. L. T. G. Ruiz, J. E. de Carvalho, and P. D. O. Carvalho. 2013. Enzymatic de-glycosylation of rutin improves its antioxidant and antiproliferative activities. Food Chemistry 141 (1):266–73.
  • Milivojević, A., M. Ćorović, M. Carević, K. Banjanac, L. Vujisić, D. Veličković, and D. Bezbradica. 2017. Highly efficient enzymatic acetylation of flavonoids: Development of solvent-free process and kinetic evaluation. Biochemical Engineering Journal 128:106–15. doi: 10.1016/j.bej.2017.09.018.
  • Miyake, Y., K. Minato, S. Fukumoto, K. Yamamoto, T. Oya-Ito, S. Kawakishi, and T. Osawa. 2003. New potent antioxidative hydroxyflavanones produced with Aspergillus saitoi from flavanone glycoside in citrus fruit. Bioscience, Biotechnology, and Biochemistry 67 (7):1443–50.
  • Morikawa, T., K. Ninomiya, S. Miyake, Y. Miki, M. Okamoto, M. Yoshikawa, and O. Muraoka. 2013. Flavonol glycosides with lipid accumulation inhibitory activity and simultaneous quantitative analysis of 15 polyphenols and caffeine in the flower buds of Camellia sinensis from different regions by LCMS. Food Chemistry 140 (12):353–60. doi: 10.1016/j.foodchem.2013.02.079.
  • Nair, S. V., G. Ziaullah, and H. P. V. Rupasinghe. 2014. Fatty acid esters of phloridzin induce apoptosis of human liver cancer cells through altered gene expression. PLoS One 9:e107149.
  • Nakamura, K., S. Zhu, K. Komatsu, M. Hattori, and M. Iwashima. 2020. Deglycosylation of the isoflavone C-glucoside puerarin by a combination of two recombinant bacterial enzymes and 3 oxo-glucose. Applied and Environmental Microbiology 86 (14):e00607–e00620. doi: 10.1128/AEM.00607-20.
  • Nyska, A., S-m. Hayashi, M. Koyanagi, J. P. Davis, M. P. Jokinen, Y. Ramot, and R. R. Maronpot. 2016. Ninety-day toxicity and single-dose toxicokinetics study of alpha-glycosyl isoquercitrin in Sprague-Dawley rats. Food and Chemical Toxicology 97:354–66.
  • Oh, W. Y., P. Ambigaipalan, and F. Shahidi. 2019. Preparation of quercetin esters and their antioxidant activity. Journal of Agricultural and Food Chemistry 67 (38):10653–9.
  • Paasela, T., K. J. Lim, M. P. Ainen, and T. H. Teeri. 2017. The O-methyltransferase PMT2 mediates methylation of pinosylvin in Scots pine. The New Phytologist 214 (4):1537–50.
  • Panche, A. N., A. D. Diwan, and S. R. Chandra. 2016. Flavonoids: An overview. Journal of Nutritional Science 5:e47.
  • Park, S. Y., J. H. Kim, and D. H. Kim. 2005. Purification and characterization of quercitrin-hydrolyzing alpha-L-rhamnosidase from Fusobacterium K-60, a human intestinal bacterium. Journal of Microbiology and Biotechnology 15:519–24.
  • Paul, P., J. Suwan, J. Liu, J. S. Dordick, and R. J. Linhardt. 2012. Recent advances in sulfotransferase enzyme activity assays. Analytical and Bioanalytical Chemistry 403 (6):1491–500.
  • Pick, A., H. Muller, R. Mayer, B. Haenisch, I. K. Pajeva, M. Weigt, H. Bonisch, C. E. Muller, and M. Wiese. 2011. Structure-activity relationships of flavonoids as inhibitors of breast cancer resistance protein (BCRP). Bioorganic & Medicinal Chemistry 19 (6):2090–102. doi: 10.1016/j.bmc.2010.12.043.
  • Plochmann, K., G. Korte, E. Koutsilieri, E. Richling, P. Riederer, A. Rethwilm, P. Schreier, and C. Scheller. 2007. Structure-activity relationships of flavonoid-induced cytotoxicity on human leukemia cells. Archives of Biochemistry and Biophysics 460 (1):1–9.
  • Poulton, J. E., K. Hahlbrock, and H. Grisebach. 1977. O-Methylation of flavonoid substrates by a partially purified enzyme from soybean cell suspension cultures. Archives of Biochemistry and Biophysics 180 (2):543–9.
  • Praveena, R., K. Sadasivam, R. Kumaresan, V. Deepha, and R. Sivakumar. 2013. Experimental and DFT studies on the antioxidant activity of a C-glycoside from Rhynchosia capitata. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 103:442–52.
  • Rana, A. C., and B. Gulliya. 2019. Chemistry and pharmacology of flavonoids-A review. Indian Journal of Pharmaceutical Education and Research 53 (1):8–20. doi: 10.5530/ijper.53.1.3.
  • Ribeiro, D., M. Freitas, S. M. Tome, A. M. S. Silva, G. Porto, E. J. Cabrita, M. M. B. Marques, and E. Fernandes. 2014. Inhibition of LOX by flavonoids: A structure-activity relationship study. European Journal of Medicinal Chemistry 72:137–45.
  • Ribeiro, M. H. 2011. Naringinases: Occurrence, characteristics, and applications. Applied Microbiology and Biotechnology 90 (6):1883–95. doi: 10.1007/s00253-011-3176-8.
  • Rogerio, A. P., A. Kanashiro, C. Fontanari, E. V. G. da Silva, Y. M. Lucisano-Valim, E. G. Soares, and L. H. Faccioli. 2007. Anti-inflammatory activity of quercetin and isoquercitrin in experimental murine allergic asthma. Inflammation Research 56 (10):402–8.
  • Roriz, C. L., L. Barros, A. M. Carvalho, C. Santos-Buelga, and I. C. F. R. Ferreira. 2014. Pterospartum tridentatum, Gomphrena globosa and Cymbopogon citratus: A phytochemical study focused on antioxidant compounds. Food Research International 62:684–93. doi: 10.1016/j.foodres.2014.04.036.
  • Rüfer, C. E., A. Bub, J. Möseneder, P. Winterhalter, M. Stürtz, and S. E. Kulling. 2008. Pharmacokinetics of the soybean isoflavone daidzein in its aglycone and glucoside form: A randomized, double-blind, crossover study. The American Journal of Clinical Nutrition 87 (5):1314–23.
  • Sak, K., H. Lust, M. Kase, and J. Jaal. 2018. Cytotoxic action of methylquercetins in human lung adenocarcinoma cells. Oncology Letters 15 (2):1973–8.
  • Salem, J. H., I. Chevalot, C. Harscoat-Schiavo, C. Paris, M. Fick, and C. Humeau. 2011. Biological activities of flavonoids from Nitraria retusa (Forssk.) Asch and their acylated derivatives. Food Chemistry 124 (2):486–94. doi: 10.1016/j.foodchem.2010.06.059.
  • Salem, J. H., C. Humeau, I. Chevalot, C. Harscoat-Schiavo, R. Vanderesse, F. Blanchard, and M. Fick. 2010. Effect of acyl donor chain length on isoquercitrin acylation and biological activities of corresponding esters. Process Biochemistry 45 (3):382–9. doi: 10.1016/j.procbio.2009.10.012.
  • Sarian, M. N., Q. U. Ahmed, S. Z. Mat So’ad, A. M. Alhassan, S. Murugesu, V. Perumal, S. N. A. Syed Mohamad, A. Khatib, and J. Latip. 2017. Antioxidant and antidiabetic effects of flavonoids: A structure-activity relationship based study. BioMed Research International 2017:1–14. doi: 10.1155/2017/8386065.
  • Shafek, R. E., N. H. Shafik, and H. N. Michael. 2012. Antibacterial and antioxidant activities of two new kaempferol glycosides isolated from Solenostemma argel stem extract. Asian Journal of Plant Sciences 11 (3):143–7. doi: 10.3923/ajps.2012.143.147.
  • Shahidi, F., and Y. Zhong. 2011. Revisiting the polar paradox theory: A critical overview. Journal of Agricultural and Food Chemistry 59 (8):3499–504.
  • Shen, S. C., W. R. Lee, H. Y. Lin, H. C. Huang, C. H. Ko, L. L. Yang, and Y. C. Chen. 2002. In vitro and in vivo inhibitory activities of rutin, wogonin, and quercetin on lipopolysaccharide-induced nitric oxide and prostaglandin E-2 production. European Journal of Pharmacology 446 (1–3):187–94.
  • Shi, Z., N. Li, Y. Tang, Q. Shi, H. Tang, W. Li, X. Zhang, H. Fu, and J. Duan. 2014. Biological evaluation and SAR analysis of O-methylated analogs of quercetin as inhibitors of cancer cell proliferation. Drug Development Research 75 (7):455–62.
  • Shi, Z. H., N. G. Li, Y. P. Tang, L. Wei, Y. Lian, J. P. Yang, T. Hao, and J. A. Duan. 2012. Metabolism-based synthesis, biologic evaluation and SARs analysis of O-methylated analogs of quercetin as thrombin inhibitors. European Journal of Medicinal Chemistry 54:210–22.
  • Slamova, K., J. Kapesova, and K. Valentova. 2018. Sweet flavonoids": Glycosidase-catalyzed modifications. International Journal of Molecular Sciences 19:2126.
  • Sordon, S., A. Madej, J. Popłoński, A. Bartmańska, T. Tronina, E. Brzezowska, P. Juszczyk, and E. Huszcza. 2016. Regioselective ortho-hydroxylations of flavonoids by yeast. Journal of Agricultural and Food Chemistry 64 (27):5525–30.
  • Sordon, S., J. Popłoński, T. Tronina, and E. Huszcza. 2019. Regioselective O-glycosylation of flavonoids by fungi Beauveria bassiana, Absidia coerulea and Absidia glauca. Bioorganic Chemistry 93:102750.
  • Stompor, M., M. Świtalska, R. Podgórski, Ł. Uram, D. Aebisher, and J. Wietrzyk. 2017. Synthesis and biological evaluation of 4’-O-acetyl-isoxanthohumol and its analogues as antioxidant and antiproliferative agents. Acta Biochimica Polonica 64 (3):577–83.
  • Sudan, S., and H. P. V. Rupasinghe. 2015. Antiproliferative activity of long chain acylated esters of quercetin-3-O-glucoside in hepatocellular carcinoma HepG2 cells. Experimental Biology and Medicine (Maywood, N.J.) 240 (11):1452–64.
  • Sun, J., S. Laval, and B. Yu. 2014. Glycosylation reactions in the synthesis of flavonoid glycosides. Synthesis-Stuttgart 46:1030–45.
  • Suroengrit, A., W. Yuttithamnon, P. Srivarangkul, S. Pankaew, K. Kingkaew, W. Chavasiri, and S. Boonyasuppayakorn. 2017. Halogenated chrysins inhibit dengue and Zika Virus infectivity. Scientific Reports 7 (1):13696.
  • Tanaka, Y., M. Kirita, S. Miyata, Y. Abe, M. Tagashira, T. Kanda, and M. Maeda-Yamamoto. 2013. O-Methylated theaflavins suppress the intracellularaccumulation of triglycerides from terminally differentiated human visceral adipocytes. Journal of Agricultural and Food Chemistry 61 (51):12634–9.
  • Teles, Y., M. Souza, and M. Souza. 2018. Sulphated flavonoids: Biosynthesis, structures, and biological activities. Molecules 23 (2):480. doi: 10.3390/molecules23020480.
  • Tewtrakul, S., S. Subhadhirasakul, C. Karalai, C. Ponglimanont, and S. Cheenpracha. 2009. Anti-inflammatory effects of compounds from Kaempferia parviflora and Boesenbergia pandurata. Food Chemistry 115 (2):534–8. doi: 10.1016/j.foodchem.2008.12.057.
  • Tronina, T., A. Bartmańska, M. Milczarek, J. Wietrzyk, J. Popłoński, E. Rój, and E. Huszcza. 2013. Antioxidant and antiproliferative activity of glycosides obtained by biotransformation of xanthohumol. Bioorganic & Medicinal Chemistry Letters 23 (7):1957–60. doi: 10.1016/j.bmcl.2013.02.031.
  • Trouillas, P., P. Marsal, D. Siri, R. Lazzaroni, and J. L. Duroux. 2006. A DFT study of the reactivity of OH groups in quercetin and taxifolin antioxidants: The specificity of the 3-OH site. Food Chemistry 97 (4):679–88. doi: 10.1016/j.foodchem.2005.05.042.
  • Tundo, P., and M. Selva. 2002. The chemistry of dimethyl carbonate. Accounts of Chemical Research 35 (9):706–16.
  • Ullrich, R., and M. Hofrichter. 2007. Enzymatic hydroxylation of aromatic compounds. Cellular and Molecular Life Sciences 64 (3):271–93.
  • Van-Son, N., W. Li, Y. Li, and Q. Wang. 2017. Synthesis of Citrus polymethoxyflavonoids and their antiproliferative activities on Hela cells. Medicinal Chemistry Research 26:1585–92.
  • van der Horst, M. A., A. F. Hartog, R. El Morabet, A. Marais, M. Kircz, and R. Wever. 2015. Enzymatic sulfation of phenolic hydroxy groups of various plant metabolites by an arylsulfotransferase. European Journal of Organic Chemistry 2015 (3):534–41. doi: 10.1002/ejoc.201402875.
  • Vasudevan, U. M., and E. Y. Lee. 2020. Flavonoids, terpenoids, and polyketide antibiotics: Role of glycosylation and biocatalytic tactics in engineering glycosylation. Biotechnology Advances 41:107550.
  • Vidana Gamage, G. C., Y. Y. Lim, and W. S. Choo. 2022. Sources and relative stabilities of acylated and nonacylated anthocyanins in beverage systems. Journal of Food Science and Technology 59 (3):831–45.
  • Viskupicova, J., M. Danihelova, M. Ondrejovic, T. Liptaj, and E. Sturdik. 2010. Lipophilic rutin derivatives for antioxidant protection of oil-based foods. Food Chemistry 123 (1):45–50. doi: 10.1016/j.foodchem.2010.03.125.
  • Viskupicova, J., M. Ondrejovic, and E. Sturdik. 2009. The potential and practical applications of acylated flavonoids. Die Pharmazie 64 (6):355–60.
  • Walle, T. 2007. Methylation of dietary flavones greatly improves their hepatic metabolic stability and intestinal absorption. Molecular Pharmaceutics 4 (6):826–32.
  • Wan, S. B., P. Q. Ping, and T. H. Chan. 2006. Regiospecific and enantioselective synthesis of methylated metabolites of tea catechins. Tetrahedron 62 (25):5897–904. doi: 10.1016/j.tet.2006.04.010.
  • Wang, H., Y. Yang, L. Lin, W. Zhou, M. Liu, K. Cheng, and W. Wang. 2016. Engineering Saccharomyces cerevisiae with the deletion of endogenous glucosidases for the production of flavonoid glucosides. Microbial Cell Factories 15 (1):134.
  • Wang, T., Q. Li, and K. Bi. 2018. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian Journal of Pharmaceutical Sciences 13 (1):12–23.
  • Wen, L., Y. Jiang, J. Yang, Y. Zhao, M. Tian, and B. Yang. 2017. Structure, bioactivity, and synthesis of methylated flavonoids. Annals of the New York Academy of Sciences 1398 (1):120–9.
  • Wen, L., Y. Zhao, Y. Jiang, L. Yu, X. Zeng, J. Yang, M. Tian, H. Liu, and B. Yang. 2017. Identification of a flavonoid C-glycoside as potent antioxidant. Free Radical Biology & Medicine 110:92–101.
  • Wen, X., and T. Walle. 2006. Methylated flavonoids have greatly improved intestinal absorption and metabolic stability. Drug Metabolism and Disposition: The Biological Fate of Chemicals 34 (10):1786–92.
  • Wright, J. S., E. R. Johnson, and G. A. DiLabio. 2001. Predicting the activity of phenolic antioxidants: Theoretical method, analysis of substituent effects, and application to major families of antioxidants. Journal of the American Chemical Society 123 (6):1173–83.
  • Xia, T., and M. A. Eiteman. 2017. Quercetin glucoside production by engineered Escherichia coli. Applied Biochemistry and Biotechnology 182 (4):1358–70.
  • Xiang, W. S., J. Zhang, J. D. Wang, L. Jiang, B. Jiang, Z. D. Xiang, and X. J. Wang. 2010. Isolation and identification of chlorinated genistein from actinoplanes sp. HBDN08 with antioxidant and antitumor activities. Journal of Agricultural and Food Chemistry 58 (3):1933–8.
  • Xiao, J. 2017. Dietary flavonoid aglycones and their glycosides: Which show better biological significance? Critical Reviews in Food Science and Nutrition 57 (9):1874–905.
  • Xiao, J., E. Capanoglu, A. R. Jassbi, and A. Miron. 2016. Advance on the flavonoid C-glycosides and health benefits. Critical Reviews in Food Science and Nutrition 56 (Suppl 1):S29–S45. doi: 10.1080/10408398.2015.1067595.
  • Xin, X., M. Zhang, X. Li, F. Lai, and G. Zhao. 2018. Biocatalytic synthesis of acylated derivatives of troxerutin: Their bioavailability and antioxidant properties in vitro. Microbial Cell Factories 17 (1):130.
  • Xin, X., M. Zhang, X. Li, and G. Zhao. 2019. Biocatalytic synthesis of lipophilic baicalin derivatives as antimicrobial agents. Journal of Agricultural and Food Chemistry 67 (42):11684–93.
  • Xing, X., X. Li, X. Xiao, Y. Tang, and G. Zhao. 2017. Facile and efficient acylation of bioflavonoids using whole-cell biocatalysts in organic solvents. ACS Sustainable Chemistry & Engineering 5:10662–72.
  • Xu, H., Z. Li, Y. Wu, D. Luo, L. Qiu, J. Xie, and X. Li. 2019. Advances on synthesis of flavonoid glycosides. Chinese Journal of Organic Chemistry 39 (7):1875–90. doi: 10.6023/cjoc201811002.
  • Xu, J., J. Qian, and S. Li. 2014. Enzymatic acylation of isoorientin isolated from antioxidant of bamboo leaves with palmitic acid and antiradical activity of the acylated derivatives. European Food Research and Technology 239 (4):661–7. doi: 10.1007/s00217-014-2262-4.
  • Yaipakdee, P., and L. W. Robertson. 2001. Enzymatic halogenation of flavanones and flavones. Phytochemistry 57 (3):341–7.
  • Yang, B., H. Liu, J. Yang, V. K. Gupta, and Y. Jiang. 2018. New insights on bioactivities and biosynthesis of flavonoid glycosides. Trends in Food Science & Technology 79:116–24. doi: 10.1016/j.tifs.2018.07.006.
  • Yang, J., H. Lee, J. Sung, Y. Kim, H. S. Jeong, and J. Lee. 2019. Conversion of rutin to quercetin by acid treatment in relation to biological activities. Preventive Nutrition and Food Science 24 (3):313–20.
  • Yang, J., J. Lee, and Y. Kim. 2020. Effect of deglycosylated rutin by acid hydrolysis on obesity and hyperlipidemia in high-fat diet-induced obese mice. Nutrients 12 (5):1539. doi: 10.3390/nu12051539.
  • Yang, W., M. Kortesniemi, B. Yang, and J. Zheng. 2018. Enzymatic acylation of anthocyanins isolated from Alpine bearberry (Arctostaphylos alpina) and lipophilic properties, thermostability, and antioxidant capacity of the derivatives. Journal of Agricultural and Food Chemistry 66 (11):2909–16.
  • Yao, C. H., C. H. Tsai, and J. C. Lee. 2016. Total synthesis of the naturally occurring glycosylflavone aciculatin. Journal of Natural Products 79 (7):1719–23.
  • Yonekura-Sakakibara, K., and K. Hanada. 2011. An evolutionary view of functional diversity in family 1 glycosyltransferases. The Plant Journal: For Cell and Molecular Biology 66 (1):182–93.
  • Yuan, S., Y. Yang, and J. Q. Kong. 2018. Biosynthesis of 7,8-dihydroxyflavone glycosides via OcUGT1-catalyzed glycosylation and transglycosylation. Journal of Asian Natural Products Research 20 (7):662–74.
  • Zaini, M. F., S. Arshad, K. Thanigaimani, N. C. Khalib, D. A. Zainuri, M. Abdullah, and I. A. Razak. 2019. New halogenated chalcones: Synthesis, crystal structure, spectroscopic and theoretical analyses for third-order nonlinear optical properties. Journal of Molecular Structure 1195:606–19. doi: 10.1016/j.molstruc.2019.05.122.
  • Zeng, X., W. Su, Y. Bai, T. Chen, Z. Yan, J. Wang, M. Su, Y. Zheng, W. Peng, and H. Yao. 2017. Urinary metabolite profiling of flavonoids in Chinese volunteers after consumption of orange juice by UFLC-Q-TOF-MS/MS. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences 1061:79–88.
  • Zhang, H., and X. Wang. 2016. Modular co-culture engineering, a new approach for metabolic engineering. Metabolic Engineering 37:114–21.
  • Zhang, H., M. Zhang, L. Yu, Y. Zhao, N. He, and X. Yang. 2012. Antitumor activities of quercetin and quercetin-5’,8-disulfonate in human colon and breast cancer cell lines. Food and Chemical Toxicology 50 (5):1589–99.
  • Zhang, J., Y. Wu, X. Zhao, F. Luo, X. Li, H. Zhu, C. Sun, and K. Chen. 2014. Chemopreventive effect of flavonoids from Ougan (Citrus reticulata cv. Suavissima) fruit against cancer cell proliferation and migration. Journal of Functional Foods 10:511–9. doi: 10.1016/j.jff.2014.08.006.
  • Zhang, L., J. Chen, H. Liao, C. Li, and M. Chen. 2020. Anti-inflammatory effect of lipophilic grape seed proanthocyanidin in RAW 264.7 cells and a zebrafish model. Journal of Functional Foods 75:104217. doi: 10.1016/j.jff.2020.104217.
  • Zhang, X., O. Khalidi, S. Y. Kim, R. Wang, V. Schultz, B. F. Cress, R. A. Gross, M. A. G. Koffas, and R. J. Linhardt. 2016. Synthesis and biological evaluation of 5,7-dihydroxyflavanone derivatives as antimicrobial agents. Bioorganic & Medicinal Chemistry Letters 26 (13):3089–92. doi: 10.1016/j.bmcl.2016.05.003.
  • Zhang, Z., Y. He, Y. Huang, L. Ding, L. Chen, Y. Liu, Y. Nie, and X. Zhang. 2018. Development and optimization of an in vitro multienzyme synthetic system for production of kaempferol from naringenin. Journal of Agricultural and Food Chemistry 66 (31):8272–9. doi: 10.1021/acs.jafc.8b01299.
  • Zhao, C., Z. Chen, X. Bai, C. Ding, T. Long, F. Wei, and K. Miao. 2014. Structure-activity relationships of anthocyanidin glycosylation. Molecular Diversity 18 (3):687–700.
  • Zhao, J., J. Yang, and Y. Xie. 2019. Improvement strategies for the oral bioavailability of poorly water-soluble flavonoids: An overview. International Journal of Pharmaceutics 570:118642. doi: 10.1016/j.ijpharm.2019.118642.
  • Zhao, L., J. Chen, Z. Wang, R. Shen, N. Cui, and A. Sun. 2016. Direct acylation of cyanidin-3-glucoside with lauric acid in Blueberry and its stability analysis. International Journal of Food Properties 19 (1):1–12. doi: 10.1080/10942912.2015.1016577.
  • Zheng, M. M., L. Wang, F. H. Huang, L. Dong, P. M. Guo, Q. C. Deng, W. L. Li, and C. Zheng. 2012. Ultrasonic pretreatment for lipase-catalyed synthesis of phytosterol esters with different acyl donors. Ultrasonics Sonochemistry 19 (5):1015–20. [Database] doi: 10.1016/j.ultsonch.2012.02.004.
  • Zheng, M. M., L. Wang, F. H. Huang, P. M. Guo, F. Wei, Q. C. Deng, C. Zheng, and C. Y. Wan. 2013. Ultrasound irradiation promoted lipase-catalyzed synthesis of flavonoid esters with unsaturated fatty acids. Journal of Molecular Catalysis B: Enzymatic 95:82–8. doi: 10.1016/j.molcatb.2013.05.028.
  • Zhong, Y., Y. S. Chiou, M. H. Pan, C. T. Ho, and F. Shahidi. 2012. Protective effects of epigallocatechin gallate (EGCG) derivatives on azoxymethane-induced colonic carcinogenesis in mice. Journal of Functional Foods 4 (1):323–30. doi: 10.1016/j.jff.2011.12.011.
  • Zhong, Y., Y. S. Chiou, M. H. Pan, and F. Shahidi. 2012. Anti-inflammatory activity of lipophilic epigallocatechin gallate (EGCG) derivatives in LPS-stimulated murine macrophages. Food Chemistry 134 (2):742–8.
  • Zhong, Y., and F. Shahidi. 2011. Lipophilized epigallocatechin gallate (EGCG) derivatives as novel antioxidants. Journal of Agricultural and Food Chemistry 59 (12):6526–33.
  • Zhong, Y., and F. Shahidi. 2012. Lipophilised epigallocatechin gallate (EGCG) derivatives and their antioxidant potential in food and biological systems. Food Chemistry 131 (1):22–30. doi: 10.1016/j.foodchem.2011.07.089.
  • Zhu, D., A. Gong, Y. Xu, D. K. Tsabing, F. Wu, and J. Wang. 2016. Isoquercitrin production from rutin catalyzed by naringinase under ultrasound irradiation. Journal of Molecular Catalysis B: Enzymatic 134:186–95. doi: 10.1016/j.molcatb.2016.11.011.
  • Zhu, N. Q., M. F. Wang, G. J. Wei, J. K. Lin, C. S. Yang, and C. T. Ho. 2001. Identification of reaction products of (-)-epigallocatechin, (-)-epigallocatechin gallate and pyrogallol with 2,2-diphenyl-1-picrylhydrazyl radical. Food Chemistry 73 (3):345–9. doi: 10.1016/S0308-8146(00)00308-3.
  • Zhu, S., Y. Li, Z. Li, C. Ma, Z. Lou, W. Yokoyama, and H. Wang. 2014. Lipase-catalyzed synthesis of acetylated EGCG and antioxidant properties of the acetylated derivatives. Food Research International 56:279–86. doi: 10.1016/j.foodres.2013.10.026.
  • Ziaullah, and Rupasinghe, H. P. V. 2013. An efficient microwave-assisted enzyme-catalyzed regioselective synthesis of long chain acylated derivatives of flavonoid glycosides. Tetrahedron Letters 54:1933–7.
  • Zielinska, D., W. Wiczkowski, and M. K. Piskula. 2008. Determination of the relative contribution of quercetin and its glucosides to the antioxidant capacity of onion by cyclic voltammetry and spectrophotometric methods. Journal of Agricultural and Food Chemistry 56 (10):3524–31. doi: 10.1021/jf073521f.
  • Zou, L., Z. Zhang, X. Chen, H. Chen, Y. Zhang, J. Li, and Y. Liu. 2018. Total synthesis of viscumneoside III of Viscum coloratum. Tetrahedron 74 (19):2376–82. doi: 10.1016/j.tet.2018.03.057.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.