631
Views
7
CrossRef citations to date
0
Altmetric
Review Articles

Edible plant by-products as source of polyphenols: prebiotic effect and analytical methods

, , , & ORCID Icon
Pages 10814-10835 | Published online: 06 Jun 2022

References

  • Abbasi-Parizad, P., P. De Nisi, B. Scaglia, A. Scarafoni, S. Pilu, and F. Adani. 2021. Recovery of phenolic compounds from agro-industrial by-products: Evaluating antiradicalactivities and immunomodulatory properties. Food and Bioproducts Processing 127:338–48. doi: 10.1016/j.fbp.2021.03.015.
  • Akyol, H., Y. Riciputi, E. Capanoglu, M. F. Caboni, and V. Verardo. 2016. Phenolic compounds in the Potato and its byproducts: An overview. International Journal of Molecular Sciences 17 (6):835. doi: 10.3390/ijms17060835.
  • Alañón, M. E., S. Pimentel-Moral, D. Arráez-Román, and A. Segura-Carretero. 2021a. Profiling phenolic compounds in underutilized mango peel by-products from cultivars grown in Spanish subtropical climate over maturation course. Food Research International (Ottawa, Ont.) 140:109852. doi: 10.1016/j.foodres.2020.109852.
  • Alañón, M. E., S. Pimentel-Moral, D. Arráez-Román, and A. Segura-Carretero. 2021b. A HPLC-DAD-Q-ToF-MS profiling of phenolic compounds from mango (Mangifera indica L.) seed kernel of different cultivars and maturation stages as a preliminary approach to determine functional and nutraceutical value. Food Chemistry 337:127764. doi: 10.1016/j.foodchem.2020.127764.
  • Albuquerque, B. R., C. Pereira, R. C. Calhelha, M. José Alves, R. M. V. Abreu, L. Barros, M. B. P. P. Oliveira, and I. C. F. R. Ferreira. 2020. Jabuticaba residues (Myrciaria jaboticaba (Vell.) Berg) are rich sources of valuable compounds with bioactive properties. Food Chemistry 309:125735. doi: 10.1016/j.foodchem.2019.125735.
  • Alves-Santos, A. M., C. S. A. Sugizaki, G. C. Lima, and M. M. V. Naves. 2020. Prebiotic effect of dietary polyphenols: A systematic review. Journal of Functional Foods 74:104169. doi: 10.1016/j.jff.2020.104169.
  • Arjeh, E., H.-R. Akhavan, M. Barzegar, and Á. A. Carbonell-Barrachina. 2020. Bio-active compounds and functional properties of pistachio hull: A review. Trends in Food Science & Technology 97:55–64. doi: 10.1016/j.tifs.2019.12.031.
  • Armenta, S., S. Garrigues, F. A. Esteve-Turrillas, and M. Guardia. 2019. Green extraction techniques in green analytical chemistry. TrAC Trends in Analytical Chemistry 116:248–53. doi: 10.1016/j.trac.2019.03.016.
  • Ashokkumar, M. 2015. Applications of ultrasound in food and bioprocessing. Ultrasonics Sonochemistry 25:17–23. doi: 10.1016/j.ultsonch.2014.08.012.
  • Aura, A.-M., P. Martin-Lopez, K. A. O’Leary, G. Williamson, K.-M. Oksman-Caldentey, K. Poutanen, and C. Santos-Buelga. 2005. In vitro metabolism of anthocyanins by human gut microflora. European Journal of Nutrition 44 (3):133–42. doi: 10.1007/s00394-004-0502-2.
  • Bala, M., and M. Sing. 2013. Non-destructive estimation of total phenol and crude fiber contesnt in intact seeds of rapeseed-mustard using FTNIR. Industrial Crops and Products 42:357–62. doi: 10.1016/j.indcrop.2012.06.014.
  • Ballesteros-Vivas, D., G. Alvarez-Rivera, E. Ibánez, F. Parada-Alfonso, and A. Cifuentes. 2019. A multi-analytical platform based on pressurized-liquid extraction, in vitro assays and liquid chromatography/gas chromatography coupled to high resolution mass spectrometry for food by-products valorisation. Part 2: Characterization of bioactive compounds from goldenberry (Physalis peruviana L.) calyx extracts using hyphenated techniques. Journal of Chromatography. A 1584:144–54. doi: 10.1016/j.chroma.2018.11.054.
  • Balli, D., L. Cecchi, M. Innocenti, M. Bellumori, and N. Mulinacci. 2021. Food by-products valorisation: Grape pomace and olive pomace (pâté) as sources of phenolic compounds and fiber for enrichment of tagliatelle pasta. Food Chemistry 355:129642. doi: 10.1016/j.foodchem.2021.129642.
  • Bangar, S. P., K. S. Sandhu, S. S. Purewal, M. Kaur, P. Kaur, A. K. Siroha, K. Kumari, M. Singh, and M. Kumar. 2021. Fermented barley bran: An improvement in phenolic compounds and antioxidant properties. Journal of Food Processing and Preservation:e15543. doi: 10.1111/jfpp.15543.
  • Barrales, F. M., P. Silveira, P. Menezes, A. Roggia Ruviaro, B. Nicolau, P. I. Glaucia, M. Pastore, G. A. Macedo, and J. Martinez. 2018. Recovery of phenolic compounds from citrus bry-products using pressurized liquids-An application to orange peel. Food and Bioproducts Processing 112:9–21. doi: 10.1016/j.fbp.2018.08.006.
  • Barreira, J. C. M., A. A. Arraibi, and I. Ferreira. 2019. Bioactive and functional compounds in apple pomace from juice and cider manufacturing: Potential use in dermal formulations. Trends in Food Science & Technology 90:76–87. doi: 10.1016/j.tifs.2019.12.031.
  • Benavente-Garcı́a, O., J. Castillo, J. Lorente, A. Ortuño, and J. A. Del Rio. 2000. Antioxidant activity of phenolics extracted from Olea europe L. leaves. Food Chemistry 68 (4):457–62. doi: 10.1016/S0308-8146(99)00221-6.
  • Ben-Othman, S., H. Kaldmäe, R. Rätsep, U. Bleive, A. Aluvee, and T. Rinken. 2021. Optimization of ultrasound-assisted extraction of phloretin and other phenolic compounds from apple tree leaves (Malus domestica Borkh.) and comparison of different cultivars from Estonia. Antioxidants 10 (2):189. doi: 10.3390/antiox10020189.
  • Benvenutti, L., A. A. F. Zielinski, and S. R. S. Ferreira. 2021. Jaboticaba (Myrtaceae cauliflora) fruit and its by-products: Alternative sources for new foods and functional components. Trends in Food Science & Technology 112:118–36. doi: 10.1016/j.tifs.2021.03.044.
  • Beres, C., G. I. Costa, N. K. Cabezudo, A. S. C. Silva-James, A. P. G. Teles, C. Cruz, R. V. Mellinger-Silva, L. M. C. Tonon, S. P. Cabral, and P. Freitas. 2017. Towards integral utilization of grape pomace from winemaking process: A review. Waste Management (New York, N.Y.) 68:581–94. doi: 10.1016/j.wasman.2017.07.017.
  • Blaut, M., and T. Clavel. 2007. Metabolic diversity of the intestinal microbiota: Implications for health and disease. The Journal of Nutrition 137(3):751S–5S. doi: 10.1093/jn/137.3.751S.
  • Braconi, D., G. Bernardini, L. Millucci, and A. Santucci. 2018. Foodomics for human health: Current status and perspectives. Expert Review of Proteomics 15 (2):153–64. doi: 10.1080/14789450.2018.1421072.
  • Braddock, R. J., and C. R. Bryan. 2001. Extraction parameters and capillary electrophoresis analysis of limonin glucoside and phlorin in citrus byproducts. Journal of Agricultural and Food Chemistry 49 (12):5982–8. doi: 10.1021/jf010737n.
  • Braune, A., and M. Blaut. 2016. Bacterial species involved in the conversion of dietary flavonoids in the human gut. Gut Microbes 7 (3):216–34. doi: 10.1080/19490976.2016.1158395.
  • Brglez Mojzer, E., M. Knez Hrnčič, M. Škerget, Z. Knez, and U. Bren. 2016. Polyphenols: Extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules 21 (7):901. doi: 10.3390/molecules21070901.
  • Burdulis, D., A. Sarkinas, I. Jasutiene, E. Stackevicen, L. Nikolajevas, and V. Janulis. 2009. Comparative study of anthocyanin composition, antimicrobial and antioxidant activity in bilberry (Vaccinium myrtillus L.) and blueberry (Vaccinium corymbosum L.) fruits. Acta Poloniae Pharmaceutica 66 (4):399–408.
  • Cabezudo, I., M.-R. Meini, C. C. Di Ponte, N. Melnichuk, C. E. Boschetti, and D. Romanini. 2021. Soybean (Glycine max) hull valorization through the extraction of polyphenols by green alternative methods. Food Chemistry 338:128131. doi: 10.1016/j.foodchem.2020.128131.
  • Cardona, F., C. Andrés-Lacueva, S. Tulipani, F. J. Tinahones, and M. I. Queipo-Ortuño. 2013. Benefits of polyphenols on gut microbiota and implications in human health. The Journal of Nutritional Biochemistry 24 (8):1415–22. doi: 10.1016/j.jnutbio.2013.05.001.
  • Cardullo, N., M. Leanza, V. Muccilli, and C. Tringali. 2021. Valorization of agri-food waste from pistachio hard shells: Extraction of polyphenols as natural antioxidants. Resources 10 (5):45. doi: 10.3390/resources10050045.
  • Chamutpong, S., C.-J. Chen, and E. Chaiprateep. 2021. Optimization ultrasonic–microwave-assisted extraction of phenolic compounds from Clinacanthus nutans using response surface methodology. Journal of Advanced Pharmaceutical Technology & Research 12 (2):190–5. doi: 10.4103/japtr.JAPTR_344_20.
  • Chang, C.-C., M.-H. Yang, H.-M. Wen, and J.-C. Chern. 2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis 10 (3):178–82. doi: 10.38212/2224-6614.2748.
  • Chanioti, S., M. Katsouli, and C. Tzia. 2021. Novel processes for the extraction of phenolic compounds from olive pomace and their protection by encapsulation. Molecules 26 (6):1781. doi: 10.3390/molecules26061781.
  • Che Zain, M. S., M. F. Osman, S. Y. Lee, and K. Shaari. 2021. UHPLC-UV/PDA method validation for simultaneous quantification of luteolin and apigenin derivaties from Elaeis guineensis leaf extracts: An application for antioxidant herbal preparation. Molecules 26 (4):1084. doi: 10.3390/molecules26041084.
  • Chitrakar, B., M. Zhang, and B. Adhikari. 2019. Asparagus (Asparagus officinalis): Processing effect on nutritional and phytochemical composition of spear and hard-stem by-products. Trends in Food Science & Technology 93:1–11. doi: 10.1016/j.tifs.2019.08.020.
  • Clemente, J. C., L. K. Ursell, L. W. Parfrey, and R. Knight. 2012. The impact of the gut microbiota on human health: An integrative view. Cell 148 (6):1258–70. doi: 10.1016/j.cell.2012.01.035.
  • Coelho, M. C., R. N. Pereira, A. S. Rodrigues, J. A. Teixeira, and M. E. Pintado. 2020. The use of emergent technologies to extract added value compounds from grape by-products. Trends in Food Science & Technology 106:182–97. doi: 10.1016/j.tifs.2020.09.028.
  • Colantuono, A. 2019. Vegetable by-products as a resource for the development of functional foods. In Encyclopedia of food security and sustainability, ed P. Ferranti; E. M. Berry; J. R. Anderson, 360–3. Elsevier. doi: 10.1016/B978-0-08-100596-5.22142-2.
  • Coman, V., B. E. Teleky, L. Mitrea, G. A. Martău, K. Szabo, L. F. Călinoiu, and D. C. Vodnar. 2020. Bioactive potential of fruit and vegetable wastes. Advances in Food and Nutrition Research 91:157–225. doi: 10.1016/bs.afnr.2019.07.001.
  • Cortés-Martín, A., M. V. Selma, F. A. Tomás-Barberán, A. González-Sarrías, and J. C. Espín. 2020. Where to look into the puzzle of polyphenols and health? The postbiotics and gut microbiota associated with human metabotypes. Molecular Nutrition & Food Research 64 (9):1900952. doi: 10.1002/mnfr.201900952.
  • Cozzolino, D. 2015. Infrared spectroscopy as a versatile analytical tool for the quantitative determination of antioxidants in agricultural products, foods and plants. Antioxidants (Basel, Switzerland) 4 (3):482–97. doi: 10.3390/antiox4030482.
  • Cunningham, M., M. A. Azcarate-Peril, A. Barnard, V. Benoit, R. Grimaldi, D. Guyonnet, H. D. Holscher, K. Hunter, S. Manurung, D. Obis, et al. 2021. Shaping the future of probiotics and prebiotics. Trends in Microbiology 29 (8):667–85. doi: 10.1016/j.tim.2021.01.003.
  • Da Silva, N. C., T. T. de Barros-Alexandrino, O. B. Garrido Assis, and M. Martelli-Tosi. 2021. Extraction of phenolic compounds from acerola by-products using chitosan solution, encapsulation and application in extending the shelf-life of guava. Food Chemistry 354:129553. doi: 10.1016/j.foodchem.2021.129553.
  • Dai, Y., J. van Spronsen, G.-J. Witkamp, R. Verpoorte, and Y. H. Choi. 2013. Natural deep eutectic solvents as new potential media for green technology. Analytica Chimica Acta 766:61–8. doi: 10.1016/j.aca.2012.12.019.
  • Dailey, A., and V. Q. Vuong. 2016. Optimum conditions for microwave assisted extraction for recovery of phenolic compounds and antioxidant capacity from Macadamia (Macadamia tetraphylla) skin waste using water. Processes 4 (1):2–15. doi: 10.3390/pr4010002.
  • de Vasconcelos, M. d C. B., R. N. Bennett, S. Quideau, R. Jacquet, E. A. Rosa, and J. V. Ferreira-Cardoso. 2010. Evaluating the potential of chestnut (Castanea sativa Mill.) fruit pericarp and integument as a source of tocopherols, pigments and polyphenols: Industrial Crops and Products 31 (2):301–11. doi: 10.1016/j.indcrop.2009.11.008.
  • Delgado, A. M., M. Issaoui, and N. Chammem. 2019. Analysis of Main and Healthy Phenolic Compounds in Foods. Journal of AOAC International 102 (5):1356–64. doi: 10.5740/jaoacint.19-0128.
  • Deng, J., Q. Liu, C. Zhang, W. Cao, D. Fan, and H. Yang. 2016. Extraction optimization of polyphenols from waste kiwi fruit seeds (Actinidia chinensis Planch) and evaluation of its antioxidant and anti-inflammatory properties. Molecules 21 (7):832. doi: 10.3390/molecules21070832.
  • Días, M., C. Caleja, C. C. Pereira, R. C. Calhelha, M. Kostic, M. Sokovic, D. Tavares, I. J. Baraldi, L. Barros, and I. Ferreira. 2020. Chemical composition and bioactive properties of byproducts from two different kiwi varieties. Food Research International 127:108753. doi: 10.1016/j.foodres.2019.108753.
  • Dorta, E., M. G. Lobo, and M. González. 2013. Optimization of factors affecting extraction of antioxidants from mango seed. Food and Bioprocess Technology 6 (4):1067–81. doi: 10.1007/s11947-011-0750-0.
  • Escriche, I., and M. Juan-Borras. 2018. Standardizing the analysis of phenolic profile in propolis. Food Research International (Ottawa, Ont.) 106:834–41. doi: 10.1016/j.foodres.2018.01.055.
  • Espinosa-Pardo, F. A., V. M. Nakajima, G. A. Macedo, J. A. Macedo, and J. Martinez. 2017. Extraction of phenolic compunds from dry and fermented Orange pomace using supercritical CO2 and cosolvents. Food and Bioproducts Processing 101:1–10. doi: 10.1016/j.fbp.2016.10.002.
  • Figueroa, J. G., I. Borras-Linares, J. Lozano Sánchez, R. Q. Piné, and A. S. Carretero. 2018c. Optimization of drying process and pressurized liquid extraction for recovery of bioactive compounds from avocado peel by-products. Electrophoresis 39 (15):1908–16. doi: 10.1002/elps.201700379.
  • Figueroa, J. G., I. Borras-Linares, J. Lozano-Sanchez, and A. Segura-Carretero. 2018a. Comprehensive characterization of phenolic and other polar compounds in the seed and seed coat of avocado by HPLC-DAD-ESI-QTOF-MS. Food Research International (Ottawa, Ont.) 105:752–63. doi: 10.1016/j.foodres.2017.11.082.
  • Figueroa, J. G., I. Borras-Linares, J. Lozano-Sanchez, and A. Segura-Carretero. 2018b. Comprehensive identification of bioactive compounds of avocado peel by liquid chromatography coupled to ultra-high-definition accurate-mass Q-TOF. Food Chemistry 245:707–16. doi: 10.1016/j.foodchem.2017.12.011.
  • Figueroa, J. G., I. Borras-Linares, R. Del Pino-Garcia, J. A. Curiel, J. Lozano-Sánchez, and A. Segura-Carretero. 2021. Functional ingredient from avocado peel: Microwave-assisted extraction, characterization and potential applications for the food industry. Food Chemistry 352:129300. doi: 10.1016/j.foodchem.2021.129300.
  • Freitas, P. V., D. R. Da Silva, M. A. Beluomini, J. L. Da Silva, and N. R. Stradiotto. 2018. Determination of phenolic acids in sugarcane vinasse by HPLC with pulse amperometry. Journal of Analytical Methods in Chemistry 2018:4869487–10. doi: 10.1155/2018/4869487.
  • Gabaston, J., C. Leborgne, J. Valls, E. Renouf, T. Richard, P. Waffo-Teguo, and J. M. Merillon. 2018. Subcritical water extraction of stilbenes from grapevine by-products: A new green chemistry approach. Industrial Crops and Products 126:272–9. doi: 10.1016/j.indcrop.2018.10.020.
  • Galanakis, C. M. 2017. Chapter 1 – Introduction. Nutraceutical and functional food components: Effects of innovative processing techniques, ed. C. Galanakis, 1–14. Elsevier.
  • Geissdoerfer, M., P. Savaget, N. M. P. Bocken, and E. J. Hultink. 2017. The Circular Economy - A new sustainability paradigm? Journal of Cleaner Production 143:757–68. doi: 10.1016/j.jclepro.2016.12.048.
  • George, B., C. Kaur, D. S. Khurdiya, and H. C. Kapoor. 2004. Antioxidants in tomato (Lycopersium esculentum) as a function of genotype. Food Chemistry 84 (1):45–51. doi: 10.1016/S0308-8146(03)00165-1.
  • Giao, M. S., C. I. Pereira, S. C. Fonseca, M. E. Pintado, and F. X. Malcata. 2009. Effect of particle size upon the extent of extraction of antioxidant power from the plants Agrimonia eupatoria, Salvia sp. and Satureja montana. Food Chemistry 117 (3):412–6. doi: 10.1016/j.foodchem.2009.04.020.
  • Gibson, G. R., R. Hutkins, M. E. Sanders, S. L. Prescott, R. A. Reimer, S. J. Salminen, K. Scott, C. Stanton, K. S. Swanson, P. D. Cani, et al. 2017. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews. Gastroenterology & Hepatology 14 (8):491–502. doi: 10.1038/nrgastro.2017.75.
  • Gil, M. I., F. A. Tomas-Barberan, B. Hess-Pierce, and A. A. Kader. 2002. Antioxidant capacities, phenolic compounds, carotenoids, and vitamin C contents of nectarine, peach, and plum cultivars from California. Journal of Agricultural and Food Chemistry 50 (17):4976–82. doi: 10.1021/jf020136b.
  • Giombelli, C., I. J. Iwassa, C. da Silva, and B. C. Bolanho Barros. 2020. Valorization of peach palm by-product through subcritical water extraction of soluble sugars and phenolic compounds. The Journal of Supercritical Fluids 165:104985. doi: 10.1016/j.supflu.2020.104985.
  • Gligor, O., A. Mocan, C. Moldovan, M. Locatelli, G. Crișan, and I. C. Ferreira. 2019. Enzyme-assisted extractions of polyphenols-A comprehensive review. Trends in Food Science & Technology 88:302–15. doi: 10.1016/j.tifs.2019.03.029.
  • González-Sarrías, A., J. C. Espín, and F. A. Tomás-Barberán. 2017. Non-extractable polyphenols produce gut microbiota metabolites that persist in circulation and show anti-inflammatory and free radical-scavenging effects. Trends in Food Science & Technology 69:281–8. doi: 10.1016/j.tifs.2017.07.010.
  • Gorinstein, S., O. Martı́n-Belloso, Y.-S. Park, R. Haruenkit, A. Lojek, M. Ĉı́ž, A. Caspi, I. Libman, and S. Trakhtenberg. 2001. Comparison of some biochemical characteristics of different citrus fruits. Food Chemistry 74 (3):309–15. doi: 10.1016/S0308-8146(01)00157-1.
  • Gowd, V., N. Karim, M. R. I. Shishir, L. Xie, and W. Chen. 2019. Dietary polyphenols to combat the metabolic diseases via altering gut microbiota. Trends in Food Science & Technology 93:81–93. doi: 10.1016/j.tifs.2019.09.005.
  • Grassino, A. N., J. Ostojić, V. Miletić, S. Djaković, T. Bosiljkov, Z. Zorić, D. Ježek, S. Rimac Brnčić, and M. Brnčić. 2020. Application of high hydrostatic pressure and ultrasound-assisted extractions as a novel approach for pectin and polyphenols recovery from tomato peel waste. Innovative Food Science & Emerging Technologies 64:102424. doi: 10.1016/j.ifset.2020.102424.
  • Guaita, M., and A. Bosso. 2019. Polyphenolic characterization of grape skins and seeds of four Italian red cultivars at harvest and after fermentative maceration. Food 8 (9):395. doi: 10.3390/foods8090395.
  • Guinane, C. M., and P. D. Cotter. 2013. Role of the gut microbiota in health and chronic gastrointestinal disease: Understanding a hidden metabolic organ. Therapeutic Advances in Gastroenterology 6 (4):295–308. doi: 10.1177/1756283X13482996.
  • Gullón, P., B. Gullón, G. Astray, M. Carpena, M. Fraga-Corral, M. A. Prieto, and J. Simal-Gandara. 2020. Valorization of by-products from olive oil industry and added-value applications for innovative functional foods. Food Research International (Ottawa, Ont.) 137:109683. doi: 10.1016/j.foodres.2020.109683.
  • Guo, Q., N. Wang, H. Liu, Z. Li, L. Lu, and C. Wang. 2020. The bioactive compounds and biological functions of Asparagus officinalis L. A review. Journal of Functional Foods 65:103727. doi: 10.1016/j.jff.2019.103727.
  • Gupta, S., and N. Chen. 2021. A metabolomics approach to evaluate post-fermentation enhancement of daidzein and genistein in a green okara extract. Journal of the Science of Food and Agriculture 101 (12):5124–31. doi: 10.1002/jsfa.11158.
  • Haghighi, A, and M. Khajenoori. 2013. Subcritical water extraction. In Mass transfer-advances in sustainable energy and environment oriented numerical modeling, ed. H. Nakajima, 459–87. Croatia: IntechOpen.
  • Hayder, Z., W. Elfalleh, K. B. Othman, M. A. Benabderrahim, and H. Hannachi. 2021. Modeling of polyphenols extraction from pomegranate by-product using rotatable central composite design of experiments. Acta Ecologica Sinica 41 (2):150–6. doi: 10.1016/j.chnaes.2020.10.003.
  • Henning, S. M., J. Yang, M. Hsu, R. P. Lee, E. M. Grojean, A. Ly, C. H. Tseng, D. Heber, and Z. Li. 2018. Decaffeinated green and black tea polyphenols decrease weight gain and alter microbiome populations and function in diet-induced obese mice. European Journal of Nutrition 57 (8):2759–69. doi: 10.1007/s00394-017-1542-8.
  • Hervert-Hernández, D., and I. Goñi. 2011. Dietary polyphenols and human gut microbiota: A review. Food Reviews International 27 (2):154–69. doi: 10.1080/87559129.2010.535233.
  • Hoseini, M., S. Cocco, C. Casucci, V. Cardelli, and G. Corti. 2021. Coffee by-products derived resources. A review. Biomass and Bioenergy 148:106009. doi: 10.1016/j.biombioe.2021.106009.
  • Ivanovic, M., M. I. Razborsek, and M. Kolar. 2020. Innovative extraction techniques using deep eutectic solvents and analytical methods for the isolation and characterization of natural bioactive compounds from plant material. Plants 9 (11):1428. doi: 10.3390/plants9111428.
  • Jackson, C. J. C., J. P. Dini, C. Lavandier, H. P. V. Rupasinghe, H. Faulkner, V. Poysa, D. Buzzell, and S. DeGrandis. 2002. Effects of processing on the content and composition of isoflavones during manufacturing of soy beverage and tofu. Process Biochemistry 37 (10):1117–23. doi: 10.1016/S0032-9592(01)00323-5.
  • Jahurul, M. H. A., I. S. M. Zaidul, K. Ghafoor, F. Y. Al-Juhaimi, K. L. Nyam, N. A. N. Norulaini, F. Sahena, and A. K. Mohd Omar. 2015. Mango (Mangifera indica L.) by-products and their valuable components: A review. Food Chemistry 183:173–80. doi: 10.1016/j.foodchem.2015.03.046.
  • Jimenez-Lopez, C., M. Fraga-Corral, M. Carpena, P. García-Oliveira, J. Echave, A. G. Pereira, C. Lourenço-Lopes, M. A. Prieto, and J. Simal-Gandara. 2020. Agriculture waste valorisation as a source of antioxidant phenolic compounds within a circular and sustainable bioeconomy. Food & Function 11 (6):4853–77. doi: 10.1039/d0fo00937g.
  • Kallel, F., and S. Ellouz Chaabouni. 2017. Perspective of garlic processing wastes as low-cost substrates for production of high-added value products: A review. Environmental Progress & Sustainable Energy 36 (6):1765–77. doi: 10.1002/ep.12649.
  • Kallel, F., D. Driss, F. Chaari, L. Belghith, F. Bouaziz, R. Ghorbel, and S. E. Chaabouni. 2014. Garlic (Allium sativum L.) husk waste as a potential source of phenolic compounds: Influence of extracting solvents on its antimicrobial and antioxidant properties. Industrial Crops and Products 62:34–41. doi: 10.1016/j.indcrop.2014.07.047.
  • Karimi, A., M. Kazemi, S. A. Samani, and J. Simal-Gandara. 2021. Bioactive compounds from by-products of eggplant: Functional properties, potential applications and advances in valorization methods. Trends in Food Science & Technology 112:518–31. doi: 10.1016/j.tifs.2021.04.027.
  • Katsinas, N., A. Bento da Silva, A. Enríquez-de-Salamanca, N. Fernández, M. R. Bronze, and S. Rodríguez-Rojo. 2021. Pressurized liquid extraction optimization from supercritical defatted olive pomace: A green and selective phenolic extraction process. ACS Sustainable Chemistry & Engineering 9 (16):5590–602. doi: 10.1021/acssuschemeng.0c09426.
  • Kau, A. L., P. P. Ahern, N. W. Griffin, A. L. Goodman, and J. I. Gordon. 2011. Human nutrition, the gut microbiome and the immune system. Nature 474 (7351):327–36. doi: 10.1038/nature10213.
  • Kaur, S., P. S. Panesar, and H. K. Chopra. 2021. Citrus processing by-products: An overlooked repository of bioactive compounds. Critical Reviews in Food Science and Nutrition 29:1–20. doi: 10.1080/10408398.2021.1943647.
  • Kawabata, K., Y. Yoshioka, and J. Terao. 2019. Role of intestinal microbiota in the bioavailability and physiological functions of dietary polyphenols. Molecules 24 (2):370. doi: 10.3390/molecules24020370.
  • Kemperman, R. A., S. Bolca, L. C. Roger, and E. E. Vaughan. 2010. Novel approaches for analysing gut microbes and dietary polyphenols: Challenges and opportunities. Microbiology (Reading, England) 156 (Pt 11):3224–31. doi: 10.1099/mic.0.042127-0.
  • Kheirkhah, H., S. Baroutian, and S. Quek. 2019. Evaluation of bioactive compounds extracted from Hayward kiwifruit pomace by subcritical water extraction. Food and Bioproducts Processing 115:143–53. doi: 10.1016/j.fbp.2019.03.007.
  • Khoddami, A., M. A. Wilkes, and T. H. Roberts. 2013. Techniques for analysis of plant phenolic compounds. Molecules (Basel, Switzerland) 18 (2):2328–75. doi: 10.3390/molecules18022328.
  • Kilua, A., R. Nomata, R. Nagata, N. Fukuma, K. Shimada, K. H. Han, and M. Fukushima. 2019. Purple sweet potato polyphenols differentially influence the microbial composition depending on the fermentability of dietary fiber in a mixed culture of swine fecal bacteria. Nutrients 11 (7):1495. doi: 10.3390/nu11071495.
  • Ko, E. Y., S. H. Nile, K. Sharma, G. H. Li, and S. W. Park. 2015. Effect of different exposed lights on quercetin and quercetin glucoside content in onion (Allium cepa L.). Saudi Journal of Biological Sciences 22 (4):398–403. doi: 10.1016/j.sjbs.2014.11.012.
  • Koh, A., F. de Vadder, P. Kovatcheva-Datchary, and F. F. Bäckhed. 2016. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell 165 (6):1332–45. doi: 10.1016/j.cell.2016.05.041.
  • Krajmalnik-Brown, R., Z. E. Ilhan, D. W. Kang, and J. K. DiBaise. 2012. Effects of gut microbes on nutrient absorption and energy regulation. Nutrition in Clinical Practice : Official Publication of the American Society for Parenteral and Enteral Nutrition 27 (2):201–14. doi: 10.1177/0884533611436116.
  • Kumar Singh, A., C. Cabral, R. Kumar, R. Ganguly, H. Kumar Rana, A. Gupta, M. Rosaria Lauro, C. Carbone, F. Reis, and A. K. Pandey. 2019. Beneficial effects of dietary polyphenols on gut microbiota and strategies to improve delivery efficiency. Nutrients 11 (9):2216. doi: 10.3390/nu11092216.
  • Kumar, K., S. Srivastav, and V. S. Sharanagat. 2021. Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review. Ultrasonics Sonochemistry 70:105325. doi: 10.1016/j.ultsonch.2020.105325.
  • Kumar, S. P. J., A. Devi Chintagunta, M. Reddy, A. Kumar, D. K. Agarwal, G. Pal, and J. Simal-gandara. 2021. Application of phenolic extraction strategies and evaluation of the antioxidant activity of peanut skins as an agricultural by-product for food industry. Food Analytical Methods 14 (10):2051–62. doi: 10.1007/s12161-021-02024-1.
  • Lee, G., J. S. Park, E. J. Lee, J. H. Ahn, and H. S. Kim. 2019. Anti-inflammatory and antioxidant mechanisms of urolithin B in activated microglia. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology 55:50–7. doi: 10.1016/j.phymed.2018.06.032.
  • Lee, H. C., A. M. Jenner, C. S. Low, and Y. K. Lee. 2006. Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota. Research in Microbiology 157 (9):876–84. doi: 10.1016/j.resmic.2006.07.004.
  • Li, J., T. Wu, N. Li, X. Wang, G. Chen, and X. Lyu. 2019. Bilberry anthocyanin extract promotes intestinal barrier function and inhibits digestive enzyme activity by regulating the gut microbiota in aging rats. Food & Function 10 (1):333–43. doi: 10.1039/c8fo01962b.
  • Liu, J., S. Yue, Z. Yang, W. Feng, X. Meng, A. Wang, C. Peng, C. Wang, and D. Yan. 2018. Oral hydroxysafflor yellow A reduces obesity in mice by modulating the gut microbiota and serum metabolism. Pharmacological Research 134:40–50. doi: 10.1016/j.phrs.2018.05.012.
  • Liu, J., W. Hao, Z. He, E. Kwek, Y. Zhao, H. Zhu, N. Liang, K. Y. Ma, L. Lei, W.-S. He, et al. 2019. Beneficial effects of tea water extracts on the body weight and gut microbiota in C57BL/6J mice fed with a high-fat diet. Food & Function 10 (5):2847–60. doi: 10.1039/c8fo02051e.
  • López, N., E. Puértolas, S. Condón, J. Raso, and I. Alvarez. 2009. Enhancement of the extraction of betanine from red beetroot by pulsed electric fields. Journal of Food Engineering 90 (1):60–6. doi: 10.1016/j.jfoodeng.2008.06.002.
  • López-Cobo, A., V. Verardo, E. Diaz-de-Cerio, A. Segura-Carretero, A. Fernández-Gutiérrez, and A. M. Gómez-Caravaca. 2017. Use of HPLC- and GC-QTOF to determine hydrophilic and lipophilic phenols in mango fruit (Mangifera indica L.) and its by-products . Food Research International (Ottawa, Ont.) 100 (Pt 3):423–34. doi: 10.1016/j.foodres.2017.02.008.
  • López-Salas, L., I. Borrás-Linares, D. Quintin, P. García-Gomez, R. Giménez-Martínez, A. Segura-Carretero, and J. Lozano-Sánchez. 2021. Artichoke by products as natural source of phenolic food ingredient. Applied Sciences 11 (9):3788. doi: 10.3390/app11093788.
  • Lu, Z., J. Wang, R. Gao, F. Ye, and G. Zhao. 2019. Sustainable valorisation of tomato pomace: A comprehensive review. Trends in Food Science & Technology 86:172–87. doi: 10.1016/j.tifs.2019.02.020.
  • Luo, Y., W. Wu, D. Chen, Y. Lin, Y. Ma, C. Chen, and S. Zhao. 2017. Optimization of simultaneous microwave/ultrasonic-assisted extraction of phenolic compounds from walnut flour using response surface methodology. Pharmaceutical Biology 55 (1):1999–2004. doi: 10.1080/13880209.2017.1347189.
  • Majerska, J., A. Michalska, and A. Figiel. 2019. A review of new directions in managing fruit and vegetable processing by-products. Trends in Food Science & Technology 88:207–19. doi: 10.1016/j.tifs.2019.03.021.
  • Mansoorian, B., E. Combet, A. Alkhaldy, A. L. Garcia, and C. A. Edwards. 2019. Impact of fermentable fibers on the colonic microbiota metabolism of dietary polyphenols rutin and quercetin. International Journal of Environmental Research and Public Health 16 (2):292. doi: 10.3390/ijerph16020292.
  • Maqsood, S., O. Adiamo, M. Ahmad, and P. Mudgil. 2020. Bioactive compounds from date fruit and seed as potential nutraceutical and functional food ingredients. Food Chemistry 308:125522. doi: 10.1016/j.foodchem.2019.125522.
  • Marcillo-Parra, V., M. Anaguano, M. Molina, D. S. Tupuna-Yerovi, and J. Ruales. 2021. Characterization and quantification of bioactive compounds and antioxidant activity in three different varieties of mango (Mangifera indica L.) peel from the Ecuadorian region using HPLC-UV/VIS and UPLC-PDA. NFS Journal 23:1–7. doi: 10.1016/j.nfs.2021.02.001.
  • Marín, L., E. M. Miguélez, C. J. Villar, and F. Lombó. 2015. Bioavailability of dietary polyphenols and gut microbiota metabolism: Antimicrobial properties. BioMed Research International 2015:905215. doi: 10.1155/2015/905215.
  • Martillanes, S., M. C. Ayuso-Yuste, M. J. Bernalte, M. V. Gil, and J. Delgado Adamez. 2021. Cellulase-assisted extraction of phenolic compounds from rice bran (Oryza sativa L) process optimization and characterization. Journal of Food Measurement and Characterization 15 (2):1719–26. doi: 10.1007/s11694-020-00773-x.
  • Mauro, R. P., M. Agnello, V. Rizzo, G. Graziani, V. Fogliano, C. Leonardi, and F. Giuffrida. 2020. Recovery of eggplant field waste as a source of phytochemicals. Scientia Horticulturae 261:109023. doi: 10.1016/j.scienta.2019.109023.
  • Mayo, B., L. Vázquez, and A. B. Flórez. 2019. Equol: A bacterial metabolite from the Daidzein isoflavone and its presumed beneficial health effects. Nutrients 11 (9):2231. doi: 10.3390/nu11092231.
  • Mayta-Apaza, A. C., E. Pottgen, J. de Bodt, N. Papp, D. Marasini, L. Howard, L. Abranko, T. van de Wiele, S. O. Lee, and F. Carbonero. 2018. Impact of tart cherries polyphenols on the human gut microbiota and phenolic metabolites in vitro and in vivo. The Journal of Nutritional Biochemistry 59:160–72. doi: 10.1016/j.jnutbio.2018.04.001.
  • Menezes Barbosa, P., A. Roggia Ruviaro, and G. Alves Macedo. 2018. Comparison of different Brazilian citrus by-products as source of natural antioxidants. Food Science and Biotechnology 27 (5):1301–9. doi: 10.1007/s10068-018-0383-4.
  • Michailidis, D., A. Angelis, P. A. Nikolaou, S. Mitakou, and A. L. Skaltsounis. 2021. Exploitation of Vitis vinifera, Foeniculum vulgare, Cannabis sativa and Punica granatum by-product seeds as dermo-cosmetic agents. Molecules 26 (3):731. doi: 10.3390/molecules26030731.
  • Mithul Aravind, S., S. Wichienchot, R. Tsao, S. Ramakrishnan, and S. Chakkaravarthi. 2021. Role of dietary polyphenols on gut microbiota, their metabolites and health benefits. Food Research International (Ottawa, Ont.) 142:110189. doi: 10.1016/j.foodres.2021.110189.
  • Moorthy, M., N. Chaiyakunapruk, S. A. Jacob, and U. D. Palanisamy. 2020. Prebiotic potential of polyphenols, its effect on gut microbiota and anthropometric/clinical markers: A systematic review of randomised controlled trials. Trends in Food Science & Technology 99:634–49. doi: 10.1016/j.tifs.2020.03.036.
  • Morais, C. A., V. V. de Rosso, D. Estadella, and L. P. Pisani. 2016. Anthocyanins as inflammatory modulators and the role of the gut microbiota. The Journal of Nutritional Biochemistry 33:1–7. doi: 10.1016/j.jnutbio.2015.11.008.
  • Moreno-Indias, I., L. Sanchez-Alcoholado, P. Pérez-Martínez, C. Andrés-Lacueva, F. Cardona, F. Tinahones, and M. I. Queipo-Ortuño. 2016. Red wine polyphenols modulate fecal microbiota and reduce markers of the metabolic syndrome in obese patients. Food & Function 7 (4):1775–87. doi: 10.1039/c5fo00886g.
  • Mossalem, H. S., M. A. Ghareeb, L. A. Refahy, A. S. Mohamed, and M. R. Habib. 2017. Gas chromatography –mass spectrometry analysis and antioxidant activity of Punica granatum L. peels and its role as immunostimulant against Schstosoma mansoni infection in n Biomphalaria alexandrina. Asian Journal of Pharmaceutical and Clinical Research 10 (1):252–8. doi: 10.22159/ajpcr.2017.v10i1.15107.
  • Mykhailenko, O., L. Ivanauskas, I. Bezruk, L. Sidorenko, R. Lesyk, and V. Georgiyants. 2021. Characterization of phytochemical components of Crocus sativus leaves: A new attractive by-product. Scientia Pharmaceutica 89 (2):28. doi: 10.3390/scipharm89020028.
  • Nagata, C., T. Ueno, S. Uchiyama, Y. Nagao, S. Yamamoto, C. Shibuya, Y. Kashiki, and H. Shimizu. 2008. Dietary and lifestyle correlates of urinary excretion status of equol in Japanese women. Nutrition and Cancer 60 (1):49–54. doi: 10.1080/01635580701525885.
  • Nandasiri, R., N. A. M. Eskin, E. Komatsu, H. Perreault, and U. Thiyam-Holländer. 2021. Valorization of canola by-products: Concomitance of flavor-active bitter phenolics using pressurized heat treatments. Lwt 138 (5):110397. doi: 10.1016/j.lwt.2020.110397.
  • Natale, A., D. Nardiello, C. Palermo, M. Muscarella, M. Quinto, and D. Centonze. 2015. Development of an analytical method for the determination of polyphenolic compounds in vegetable origin samples by liquid chromatography and pulsed amperometric detection at a glassy carbon electrode. Journal of Chromatography. A 1420:66–73. doi: 10.1016/j.chroma.2015.09.082.
  • Nathia-Neves, G., and E. Alonso. 2021. Valorization of sunflower by-product using microwave-assisted extraction to obtain a richprotein flour: Recovery of chlorogenic acid, phenolic content and antioxidant capacity. Food and Bioproducts Processing 125:57–67. doi: 10.1016/j.fbp.2020.10.008.
  • Obied, H. K., M. S. Allen, D. R. Bedgood, P. D. Prenzler, K. Robards, and R. Stockmann. 2005. Bioactivity and analysis of biophenols recovered from olive mill waste. Journal of Agricultural and Food Chemistry 53 (4):823–37. doi: 10.1021/jf048569x.
  • Ordoñez-Torres, A., C. Torres-Leon, A. Hernandez-Almanza, T. Flores-Guia, D. Luque-Contreras, C. Aguilar, and J. Ascacio-Valdes. 2020. Ultrasound-microwave-assisted extraction of polyphenolic compounds from Mexican “Ataulfo” mango peels: Antioxidant potential and identification by HPLC/ESI/MS . Phytochemical Analysis : PCA 32 (4):495–502. doi: 10.1002/pca.2997.
  • Orzel, M. Z, and F. Gögüs. 2014. Subcritical water as a green solvent for plant extraction. In Alternative solvents for natural products extraction, ed. F. Chemat and M. A. Vian, 73–89. Springer Link.
  • Özcan, M. M., K. Ghafoor, F. Al Juhaimi, N. Uslu, E. E. Babiker, I. A. Mohamed Ahmed, and I. A. Almusallam. 2021. Influence of drying techniques on bioactive properties, phenolic compounds and fatty acid compositions of dried lemon and orange peel powders. Journal of Food Science and Technology 58 (1):147–58. doi: 10.1007/s13197-020-04524-0.
  • Ozdal, T., D. A. Sela, J. Xiao, D. Boyacioglu, F. Chen, and E. Capanoglu. 2016. The reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility. Nutrients 8 (2):78. doi: 10.3390/nu8020078.
  • Papoutsis, K., Q. V. Vuong, J. B. Golding, J. H. Hasperué, P. Pristijono, M. C. Bowyer, C. J. Scarlett, and C. E. Stathopoulos. 2018. Pretreatment of citrus by-products affects polyphenol recovery: A review. Food Reviews International 34 (8):770–95. doi: 10.1080/87559129.2018.1438471.
  • Parkar, S. G., T. M. Trower, and D. E. Stevenson. 2013. Fecal microbial metabolism of polyphenols and its effects on human gut microbiota. Anaerobe 23:12–9. doi: 10.1016/j.anaerobe.2013.07.009.
  • Páscoa, R. N. M. J., M. A. Nunes, F. Reszczyński, A. S. G. Costa, M. B. P. P. Oliveira, and R. C. Alves. 2021. Near infrared (NIR) spectroscopy as tool to assess blends composition and discriminate antioxidant activity of olive pomace cultivars. Waste and Biomass Valorization 12 (9):4901–13. doi: 10.1007/s12649-021-01386-1.
  • Pedroza, M. A., D. Amendola, L. Maggi, A. Zalacain, D. M. De Faveri, and G. Spigno. 2015. Microwave-assisted extraction of phenolic compounds from dried waste grape skins. International Journal of Food Engineering 11 (3):359–70. doi: 10.1515/ijfe-2015-0009.
  • Peng, Y., Y. Zhang, and J. Ye. 2008. Determination of phenolic compounds and ascorbic acid in different fractions of tomato by capillary electrophoresis with electrochemical detection. Journal of Agricultural and Food Chemistry 56 (6):1838–44. doi: 10.1021/jf0727544.
  • Pérez-Jiménez, J. 2019. Potential of dietary extractable and non-extractable polyphenols in the prevention of cardiometabolic diseases. Anales RANM 136 (03):298–307. doi: 10.32440/ar.2019.136.03.rev11.
  • Pinto, D., M. L. Cadiz-Gurrea, A. Vallverdú-Queralt, C. Delerue-Matos, and F. Rodrigues. 2021. Castanea sativa shells: A review on phytochemical composition, bioactivity and waste management approaches for industrial valorization. Food Research International (Ottawa, Ont.) 144:110364. doi: 10.1016/j.foodres.2021.110364.
  • Price, M. L., S. Van Scoyoc, and L. G. Butler. 1978. A critical evaluation of the vanillin reaction as an assay for tannin in sorghum grain. Journal of Agricultural and Food Chemistry 26 (5):1214–8. doi: 10.1021/jf60219a031.
  • Priego Capote, F., J. M. L. Rodríguez, and M. D. Luque de Castro. 2007. Determination of phenolic compounds in grape skin by capillary electrophoresis with simultaneous dual fluorescence and diode array absorption detection after dynamic superheated liquid leaching. Journal of Chromatography. A 1139 (2):301–7. doi: 10.1016/j.chroma.2006.11.010.
  • Queipo-Ortuño, M. I., M. Boto-Ordóñez, M. Murri, J. M. Gomez-Zumaquero, M. Clemente-Postigo, R. Estruch, F. Cardona Diaz, C. Andrés-Lacueva, and F. J. Tinahones. 2012. Influence of red wine polyphenols and ethanol on the gut microbiota ecology and biochemical biomarkers. The American Journal of Clinical Nutrition 95 (6):1323–34. doi: 10.3945/ajcn.111.027847.
  • Quintin, D., P. Garcia-Gomez, M. Ayuso, and A. M. Sanmartin. 2019. Active biocompounds to improve food nutritional value. Trends in Food Science & Technology 84:19–21. doi: 10.1016/j.tifs.2018.03.024.
  • Rafiq, S., R. Kaul, S. A. Sofi, N. Bashir, F. Nazir, and G. A. Nayik. 2018. Citrus peel as a source of functional ingredient: A review. Journal of the Saudi Society of Agricultural Sciences 17 (4):351–8. doi: 10.1016/j.jssas.2016.07.006.
  • Rakariyatham, K., D. Zhou, N. Rakariyatham, and F. Shahidi. 2020. Sapindaceae (Dimocarpus longan and Nephelium lappaceum) seed and peel byproducts: Potential sources for phenolic compounds and use as functional ingredients in food and health applications. Journal of Functional Foods 67:103846–21. doi: 10.1016/j.jff.2020.103846.
  • Razola-Díaz, M. C., E. J. Guerra-Hernández, C. Rodríguez-Pérez, A. M. Gómez-Caravaca, B. García-Villanova, and V. Verardo. 2021. Optimization of ultrasound-assisted extraction via sonotrode of phenolic compounds from orange by-product. Foods 10 (5):1120. doi: 10.3390/foods10051120.
  • Rebello, L. P. G., A. M. Ramos, P. B. Pertuzatti, M. T. Barcia, N. Castillo-Muñoz, and I. Hermosín-Gutiérrez. 2014. Flour of banana (Musa AAA) peel as a source of antioxidant phenolic compounds. Food Research International 55:397–403. doi: 10.1016/j.foodres.2013.11.039.
  • Rejeb, I. B., N. Dhen, M. Gargouri, and A. Boulila. 2020. Chemical composition, antioxidant potential and enzymes inhibitory properties of globe artichoke by-products. Chemistry & Biodiversity 17 (9):e2000073. doi: 10.1002/cbdv.202000073.
  • Reynoso-Camacho, R., A. M. Sotelo-González, P. Patiño-Ortiz, N. E. Rocha-Guzmán, and I. F. Pérez-Ramírez. 2021. Berry by-products obtained from a decoction process are a rich source of low- and high-molecular weight extractable and non-extractable polyphenols. Food and Bioproducts Processing 127:371–87. doi: 10.1016/j.fbp.2021.03.014.
  • Reynoso-Camacho, R., L. D. Rodriguez-Villanueva, A. M. Sotelo-Gonzalez, M. Ramos-Gomez, and I. F. Perez-Ramirez. 2021. Citrus decoction by-product represents a rich source of carotenoid, phytosterol, extractable and non-extractable polyphenols. Food Chemistry 350:129239. doi: 10.1016/j.foodchem.2021.129239.
  • Ribeiro, L. F., R. H. Ribani, T. M. G. Francisco, A. A. Soares, R. Pontarolo, and C. W. I. Haminiuk. 2015. Profile of bioactive compounds from grape pomace (Vitis vinifera and Vitis labrusca) by spectrophotometric, chromatographic and spectral analyses. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 1007:72–80. doi: 10.1016/j.jchromb.2015.11.005.
  • Ríos-Covián, D., P. Ruas-Madiedo, A. Margolles, M. Gueimonde, C. G. de los Reyes-Gavilán, and N. Salazar. 2016. Intestinal short chain fatty acids and their link with diet and human health. Frontiers in Microbiology 7:185. doi: 10.3389/fmicb.2016.00185.
  • Roseiro, L. B., C. S. Tavares, J. C. Roseiro, and A. P. Rauter. 2013. Antioxidants from aqueous decoction of carob pods biomass (Ceretonia silique L.): Optimization using response surface methodology and phenolic profile by capillary electrophoresis. Industrial Crops and Products 44:119–26. doi: 10.1016/j.indcrop.2012.11.006.
  • Ruesgas-Ramon, M., M. C. Figueroa-Espinoza, and E. Durand. 2017. Application of deep eutectic solvents (DES) for phenolic compounds extraction: Overview, challenges, and opportunities. Journal of Agricultural and Food Chemistry 65 (18):3591–601. doi: 10.1021/acs.jafc.7b01054.
  • Saini, A., P. S. Panesar, and M. B. Bera. 2019. Valorization of fruits and vegetables waste through green extraction of bioactive compounds and their nanoemulsions-based delivery system. Bioresources and Bioprocessing 6 (1):26. doi: 10.1186/s40643-019-0261-9.
  • Saleh, M. M., M. Siddiqui, S. Mat So’ad, S. Murugesu, A. Khatib, and M. Rahman. 2018. Antioxidant and α-glucosidase inhibitory activities and gas chromatography–mass spectrometry profile of salak (Salacca zalacca) fruit peel extracts. Pharmacognosy Research 10 (4):385–90. doi: 10.4103/pr.pr_7_18.
  • Sánchez-Patán, F., C. Cueva, M. Monagas, G. E. Walton, G. R. Gibson, J. E. Quintanilla-López, R. Lebrón-Aguilar, P. J. Martín-Álvarez, M. V. Moreno-Arribas, and B. Bartolomé. 2012. In vitro fermentation of a red wine extract by human gut microbiota: Changes in microbial groups and formation of phenolic metabolites. Journal of Agricultural and Food Chemistry 60 (9):2136–47. doi: 10.1021/jf2040115.
  • Sánchez-Patán, F., E. Barroso, T. van de Wiele, A. Jiménez-Girón, P. J. Martín-Alvarez, M. V. Moreno-Arribas, M. C. Martínez-Cuesta, M. C. T. Peláez, C. Requena, and B. Bartolomé. 2015. Comparative in vitro fermentations of cranberry and grape seed polyphenols with colonic microbiota. Food Chemistry 183:273–82. doi: 10.1016/j.foodchem.2015.03.061.
  • Sanchez-Reinoso, Z., W. I. Mora-Adames, A. Fuenmayor, A. E. Darghan-Contreras, C. Gardana, and L. F. Gutierrez. 2020. Microwave-assited extraction of phenolic compounds from Sacha Inchi shell: Optimization, physicochemical properties and evaluation of their antioxidant activity. Chemical Engineering and Processing - Process Intensification 153:107922. doi: 10.1016/j.cep.2020.107922.
  • Sanders, M. E., D. J. Merenstein, G. Reid, G. R. Gibson, and R. A. Rastall. 2019. Probiotics and prebiotics in intestinal health and disease: From biology to the clinic. Nature Reviews. Gastroenterology & Hepatology 16 (10):605–16. doi: 10.1038/s41575-019-0173-3.
  • Sangta, J., M. Wongkaew, T. Tangpao, P. Withee, S. Haituk, C. Arjin, K. Sringarm, S. Hongsibsong, K. Sutan, T. Pusadee, et al. 2021. Recovery of polyphenolic fraction from arabica coffee pulp and its antifungal applications. Plants 10 (7):1422. doi: 10.3390/plants10071422.
  • Sanz, V., L. Lopez-Hortas, M. D. Torres, and H. Domínguez. 2021. Trends in kiwifruit and byproducts valorization. Trends in Food Science & Technology 107:401–14. doi: 10.1016/j.tifs.2020.11.010.
  • Sawalha, S. M. S., D. Arraez-Roman, A. Segura-Carretero, and A. Fernandez-Gutierrez. 2009. Quantification of main phenolic compounds in sweet and bitter orange peel using CE–MS/MS. Food Chemistry 116 (2):567–74. doi: 10.1016/j.foodchem.2009.03.003.
  • Sáyago-Ayerdi, S. G., K. Venema, M. Tabernero, B. Sarriá, L. L. Bravo, and R. Mateos. 2021. Bioconversion by gut microbiota of predigested mango (Mangifera indica L) ‘Ataulfo’ peel polyphenols assessed in a dynamic (TIM-2) in vitro model of the human colon. Food Research International (Ottawa, Ont.) 139:109963. doi: 10.1016/j.foodres.2020.109963.
  • Schoefer, L., R. Mohan, A. Schwiertz, A. Braune, and M. Blaut. 2003. Anaerobic degradation of flavonoids by Clostridium orbiscindens. Applied and Environmental Microbiology 69 (10):5849–54. doi: 10.1128/AEM.69.10.5849-5854.2003.
  • Serreli, G., and M. Deiana. 2019. In vivo formed metabolites of polyphenols and their biological efficacy. Food & Function 10 (11):6999–7021. doi: 10.1039/c9fo01733j.
  • Sharma, K., N. Mahato, S. H. Nile, E. T. Lee, and Y. R. Lee. 2016. Economical and environmentally-friendly approaches for usage of onion (Allium cepa L.) waste. Food & Function 7 (8):3354–69. doi: 10.1039/c6fo00251j.
  • Shortt, C., O. Hasselwander, A. Meynier, A. Nauta, E. N. Fernández, P. Putz, I. Rowland, J. Swann, J. Türk, J. Vermeiren, et al. 2018. Systematic review of the effects of the intestinal microbiota on selected nutrients and non-nutrients. European Journal of Nutrition 57 (1):25–49. doi: 10.1007/s00394-017-1546-4.
  • Siemińska-Kuczer, A., M. Szymańska-Chargot, and A. Zdunek. 2022. Recent advances in interactions between polyphenols and plant cell wall polysaccharides as studied using an adsorption technique. Food Chemistry 373 (Pt B):131487. doi: 10.1016/j.foodchem.2021.131487.
  • Silva, M. A., T. Gonçalves Albuquerque, R. C. Alvesb, M. B. P. Oliveira, S. Helena, and H. S. Costa. 2020. Melon (Cucumis melo L.) by-products: Potential food ingredients for novel functional foods? Trends in Food Science & Technology 98:181–9. doi: 10.1016/j.tifs.2018.07.005.
  • Singleton, V. L., and J. A. Rossi. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture 16:144–58.
  • Skrovankova, S., D. Sumczynski, J. Mlcek, T. Jurikova, and J. Sochor. 2015. Bioactive compounds and antioxidant activity in different types of berries. International Journal of Molecular Sciences 16 (10):24673–706. doi: 10.3390/ijms161024673.
  • Socas-Rodriguez, B., M. V. Torres-Cornejo, G. Alvarez-Rivera, and J. A. Mendiola. 2021. Deep eutectic solvents for the extraction of bioactive compounds from natural sources and agricultural by-products. Applied Sciences 11 (11):4897. doi: 10.3390/app11114897.
  • Soengas, P., M. E. Cartea, M. Francisco, T. Sotelo, and P. Velasco. 2012. New insights into antioxidant activity of Brassica crops. Food Chemistry 134 (2):725–33. doi: 10.1016/j.foodchem.2012.02.169.
  • Sourabh, A., S. S. Kanwar, R. G. Sud, A. Ghabru, and O. P. Sharma. 2013. Influence of phenolic compounds of Kangra tea [Camellia sinensis (L) O Kuntze] on bacterial pathogens and indigenous bacterial probiotics of Western Himalayas. Brazilian Journal of Microbiology 44 (3):709–15. doi: 10.1590/S1517-83822013000300007.
  • Sousa, A. F., P. Pinto, A. Silvestre, and C. P. Neto. 2006. Triterpenic and other lipophilic components from industrial cork. Journal of Agricultural and Food Chemistry 54 (18):6888–93. doi: 10.1021/jf060987+.
  • Spagnuolo, L., S. D. Posta, C. Fanali, L. Dugo, and L. D. Gara. 2021. Antioxidant and antiglycation effects of polyphenol compounds extracted from hazelnut skin on advanced glycation end products (Ages) formation. Antioxidants 10 (3):424. doi: 10.3390/antiox10030424.
  • Stelluti, S., M. Caser, S. Demasi, and V. Scariot. 2021. Sustainable processing of floral bio-residues of saffron (Crocus sativus l.) for valuable biorefinery products. Plants 10 (3):523. doi: 10.3390/plants10030523.
  • Szabo, K., F. V. Dulf, B. E. Teleky, P. Eleni, C. Boukouvalas, M. Krokida, N. Kapsalis, A. V. Rusu, C. T. Socol, and D. C. Vodnar. 2021. Evaluation of the bioactive compounds found in tomato seed oil and tomato peels influenced by industrial heat treatments. Foods 10 (1):110. doi: 10.3390/foods10010110.
  • Taghvaeefard, N., A. Ghani, and M. Hosseinifarahi. 2021. Comparative study of phytochemical profile and antioxidant activity of flavedo from two Irania citron fruit (Citrus medica L.). Journal of Food Measurement and Characterization 15 (3):2821–30. doi: 10.1007/s11694-021-00859-0.
  • Tao, X., H. Sun, J. Chen, L. Li, Y. Wang, and A. Sun. 2014. Analysis of polyphenols in apple pomace using gas chromatography-mass spectrometry with derivatization. International Journal of Food Properties 17 (8):1818–27. Taylor & Francis. doi: 10.1080/10942912.2012.740645.
  • Tirado-Kulieva, V., S. Atoche-Dioses, and E. Hernandez-Martinez. 2021. Phenolic compounds of mango (Mangifera indica) by-products: Antioxidant and antimicrobial potential, use in disease prevention and food industry, methods of extraction and microencapsulation. Scientia Agropecuaria 12 (2):283–93. doi: 10.17268/sci.agropecu.2021.031.
  • Tomás-Barberán, F. A., A. González-Sarrías, R. García-Villalba, M. A. Núñez-Sánchez, M. Selma, M. T. García-Conesa, and J. C. Espín. 2017. Urolithins, the rescue of “old” metabolites to understand a “new” concept: Metabotypes as a nexus among phenolic metabolism, microbiota dysbiosis, and host health status. Molecular Nutrition & Food Research 61 (1):1500901. doi: 10.1002/mnfr.201500901.
  • Tomás-Barberan, F. A., and J. C. Espín. 2019. Effect of food structure and processing on (poly)phenol-gut microbiota interactions and the effects on human health. Annual Review of Food Science and Technology 10 (1):221–38. doi: 10.1146/annurev-food-032818-121615.
  • Toor, R. K., and G. P. Savage. 2005. Antioxidant activity in different fractions of tomatoes. Food Research International 38 (5):487–94. doi: 10.1016/j.foodres.2004.10.016.
  • Torres-Ossandón, M. J., A. Vega-Galvez, J. Lopez, K. Stucken, J. Romero, and K. D. Scala. 2018. Effects of high hydrostatic pressure processing and supercritical fluid extraction on bioactive compounds and antioxidant capacity of Cape gooseberry pulp (Physalis peruviana L.). The Journal of Supercritical Fluids 138:215–20. doi: 10.1016/j.supflu.2018.05.005.
  • Trujillo-Mayol, I., C. Cespedes-Acuña, F. Silva, and J. Alarcon-Enos. 2019. Improvement of the polyphenol extraction from avocado peel by assisted ultrasound and microwaves. Journal of Food Process Engineering 42 (6):e13197. doi: 10.1111/jfpe.13197.
  • Tzima, K., N. P. Brunton, J. G. Lyng, D. Frontuto, and D. K. Rai. 2021. The effect of pulsed electric field as a pre-treatment step in ultrasound assisted extraction of phenolic compounds from fresh rosemary and thyme by-products. Innovative Food Science & Emerging Technologies 69:102644. doi: 10.1016/j.ifset.2021.102644.
  • Tzounis, X., A. Rodriguez-Mateos, J. Vulevic, G. R. Gibson, C. Kwik-Uribe, and J. P. E. Spencer. 2011. Prebiotic evaluation of cocoa-derived flavanols in healthy humans by using a randomized, controlled, double-blind, crossover intervention study. The American Journal of Clinical Nutrition 93 (1):62–72. doi: 10.3945/ajcn.110.000075.
  • Tzounis, X., J. Vulevic, G. G. C. Kuhnle, T. George, J. Leonczak, G. R. Gibson, C. Kwik-Uribe, and J. P. E. Spencer. 2008. Flavanol monomer-induced changes to the human faecal microflora. The British Journal of Nutrition 99 (4):782–92. doi: 10.1017/S0007114507853384.
  • Valdez-Morales, M., L. G. Espinosa-Alonso, L. C. Espinoza-Torres, F. Delgado-Vargas, and S. Medina-Godoy. 2014. Phenolic content and antioxidant and antimutagenic activities in tomato peel, seeds, and byproducts. Journal of Agricultural and Food Chemistry 62 (23):5281–9. doi: 10.1021/jf5012374.
  • Vella, F. M., D. Cautela, and B. Laratta. 2019. Characterization of polyphenolic compounds in cantaloupe melon by-products. Foods 8 (6):196. doi: 10.3390/foods8060196.
  • Vendramin, V., A. Viel, and S. Vincenzi. 2021. Caftaric acid isolation from unripe grape: A “green”, alternative for hydroxycinnamic acids recovery. Molecules 26 (4):1148. doi: 10.3390/molecules26041148.
  • Vigano, J., I. Zaboti, P. Aparecida, D. C. Braga, J. Kelly, M. Roberto, M. Junior, F. Guillermo, R. Reyes, and J. Martinez. 2016. Pressurized liquid extraction as an alternative process to readily obtain bioactive compounds from passion fruit rinds. Food and Bioproducts Processing 100:382–90. doi: 10.1016/j.fbp.2016.08.011.
  • Visioli, F., and C. Galli. 2003. Olives and their production waste products as sources of bioactive compounds. Current Topics in Nutraceutical Research 1:85–8.
  • Vodnar, D. C., L. F. Călinoiu, F. V. Dulf, B. E. Ştefănescu, G. Crişan, and C. Socaciu. 2017. Identification of the bioactive compounds and antioxidant, antimutagenic and antimicrobial activities of thermally processed agro-industrial waste. Food Chemistry 231:131–40. doi: 10.1016/j.foodchem.2017.03.131.
  • Vu, H. T., C. J. Scarlett, and Q. V. Vuong. 2018. Phenolic compounds within banana peel and their potential uses: A review. Journal of Functional Foods 40:238–48. doi: 10.1016/j.jff.2017.11.006.
  • Wan, M. L. Y., V. A. Co, and H. El-Nezami. 2021. Dietary polyphenol impact on gut health and microbiota. Critical Reviews in Food Science and Nutrition 61 (4):690–711. doi: 10.1080/10408398.2020.1744512.
  • Wang, Z., and C. Wang. 2018. Preliminary characterization of the composition and phenolic fragmentation of olive byproducts by gas chromatography–mass spectrometry and high-performance liquid chromatography–tandem mass spectrometry. Analytical Letters 51 (9):1335–57. doi: 10.1080/00032719.2017.1379086.
  • Wong-Paz, J. E., S. Guyot, P. Aguilar-Zárate, D. B. Muñiz-Márquez, J. C. Contreras-Esquivel, and C. N. Aguilar. 2021. Structural characterization of native and oxidized procyanidins (condensed tannins) from coffee pulp (Coffea arabica) using phloroglucinolysis and thioglycolysis-HPLC-ESI-MS. Food Chemistry 340:127830. doi: 10.1016/j.foodchem.2020.127830.
  • Wu, M., Q. Luo, R. Nie, X. Yang, Z. Tang, H, and Chen, H. 2021. Potential implications of polyphenols on aging considering oxidative stress, inflammation, autophagy, and gut microbiota. Critical Reviews in Food Science and Nutrition 61 (13):2175–93. doi: 10.1080/10408398.2020.1773390.
  • Wu, T., Y. Guan, and J. Ye. 2007. Determination of flavonoids and ascorbic acid in grapefruit peel and juice by capillary electrophoresis with electrochemical detection. Food Chemistry 100 (4):1573–9. doi: 10.1016/j.foodchem.2005.12.042.
  • Xu, C. C., B. Wang, Y. Q. Pu, J. S. Tao, and T. Zhang. 2017. Advances in extraction and analysis of phenolic compounds from plant materials. Chinese Journal of Natural Medicines 15 (10):721–31. doi: 10.1016/S1875-5364(17)30103-6.
  • Xu, S., D. Fang, X. Tian, Y. Xu, X. Zhu, Y. Wang, B. Lei, P. Hu, and L. Ma. 2021. Subcritical water extraction of bioactive compounds from waste cotton (Gossypium hirsutum L.) flowers. Industrial Crops and Products 164:113369. doi: 10.1016/j.indcrop.2021.113369.
  • Yammine, S., C. Delsart, X. Vitrac, M. Peuchot, and R. Ghidossi. 2020. Characterisation of polyphenols and antioxidant potential of red and white pomace by-product extracts using subcritical water extraction. Oeno One 54 (2):263–78. doi: 10.20870/oeno-one.2020.54.2346
  • Yu, Q., H. Gan, N. Feng, Y. Li, and Y. Han. 2021. Hydroxytyrosol magnetic molecularly imprinted polymers as the sorbent for solid-phase extraction for selective recognition of hydroxytyrosol from Chinese olive leave. Materials Today Communications 29:102992. doi: 10.1016/j.mtcomm.2021.102992.
  • Zhang, H., and R. Tsao. 2016. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Current Opinion in Food Science 8:33–42. doi: 10.1016/j.cofs.2016.02.002.
  • Zhang, H., J. Birch, J. Pei, Z. F. Ma, and A. E. Bekhit. 2019. Phytochemical compounds and biological activity in Asparagus roots: A review. International Journal of Food Science & Technology 54 (4):966–77. doi: 10.1111/ijfs.13993.
  • Zhao, H., Z. Jiang, X. Chang, H. Xue, W. Yahefu, and X. Zhang. 2018. 4-hydroxyphenylacetic acid prevents acute APAP-induced liver injury by increasing phase II and antioxidant enzymes in mice. Frontiers in Pharmacology 9:653–10. doi: 10.3389/fphar.2018.00653.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.