1,004
Views
5
CrossRef citations to date
0
Altmetric
Review

Therapeutic potential of non-starch polysaccharides on type 2 diabetes: from hypoglycemic mechanism to clinical trials

, , , , , , , & ORCID Icon show all

References

  • Acevedo-Fani, A., and H. Singh. 2021. Biopolymer interactions during gastric digestion: implications for nutrient delivery. Food Hydrocolloids. 116:106644. doi: 10.1016/j.foodhyd.2021.106644.
  • Agius, L. 2007. New hepatic targets for glycaemic control in diabetes. Best Practice & Research. Clinical Endocrinology & Metabolism 21 (4):587–605. doi: 10.1016/j.beem.2007.09.001.
  • Ai, C., M. Duan, N. Ma, X. Sun, J. Yang, C. Wen, Y. Sun, N. Zhao, and S. Song. 2018. Sulfated polysaccharides from pacific abalone reduce diet-induced obesity by modulating the gut microbiota. Journal of Functional Foods 47:211–219. doi: 10.1016/j.jff.2018.05.061.
  • Alarcon, C., B.-B. Boland, Y. Uchizono, P.-C. Moore, B. Peterson, S. Rajan, O.-S. Rhodes, A.-B. Noske, L. Haataja, P. Arvan, et al. 2016. Pancreatic beta-cell adaptive plasticity in obesity increases insulin production but adversely affects secretory function. Diabetes 65 (2):438–450. doi: 10.2337/db15-0792.
  • Amamou, S., H. Lazreg, J. Hafsa, H. Majdoub, C. Rihouey, D. L. Cerf, and L. Achour. 2020. Effect of extraction condition on the antioxidant, antiglycation and α-amylase inhibitory activities of Opuntia macrorhiza fruit peels polysaccharides. Lwt 127:109411. doi: 10.1016/j.lwt.2020.109411.
  • Ansari, M.-H.-R., S. Saher, R. Parveen, W. Khan, I.-A. Khan, and S. Ahmad. Forthcoming. Role of gut microbiota metabolism and biotransformation on dietary natural products to human health implications with special reference to biochemoinformatics approach. Journal of Traditional and Complementary Medicine.
  • Ari, Z.-B., O. Avlas, O. Pappo, V. Zilbermints, Y. Cheporko, L. Bachmetov, R. Zemel, A. Shainberg, E. Sharon, F. Grief, et al. 2012. Reduced hepatic injury in toll-like receptor 4–deficient mice following D-galactosamine/lipopolysaccharide-induced fulminant hepatic failure. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology 29 (1–2):41–50. doi: 10.1159/000337585.
  • Arora, A., T. Behl, A. Sehgal, S. Singh, N. Sharma, S. Bhatia, E. Sobarzo-Sanchez, and S. Bungau. 2021. Unravelling the involvement of gut microbiota in type 2 diabetes mellitus. Life Sciences 273:119311. doi: 10.1016/j.lfs.2021.119311.
  • Basile, J.-N. 2013. The potential of sodium glucose cotransporter 2 (SGLT2) inhibitors to reduce cardiovascular risk in patients with type 2 diabetes (T2DM). Journal of Diabetes and Its Complications 27 (3):280–286. doi: 10.1016/j.jdiacomp.2012.12.004.
  • Basu, A., J. Alexander, J. Ebersole, and P. Planinic. 2020. Dietary fiber and blueberry intervention lowers gestational weight gain and C-reactive protein in women at high risk for gestational diabetes. Metabolism 104:154117. doi: 10.1016/j.metabol.2019.12.063.
  • Behl, T., T. Rana, G.-H. Alotaibi, M. Shamsuzzaman, M. Naqvi, A. Sehgal, S. Singh, N. Sharma, Y. Almoshari, A.-A.-H. Abdellatif, et al. 2022. Polyphenols inhibiting MAPK signalling pathway mediated oxidative stress and inflammation in depression. Biomedicine & Pharmacotherapy 146:112545. doi: 10.1016/j.biopha.2021.112545.
  • Bhateja, P.-K., A. Kajal, and R. Singh. 2020. Amelioration of diabetes mellitus by modulation of GLP-1 via targeting alpha-glucosidase using Acacia tortilis polysaccharide in Streptozotocin-Nicotinamide induced diabetes in rats. Journal of Ayurveda and Integrative Medicine 11 (4):405–413. doi: 10.1016/j.jaim.2019.06.003.
  • Bhuvaneswari, S, and C.-V. Anuradha. 2012. Astaxanthin prevents loss of insulin signaling and improves glucose metabolism in liver of insulin resistant mice. Canadian Journal of Physiology and Pharmacology 90 (11):1544–1552. doi: 10.1139/y2012-119.
  • Bi, Q., W. Gu, F. Meng, X. Yang, L. Zeng, L. Liang, M. Yang, T. Zhang, and J. Yu. 2020. Pharmacological and metagenomics evidence of polysaccharide from Polygonum multiflorum in the alleviation of insulin resistance. International Journal of Biological Macromolecules 164:1070–1079. doi: 10.1016/j.ijbiomac.2020.07.085.
  • Boey, D., L. Heilbronn, A. Sainsbury, R. Laybutt, A. Kriketos, H. Herzog, and L.-V. Campbell. 2006. Low serum PYY is linked to insulin resistance in first-degree relatives of subjects with type 2 diabetes. Neuropeptides 40 (5):317–324. doi: 10.1016/j.npep.2006.08.002.
  • Bohn, J.-A, and J.-N. BeMiller. 1995. (1→3)-β-D-glucans as biological response modifiers: a review of structure-functional activity relationships. Carbohydrate Polymers 28 (1):3–14. doi: 10.1016/0144-8617(95)00076-3.
  • Borchani, C., F. Fonteyn, G. Jamin, J. Destain, L. Willems, M. Paquot, C. Blecker, and P. Thonart. 2016. Structural characterization, technological functionality, and physiological aspects of fungal beta-D-glucans: a review. Critical Reviews in Food Science and Nutrition 56 (10):1746–1752. doi: 10.1080/10408398.2013.854733.
  • Bozbulut, R, and N. Sanlier. 2019. Promising effects of β-glucans on glyceamic control in diabetes. Trends in Food Science & Technology 83:159–166. doi: 10.1016/j.tifs.2018.11.018.
  • Briard, B., T. Fontaine, P. Samir, D.-E. Place, L. Muszkieta, R.-K S. Malireddi, R. Karki, S. Christgen, P. Bomme, P. Vogel, et al. 2020. Galactosaminogalactan activates the inflammasome to provide host protection. Nature 588 (7839):688–692. doi: 10.1038/s41586-020-2996-z.
  • Burillo, J., M. Fernández-Rhodes, M. Piquero, P. López-Alvarado, J. C. Menéndez, B. Jiménez, C. González-Blanco, P. Marqués, C. Guillén, and M. Benito. 2021. Human amylin aggregates release within exosomes as a protective mechanism in pancreatic beta cells: pancreatic beta-hippocampal cell communication. Biochimica et Biophysica Acta. Molecular Cell Research 1868 (5):118971. doi: 10.1016/j.bbamcr.2021.118971.
  • Butler, A.-E., J. Janson, S. Bonner-Weir, R. Ritzel, R.-A. Rizza, and P.-C. Butler. 2003. β-cell deficit and increased β-cell apoptosis in humans with type 2 diabetes. Diabetes 52 (1):102–110. doi: 10.2337/diabetes.52.1.102.
  • Caesar, R. 2019. Pharmacologic and nonpharmacologic therapies for the gut microbiota in type 2 diabetes. Canadian Journal of Diabetes 43 (3):224–231. doi: 10.1016/j.jcjd.2019.01.007.
  • Cai, H., F. Liu, P. Zuo, G. Huang, Z. Song, T. Wang, H. Lu, F. Guo, C. Han, and G. Sun. 2015. Practical application of antidiabetic efficacy of Lycium barbarum polysaccharide in patients with type 2 diabetes. Medicinal Chemistry (Shariqah (United Arab Emirates)) 11 (4):383–390. doi: 10.2174/1573406410666141110153858.
  • Calazans, G. C. M. T., R. C. Lima, F. P. D. Franc, and C. E. Lopes. 2000. Molecular weight and antitumour activity of Zymomonas mobilis levans. International Journal of Biological Macromolecules 27 (4):245–247. doi: 10.1016/S0141-8130(00)00125-2.
  • Calderon, G., A. McRae, J. Rievaj, J. Davis, I. Zandvakili, S. Linker-Nord, D. Burton, G. Roberts, F. Reimann, B. Gedulin, et al. 2020. Ileo-colonic delivery of conjugated bile acids improves glucose homeostasis via colonic GLP-1-producing enteroendocrine cells in human obesity and diabetes. EBioMedicine 55:102759. doi: 10.1016/j.ebiom.2020.102759.
  • Campbell, R.-K. 2009. Fate of the beta-cell in the pathophysiology of type 2 diabetes. Journal of the American Pharmacists Association (2003) 49 (Suppl 1):S10–S15. doi: 10.1331/JAPhA.2009.09076.
  • Cao, C., Q. Huang, B. Zhang, C. Li, and X. Fu. 2018. Physicochemical characterization and in vitro hypoglycemic activities of polysaccharides from Sargassum pallidum by microwave-assisted aqueous two-phase extraction. International Journal of Biological Macromolecules 109:357–368. doi: 10.1016/j.ijbiomac.2017.12.096.
  • Cao, C., C. Li, Q. Chen, Q. Huang, M. E. M. Perez, and X. Fu. 2019. Physicochemical characterization, potential antioxidant and hypoglycemic activity of polysaccharide from Sargassum pallidum. International Journal of Biological Macromolecules 139:1009–1017. doi: 10.1016/j.ijbiomac.2019.08.069.
  • Cao, C., B. Zhang, C. Li, Q. Huang, X. Fu, and R. H. Liu. 2019. Structure and in vitro hypoglycemic activity of a homogenous polysaccharide purified from Sargassum pallidum. Food & Function 10 (5):2828–2838. doi: 10.1039/c8fo02525h.
  • Carabin, I. G., M. R. Lyon, S. Wood, X. Pelletier, Y. Donazzolo, and G. A. Burdock. 2009. Supplementation of the diet with the functional fiber PolyGlycoplex is well tolerated by healthy subjects in a clinical trial. Nutrition Journal 8:9. doi: 10.1186/1475-2891-8-9.
  • Cefalu, W. T, and F. B. Hu. 2004. Role of chromium in human health and in diabetes. Diabetes Care 27 (11):2741–2751. doi: 10.2337/diacare.27.11.2741.
  • Chayed, S, and F. M. Winnik. 2007. In vitro evaluation of the mucoadhesive properties of polysaccharide-based nanoparticulate oral drug delivery systems. European Journal of Pharmaceutics and Biopharmaceutics: Official Journal of Arbeitsgemeinschaft Fur Pharmazeutische Verfahrenstechnik e.V 65 (3):363–370. doi: 10.1016/j.ejpb.2006.08.017.
  • Chen, D., G. Chen, C. Chen, X. Zeng, and H. Ye. 2020. Prebiotics effects in vitro of polysaccharides from tea flowers on gut microbiota of healthy persons and patients with inflammatory bowel disease. International Journal of Biological Macromolecules 158:968–976. doi: 10.1016/j.ijbiomac.2020.04.248.
  • Chen, H., J. Cheng, S. Zhou, D. Chen, W. Qin, C. Li, H. Li, D. Lin, Q. Zhang, Y. Liu, et al. 2021. Arabinoxylan combined with different glucans improve lipid metabolism disorder by regulating bile acid and gut microbiota in mice fed with high-fat diet. International Journal of Biological Macromolecules 168:279–288. doi: 10.1016/j.ijbiomac.2020.12.036.
  • Chen, H.-L., W.-H. Sheu, T.-S. Tai, Y.-P. Liaw, and Y. C. Chen. 2003. Konjac supplement alleviated hypercholesterolemia and hyperglycemia in type 2 diabetic subjects-a randomized double-blind trial. Journal of the American College of Nutrition 22 (1):36–42. doi: 10.1080/07315724.2003.10719273.
  • Chen, H., Y. Jia, and Q. Guo. 2020. Polysaccharides and polysaccharide complexes as potential sources of antidiabetic compounds: a review. Bioactive Natural Products 67:199–220. doi: 10.1016/B978-0-12-819483-6.00006-0.
  • Chen, H., X. Jiang, S. Li, W. Qin, Z. Huang, Y. Luo, Y. Luo, H. Li, D. Wu, Q. Zhang, et al. 2020. Possible beneficial effects of xyloglucan from its degradation by gut microbiota. Trends in Food Science & Technology 97:65–75. doi: 10.1016/j.tifs.2020.01.001.
  • Chen, H., Y. Liu, T. Yang, D. Chen, Y. Xiao, W. Qin, D. Wu, Q. Zhang, D. Lin, Y. Liu, et al. 2021. Interactive effects of molecular weight and degree of substitution on biological activities of arabinoxylan and its hydrolysates from triticale bran. International Journal of Biological Macromolecules 166:1409–1418. doi: 10.1016/j.ijbiomac.2020.11.020.
  • Chen, H., Q. Nie, J. Hu, X. Huang, W. Huang, and S. Nie. 2020. Metabolism amelioration of Dendrobium officinale polysaccharide on type II diabetic rats. Food Hydrocolloids. 102:105582. doi: 10.1016/j.foodhyd.2019.105582.
  • Chen, H., M. Xiong, T. Bai, D. Chen, Q. Zhang, D. Lin, Y. Liu, A. Liu, Z. Huang, and W. Qin. 2021. Comparative study on the structure, physicochemical, and functional properties of dietary fiber extracts from quinoa and wheat. LWT 149:111816. doi: 10.1016/j.lwt.2021.111816.
  • Chen, H., S. Zhou, J. Li, X. Huang, J. Cheng, X. Jiang, W. Qin, Y. Liu, A. Liu, Q. Zhang, et al. 2020. Xyloglucan compounded inulin or arabinoxylan against glycometabolism disorder via different metabolic pathways: gut microbiota and bile acid receptor effects. Journal of Functional Foods 74:104162. doi: 10.1016/j.jff.2020.104162.
  • Chen, J., L. Li, X. Zhang, L. Wan, Q. Zheng, D. Xu, Y. Li, Y. Liang, M. Chen, B. Li, et al. 2021. Structural characterization of polysaccharide from Centipeda minima and its hypoglycemic activity through alleviating insulin resistance of hepatic HepG2 cells. Journal of Functional Foods 82:104478. doi: 10.1016/j.jff.2021.104478.
  • Chen, J., L. Li, X. Zhou, P. Sun, B. Li, and X. Zhang. 2018. Preliminary characterization and antioxidant and hypoglycemic activities in vivo of polysaccharides from Huidouba. Food & Function 9 (12):6337–6348. doi: 10.1039/c8fo01117f.
  • Chen, L., W. Xu, D. Chen, G. Chen, J. Liu, X. Zeng, R. Shao, and H. Zhu. 2018. Digestibility of sulfated polysaccharide from the brown seaweed Ascophyllum nodosum and its effect on the human gut microbiota in vitro. International Journal of Biological Macromolecules 112:1055–1061. doi: 10.1016/j.ijbiomac.2018.01.183.
  • Chen, L.-C., B.-K. Jiang, W.-H. Zheng, S.-Y. Zhang, J.-J. Li, and Z.-Y. Fan. 2019. Preparation, characterization and anti-diabetic activity of polysaccharides from adlay seed. International Journal of Biological Macromolecules 139:605–613. doi: 10.1016/j.ijbiomac.2019.08.018.
  • Chen, M., N. Huang, J. Liu, J. Huang, J. Shi, and F. Jin. 2021. AMPK: a bridge between diabetes mellitus and Alzheimer’s disease. Behavioural Brain Research 400:113043. doi: 10.1016/j.bbr.2020.113043.
  • Chen, M., L. Guo, J. Nsor-Atindana, H. D. Goff, W. Zhang, J. Mao, and F. Zhong. 2020. The effect of viscous soluble dietary fiber on nutrient digestion and metabolic responses I: in vitro digestion process. Food Hydrocolloids 107:105971. doi: 10.1016/j.foodhyd.2020.105971.
  • Chen, M., J. Xu, Y. Wang, Z. Wang, L. Guo, X. Li, and L. Huang. 2020. Arctium lappa L. polysaccharide can regulate lipid metabolism in type 2 diabetic rats through the SREBP-1/SCD-1 axis. Carbohydrate Research 494:108055. doi: 10.1016/j.carres.2020.108055.
  • Chen, M.-J., C. Liu, Y. Wan, L. Yang, S. Jiang, D.-W. Qian, and J.-A. Duan. 2021. Enterohepatic circulation of bile acids and their emerging roles on glucolipid metabolism. Steroids 165:108757. doi: 10.1016/j.steroids.2020.108757.
  • Chen, P., X. Chen, L. Hao, P. Du, C. Li, H. Han, H. Xu, and L. Liu. 2021. The bioavailability of soybean polysaccharides and their metabolites on gut microbiota in the simulator of the human intestinal microbial ecosystem (SHIME). Food Chemistry 362:130233. doi: 10.1016/j.foodchem.2021.130233.
  • Chen, P., S. Lei, M. Tong, Q. Chang, B. Zheng, Y. Zhang, and H. Zeng. 2022. Effect of polysaccharide fractions from Fortunella margarita on the fecal microbiota of mice and SCFA production in vitro. Food Science and Human Wellness 11 (1):97–108. doi: 10.1016/j.fshw.2021.07.011.
  • Chen, Q., B. Xu, W. Huang, A. T. Amrouche, B. Maurizio, J. Simal-Gandara, R. Tundis, J. Xiao, L. Zou, and B. Lu. 2020. Edible flowers as functional raw materials: a review on anti-aging properties. Trends in Food Science & Technology 106:30–47. doi: 10.1016/j.tifs.2020.09.023.
  • Chen, R., B. Liu, X. Wang, K. Chen, K. Zhang, L. Zhang, C. Fei, C. Wang, Y. Liu, F. Xue, et al. 2020. Effects of polysaccharide from Pueraria lobata on gut microbiota in mice. International Journal of Biological Macromolecules 158:740–749. doi: 10.1016/j.ijbiomac.2020.04.201.
  • Chen, S., H. Chen, J. Tian, Y. Wang, L. Xing, and J. Wang. 2013. Chemical modification, antioxidant and alpha-amylase inhibitory activities of corn silk polysaccharides. Carbohydrate Polymers 98 (1):428–437. doi: 10.1016/j.carbpol.2013.06.011.
  • Chen, S., B. M. Khan, K. L. Cheong, and Y. Liu. 2019. Pumpkin polysaccharides: purification, characterization and hypoglycemic potential. International Journal of Biological Macromolecules 139:842–849. doi: 10.1016/j.ijbiomac.2019.08.053.
  • Chen, X., Z. Wang, and J. Kan. 2021. Polysaccharides from ginger stems and leaves: effects of dual and triple frequency ultrasound assisted extraction on structural characteristics and biological activities. Food Bioscience 42:101166. doi: 10.1016/j.fbio.2021.101166.
  • Chen, Y., L. Jin, Y. Li, G. Xia, C. Chen, and Y. Zhang. 2018. Bamboo-shaving polysaccharide protects against high-diet induced obesity and modulates the gut microbiota of mice. Journal of Functional Foods 49:20–31. doi: 10.1016/j.jff.2018.08.015.
  • Chen, Y., D. Liu, D. Wang, S. Lai, R. Zhong, Y. Liu, C. Yang, B. Liu, M. R. Sarker, and C. Zhao. 2019. Hypoglycemic activity and gut microbiota regulation of a novel polysaccharide from Grifola frondosa in type 2 diabetic mice. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 126:295–302. doi: 10.1016/j.fct.2019.02.034.
  • Chen, Z., J. Wang, Z. Fan, J. Qiu, M. Rumbani, X. Yang, H. Zhang, and Z. Wang. 2019. Effects of polysaccharide from the fruiting bodies of Auricularia auricular on glucose metabolism in 60Co-γ-radiated mice. International Journal of Biological Macromolecules 135:887–897. doi: 10.1016/j.ijbiomac.2019.05.136.
  • Cheng, J., J. Song, H. Wei, Y. Wang, X. Huang, Y. Liu, N. Lu, L. He, G. Lv, H. Ding, et al. 2020. Structural characterization and hypoglycemic activity of an intracellular polysaccharide from Sanghuangporus sanghuang mycelia. International Journal of Biological Macromolecules 164:3305–3314. doi: 10.1016/j.ijbiomac.2020.08.202.
  • Cho, M. L., B.-Y. Lee, and S. G. You. 2010. Relationship between oversulfation and conformation of low and high molecular weight fucoidans and evaluation of their in vitro anticancer activity. Molecules (Basel, Switzerland) 16 (1):291–297. doi: 10.3390/molecules16010291.
  • Clemente, J.-C., L.-K. Ursell, L.-W. Parfrey, and R. Knight. 2012. The impact of the gut microbiota on human health: an integrative view. Cell 148 (6):1258–1270. doi: 10.1016/j.cell.2012.01.035.
  • Cui, Y., L. Zhu, Y. Li, S. Jiang, Q. Sun, E. Xie, H. Chen, Z. Zhao, W. Qiao, J. Xu, et al. 2021. Structure of a laminarin-type β-(1→3)-glucan from brown algae Sargassum henslowianum and its potential on regulating gut microbiota. Carbohydrate Polymers 255:117389. doi: 10.1016/j.carbpol.2020.117389.
  • Dalvi, P.-S, and D.-D. Belsham. 2012. Glucagon-like peptide-2 directly regulates hypothalamic neurons expressing neuropeptides linked to appetite control in vivo and in vitro. Endocrinology 153 (5):2385–2397. doi: 10.1210/en.2011-2089.
  • Dedhia, N., S.-J. Marathe, and R.-S. Singhal. 2022. Food polysaccharides: a review on emerging microbial sources, bioactivities, nanoformulations and safety considerations. Carbohydrate Polymers 287:119355. doi: 10.1016/j.carbpol.2022.119355.
  • Deng, J., J. Zhong, J. Long, X. Zou, D. Wang, Y. Song, K. Zhou, Y. Liang, R. Huang, X. Wei, et al. 2020. Hypoglycemic effects and mechanism of different molecular weights of konjac glucomannans in type 2 diabetic rats. International Journal of Biological Macromolecules 165 (Pt B):2231–2243. doi: 10.1016/j.ijbiomac.2020.10.021.
  • Deng, Q., W. Wang, Q. Zhang, J. Chen, H. Zhou, W. Meng, and J. Li. 2021. Extraction optimization of polysaccharides from Gougunao tea and assessment of the antioxidant and hypoglycemic activities of its fractions in vitro. Bioactive Carbohydrates and Dietary Fibre 26:100287. doi: 10.1016/j.bcdf.2021.100287.
  • Deng, Y., L. Huang, C. Zhang, P. Xie, J. Cheng, X. Wang, and L. Liu. 2020. Novel polysaccharide from Chaenomeles speciosa seeds: structural characterization, alpha-amylase and alpha-glucosidase inhibitory activity evaluation. International Journal of Biological Macromolecules 153:755–766. doi: 10.1016/j.ijbiomac.2020.03.057.
  • Deng, Y., Y. Zhang, S. Zheng, J. Hong, C. Wang, T. Liu, Z. Sun, W. Gu, Y. Gu, J. Shi, et al. 2015. Postprandial glucose, insulin and incretin responses to different carbohydrate tolerance tests. Journal of Diabetes 7 (6):820–829. doi: 10.1111/1753-0407.12245.
  • Depeint, F., G. Tzortzis, J. Vulevic, K. I’Anson, and G. R. Gibson. 2008. Prebiotic evaluation of a novel galactooligosaccharide mixture produced by the enzymatic activity of Bifidobacterium bifidum NCIMB 41171, in healthy humans: a randomized, double-blind, crossover, placebo-controlled intervention study. The American Journal of Clinical Nutrition 87 (3):785–791. doi: 10.1093/ajcn/87.3.785.
  • Di Stefano, E., T. Oliviero, and C.-C. Udenigwe. 2018. Functional significance and structure–activity relationship of food-derived α-glucosidase inhibitors. Current Opinion in Food Science 20:7–12. doi: 10.1016/j.cofs.2018.02.008.
  • Dong, J., Q. Liang, Y. Niu, S. Jiang, L. Zhou, J. Wang, C. Ma, and W. Kang. 2020. Effects of Nigella sativa seed polysaccharides on type 2 diabetic mice and gut microbiota. International Journal of Biological Macromolecules 159:725–738. doi: 10.1016/j.ijbiomac.2020.05.042.
  • Dou, Z., C. Chen, and X. Fu. 2019. The effect of ultrasound irradiation on the physicochemical properties and α-glucosidase inhibitory effect of blackberry fruit polysaccharide. Food Hydrocolloids. 96:568–576. doi: 10.1016/j.foodhyd.2019.06.002.
  • Du, X.-X., X. Tao, S. Liang, J.-Y. Che, S. Yang, H. Li, J.-G. Chen, and C.-M. Wang. 2019. Hypoglycemic effect of acidic polysaccharide from Schisandra chinensis on T2D rats induced by high-fat diet combined with STZ. Biological & Pharmaceutical Bulletin 42 (8):1275–1281. doi: 10.1248/bpb.b18-00915.
  • Du, Y., C.-G. Taylor, H.-M. Aukema, and P. Zahradka. 2021. Regulation of docosahexaenoic acid-induced apoptosis of confluent endothelial cells: contributions of MAPKs and caspases. Biochimica et Biophysica Acta. Molecular and Cell Biology of Lipids 1866 (5):158902. doi: 10.1016/j.bbalip.2021.158902.
  • Duan, M., H. Shang, S. Chen, R. Li, and H. Wu. 2018. Physicochemical properties and activities of comfrey polysaccharides extracted by different techniques. International Journal of Biological Macromolecules 115:876–882. doi: 10.1016/j.ijbiomac.2018.04.188.
  • Ebrahimzadeh Leylabadlo, H. S. Sanaie, F. S. Heravi, Z. Ahmadian, and R. Ghotaslou. 2020. From role of gut microbiota to microbial-based therapies in type 2-diabetes. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases 81:104268. doi: 10.1016/j.meegid.2020.104268.
  • Elam, E., J. Feng, Y.-M. Lv, Z.-J. Ni, P. Sun, K. Thakur, J.-G. Zhang, Y.-L. Ma, and Z.-J. Wei. 2021. Recent advances on bioactive food derived anti-diabetic hydrolysates and peptides from natural resources. Journal of Functional Foods 86:104674. doi: 10.1016/j.jff.2021.104674.
  • Fan, Y, and O. Pedersen. 2021. Gut microbiota in human metabolic health and disease. Nature Reviews Microbiology 19 (1):55–71. doi: 10.1038/s41579-020-0433-9.
  • Fang, J., Y. Lin, H. Xie, M. A. Farag, S. Feng, J. Li, and P. Shao. 2022. Dendrobium officinale leaf polysaccharides ameliorated hyperglycemia and promoted gut bacterial associated SCFAs to alleviate type 2 diabetes in adult mice. Food Chemistry: X 13:100207. doi: 10.1016/j.fochx.2022.100207.
  • Fang, Q., J. Hu, Q. Nie, and S.-P. Nie. 2019. Effects of polysaccharides on glycometabolism based on gut microbiota alteration. Trends in Food Science & Technology 92:65–70. doi: 10.1016/j.tifs.2019.08.015.
  • Farag, M.-R., W.-M. Elhady, S.-Y.-A. Ahmed, H.-S.-A. Taha, and M. Alagawany. 2019. Astragalus polysaccharides alleviate tilmicosin-induced toxicity in rats by inhibiting oxidative damage and modulating the expressions of HSP70, NF-kB and Nrf2/HO-1 pathway. Research in Veterinary Science 124:137–148. doi: 10.1016/j.rvsc.2019.03.010.
  • Feng, S., D. Luan, K. Ning, P. Shao, and P. Sun. 2019. Ultrafiltration isolation, hypoglycemic activity analysis and structural characterization of polysaccharides from Brasenia schreberi. International Journal of Biological Macromolecules 135:141–151. doi: 10.1016/j.ijbiomac.2019.05.129.
  • Gao, H., L. Ding, R. Liu, X. Zheng, X. Xia, F. Wang, J. Qi, W. Tong, and Y. Qiu. 2021. Characterization of Anoectochilus roxburghii polysaccharide and its therapeutic effect on type 2 diabetic mice. International Journal of Biological Macromolecules 179:259–269. doi: 10.1016/j.ijbiomac.2021.02.217.
  • Gao, X., D. Liu, L. Gao, Y. Ouyang, Y. Wen, C. Ai, Y. Chen, and C. Zhao. 2022. Health benefits of Grifola frondosa polysaccharide on intestinal microbiota in type 2 diabetic mice. Food Science and Human Wellness 11 (1):68–73. doi: 10.1016/j.fshw.2021.07.008.
  • Gao, Y., H. Qin, D. Wu, C. Liu, L. Fang, J. Wang, X. Liu, and W. Min. 2021. Walnut peptide WEKPPVSH in alleviating oxidative stress and inflammation in lipopolysaccharide-activated BV-2 microglia via the Nrf2/HO-1 and NF-kappaB/p38 MAPK pathways. Journal of Bioscience and Bioengineering 132 (5):496–504. doi: 10.1016/j.jbiosc.2021.07.009.
  • Ghadge, A.-A, and A.-A. Kuvalekar. 2017. Controversy of oral hypoglycemic agents in type 2 diabetes mellitus: novel move towards combination therapies. Diabetes & Metabolic Syndrome 11 Suppl 1:S5–S13. doi: 10.1016/j.dsx.2016.08.009.
  • Giacco, R., G. Costabile, and G. Riccardi. 2016. Metabolic effects of dietary carbohydrates: the importance of food digestion. Food Research International 88:336–341. doi: 10.1016/j.foodres.2015.10.026.
  • Gill, S.-K., M. Rossi, B. Bajka, and K. Whelan. 2021. Dietary fibre in gastrointestinal health and disease. Nature Reviews. Gastroenterology & Hepatology 18 (2):101–116. doi: 10.1038/s41575-020-00375-4.
  • Goff, H.-D., N. Repin, H. Fabek, D. E. Khoury, and M.-J. Gidley. 2018. Dietary fibre for glycaemia control: towards a mechanistic understanding. Bioactive Carbohydrates and Dietary Fibre 14:39–53. doi: 10.1016/j.bcdf.2017.07.005.
  • Gong, T., S. Liu, H. Wang, and M. Zhang. 2021. Supercritical CO2 fluid extraction, physicochemical properties, antioxidant activities and hypoglycemic activity of polysaccharides derived from fallen Ginkgo leaves. Food Bioscience 42:101153. doi: 10.1016/j.fbio.2021.101153.
  • Gong, X., M. Ji, J. Xu, C. Zhang, and M. Li. 2020. Hypoglycemic effects of bioactive ingredients from medicine food homology and medicinal health food species used in China. Critical Reviews in Food Science and Nutrition 60 (14):2303–2326. doi: 10.1080/10408398.2019.1634517.
  • Gong, X., X. Li, A. Bo, R.-Y. Shi, Q.-Y. Li, L.-J. Lei, L. Zhang, and M.-H. Li. 2020. The interactions between gut microbiota and bioactive ingredients of traditional Chinese medicines: a review. Pharmacological Research 157:104824. doi: 10.1016/j.phrs.2020.104824.
  • Gong, Y., J. Zhang, F. Gao, J. Zhou, Z. Xiang, C. Zhou, L. Wan, and J. Chen. 2017. Structure features and in vitro hypoglycemic activities of polysaccharides from different species of Maidong. Carbohydrate Polymers 173:215–222. doi: 10.1016/j.carbpol.2017.05.076.
  • Gu, W., Y. Wang, L. Zeng, J. Dong, Q. Bi, X. Yang, Y. Che, S. He, and J. Yu. 2020. Polysaccharides from Polygonatum kingianum improve glucose and lipid metabolism in rats fed a high fat diet. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 125:109910. doi: 10.1016/j.biopha.2020.109910.
  • Guida, C., S. Stephen, R. Guitton, and R.-D. Ramracheya. 2017. The role of PYY in pancreatic islet physiology and surgical control of diabetes. Trends in Endocrinology and Metabolism: TEM 28 (8):626–636. doi: 10.1016/j.tem.2017.04.005.
  • Guida, C., S. D. Stephen, M. Watson, N. Dempster, P. Larraufie, T. Marjot, T. Cargill, L. Rickers, M. Pavlides, J. Tomlinson, et al. 2019. PYY plays a key role in the resolution of diabetes following bariatric surgery in humans. EBioMedicine 40:67–76. doi: 10.1016/j.ebiom.2018.12.040.
  • Guo, Q., Z. Chen, R.-K. Santhanam, L. Xu, X. Gao, Q. Ma, Z. Xue, and H. Chen. 2019. Hypoglycemic effects of polysaccharides from corn silk (Maydis stigma) and their beneficial roles via regulating the PI3K/Akt signaling pathway in L6 skeletal muscle myotubes. International Journal of Biological Macromolecules 121:981–988. doi: 10.1016/j.ijbiomac.2018.10.100.
  • Guo, Q.-B., N.-F. Wang, H.-H. Liu, Z.-J. Li, L. Lu, and C.-L. Wang. 2020. The bioactive compounds and biological functions of Asparagus officinalis L. – a review. Journal of Functional Foods 65:103727. doi: 10.1016/j.jff.2019.103727.
  • Guo, Q.-B., X.-Y. Xiao, C.-R. Li, J. Kang, G. Liu, H.-D. Goff, and C.-L. Wang. 2021. Catechin-grafted arabinoxylan conjugate: preparation, structural characterization and property investigation. International Journal of Biological Macromolecules 182:796–805. doi: 10.1016/j.ijbiomac.2021.03.190.
  • Guo, W.-L., M. Chen, W. L. Pan, Q. Zhang, J.-X. Xu, Y.-C. Lin, L. Li, B. Liu, W.-D. Bai, Y.-Y. Zhang, et al. 2020. Hypoglycemic and hypolipidemic mechanism of organic chromium derived from chelation of Grifola frondosa polysaccharide-chromium (III) and its modulation of intestinal microflora in high fat-diet and STZ-induced diabetic mice. International Journal of Biological Macromolecules 145:1208–1218. doi: 10.1016/j.ijbiomac.2019.09.206.
  • Guo, W.-L., F.-F. Shi, L. Li, J.-X. Xu, M. Chen, L. Wu, J.-L. Hong, M. Qian, W.-D. Bai, B. Liu, et al. 2019. Preparation of a novel Grifola frondosa polysaccharide-chromium (III) complex and its hypoglycemic and hypolipidemic activities in high fat diet and streptozotocin-induced diabetic mice. International Journal of Biological Macromolecules 131:81–88. doi: 10.1016/j.ijbiomac.2019.03.042.
  • Guo, Y., H. Shang, J. Zhao, H. Zhang, and S. Chen. 2020. Enzyme-assisted extraction of a cup plant (Silphium perfoliatum L.) polysaccharide and its antioxidant and hypoglycemic activities. Process Biochemistry 92:17–28. doi: 10.1016/j.procbio.2020.03.005.
  • Gurry, T, and L. Scapozza. 2020. Exploiting the gut microbiota’s fermentation capabilities towards disease prevention. Journal of Pharmaceutical and Biomedical Analysis 189:113469. doi: 10.1016/j.jpba.2020.113469.
  • Hao, Y., H. Sun, X. Zhang, L. Wu, and Z. Zhu. 2020. A novel acid polysaccharide from fermented broth of Pleurotus citrinopileatus: hypoglycemic activity in vitro and chemical structure. Journal of Molecular Structure 1220:128717. doi: 10.1016/j.molstruc.2020.128717.
  • Hao, Y., X. Wang, S. Yuan, Y. Wang, X. Liao, M. Zhong, Q. He, H. Shen, W. Liao, and J. Shen. 2021. Flammulina velutipes polysaccharide improves C57BL/6 mice gut health through regulation of intestine microbial metabolic activity. International Journal of Biological Macromolecules 167:1308–1318. doi: 10.1016/j.ijbiomac.2020.11.085.
  • He, X., W. Li, Y. Chen, L. Lei, F. Li, J. Zhao, K. Zeng, and J. Ming. 2022. Dietary fiber of Tartary buckwheat bran modified by steam explosion alleviates hyperglycemia and modulates gut microbiota in db/db mice. Food Research International (Ottawa, Ont.) 157:111386. doi: 10.1016/j.foodres.2022.111386.
  • Hernandez-Corona, D.-M., E. Martinez-Abundis, and M. Gonzalez-Ortiz. 2014. Effect of fucoidan administration on insulin secretion and insulin resistance in overweight or obese adults. Journal of Medicinal Food 17 (7):830–832. doi: 10.1089/jmf.2013.0053.
  • Hernandez-Hernandez, O., M.-C. Marin-Manzano, L.-A. Rubio, F.-J. Moreno, M.-L. Sanz, and A. Clemente. 2012. Monomer and linkage type of galacto-oligosaccharides affect their resistance to ileal digestion and prebiotic properties in rats. The Journal of Nutrition 142 (7):1232–1239. doi: 10.3945/jn.111.155762.
  • Hiel, S., M.-A. Gianfrancesco, J. Rodriguez, D. Portheault, Q. Leyrolle, L.-B. Bindels, C. Gomes da Silveira Cauduro, M. Mulders, G. Zamariola, A.-S. Zzi, et al. 2020. Link between gut microbiota and health outcomes in inulin -treated obese patients: lessons from the Food4Gut multicenter randomized placebo-controlled trial. Clinical Nutrition (Edinburgh, Scotland) 39 (12):3618–3628. doi: 10.1016/j.clnu.2020.04.005.
  • Ho Do, M., Y.-S. Seo, and H.-Y. Park. 2021. Polysaccharides: bowel health and gut microbiota. Critical Reviews in Food Science and Nutrition 61 (7):1212–1224. doi: 10.1080/10408398.2020.1755949.
  • Holst, J.-J, and S. Madsbad. 2016. Mechanisms of surgical control of type 2 diabetes: GLP-1 is key factor. Surgery for Obesity and Related Diseases: Official Journal of the American Society for Bariatric Surgery 12 (6):1236–1242. doi: 10.1016/j.soard.2016.02.033.
  • Hotamisligil, G.-S., N.-S. Shargill, and B.-M. Spiegelman. 1993. Adipose expression of tumor necrosis factor-x: direct role in obesity-linked insulin resistance. Science (New York, N.Y.) 259 (5091):87–91. doi: 10.1126/science.7678183.
  • Hou, C., L. Chen, L. Yang, and X. Ji. 2020. An insight into anti-inflammatory effects of natural polysaccharides. International Journal of Biological Macromolecules 153:248–255. doi: 10.1016/j.ijbiomac.2020.02.315.
  • Hsu, W.-K., T.-H. Hsu, F.-Y. Lin, Y.-K. Cheng, and J.-P. Yang. 2013. Separation, purification, and alpha-glucosidase inhibition of polysaccharides from Coriolus versicolor LH1 mycelia. Carbohydrate Polymers 92 (1):297–306. doi: 10.1016/j.carbpol.2012.10.001.
  • Hu, J.-L., S.-P. Nie, and M.-Y. Xie. 2018. Antidiabetic mechanism of dietary polysaccharides based on their gastrointestinal functions. Journal of Agricultural and Food Chemistry 66 (19):4781–4786. doi: 10.1021/acs.jafc.7b05410.
  • Hu, T., Q. Lin, T. Guo, T. Yang, W. Zhou, X. Deng, J.-K. Yan, Y. Luo, M. Ju, and F. Luo. 2018. Polysaccharide isolated from Phellinus linteus mycelia exerts anti-inflammatory effects via MAPK and PPAR signaling pathways. Carbohydrate Polymers 200:487–497. doi: 10.1016/j.carbpol.2018.08.021.
  • Huang, L., M. Shen, G.-A. Morris, and J. Xie. 2019. Sulfated polysaccharides: immunomodulation and signaling mechanisms. Trends in Food Science & Technology 92:1–11. doi: 10.1016/j.tifs.2019.08.008.
  • Jakobek, L. 2015. Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chemistry 175:556–567. doi: 10.1016/j.foodchem.2014.12.013.
  • Jenkins, A.-L., V. Kacinik, M. Lyon, and T.-M. Wolever. 2010. Effect of adding the novel fiber, PGX®, to commonly consumed foods on glycemic response, glycemic index and GRIP: a simple and effective strategy for reducing post prandial blood glucose levels - a randomized, controlled trial. Nutrition Journal 9 (1):58. doi: 10.1186/1475-2891-9-58.
  • Jenkins, A.-L., V. Kacinik, M.-R. Lyon, and T.-M. Wolever. 2010. Reduction of postprandial glycemia by the novel viscous polysaccharide PGX, in a dose-dependent manner, independent of food form. Journal of the American College of Nutrition 29 (2):92–98. doi: 10.1080/07315724.2010.10719821.
  • Ji, X., Q. Peng, and M. Wang. 2018. Anti-colon-cancer effects of polysaccharides: a mini-review of the mechanisms. International Journal of Biological Macromolecules 114:1127–1133. doi: 10.1016/j.ijbiomac.2018.03.186.
  • Jia, R. B., Z.-R. Li, J. Wu, Z.-R. Ou, B. Liao, B. Sun, L. Lin, and M. Zhao. 2020. Mitigation mechanisms of Hizikia fusifarme polysaccharide consumption on type 2 diabetes in rats. International Journal of Biological Macromolecules 164:2659–2670. doi: 10.1016/j.ijbiomac.2020.08.154.
  • Jia, R.-B., Z.-R. Li, J. Wu, Z.-R. Ou, Q. Zhu, B. Sun, L. Lin, and M. Zhao. 2020. Physicochemical properties of polysaccharide fractions from Sargassum fusiforme and their hypoglycemic and hypolipidemic activities in type 2 diabetic rats. International Journal of Biological Macromolecules 147:428–438. doi: 10.1016/j.ijbiomac.2019.12.243.
  • Jia, X., L. Ma, P. Li, M. Chen, and C. He. 2016. Prospects of Poria cocos polysaccharides: isolation process, structural features and bioactivities. Trends in Food Science & Technology 54:52–62. doi: 10.1016/j.tifs.2016.05.021.
  • Jia, Y., X. Gao, Z. Xue, Y. Wang, Y. Lu, M. Zhang, P. Panichayupakaranant, and H. Chen. 2020. Characterization, antioxidant activities, and inhibition on alpha-glucosidase activity of corn silk polysaccharides obtained by different extraction methods. International Journal of Biological Macromolecules 163:1640–1648. doi: 10.1016/j.ijbiomac.2020.09.068.
  • Jia, Y., Z. Xue, Y. Wang, Y. Lu, R. Li, N. Li, Q. Wang, M. Zhang, and H. Chen. 2021. Chemical structure and inhibition on alpha-glucosidase of polysaccharides from corn silk by fractional precipitation. Carbohydrate Polymers 252:117185. doi: 10.1016/j.carbpol.2020.117185.
  • Jiang, H., J. Dong, S. Jiang, Q. Liang, Y. Zhang, Z. Liu, C. Ma, J. Wang, and W. Kang. 2020. Effect of Durio zibethinus rind polysaccharide on functional constipation and intestinal microbiota in rats. Food Research International 136:109316. doi: 10.1016/j.foodres.2020.109316.
  • Jiang, P., W. Zheng, X. Sun, G. Jiang, S. Wu, Y. Xu, S. Song, and C. Ai. 2021. Sulfated polysaccharides from Undaria pinnatifida improved high fat diet-induced metabolic syndrome, gut microbiota dysbiosis and inflammation in BALB/c mice. International Journal of Biological Macromolecules 167:1587–1597. doi: 10.1016/j.ijbiomac.2020.11.116.
  • Jiang, Y., Z. Jiang, M. Wang, and L. Ma. 2022. Current understandings and clinical translation of nanomedicines for breast cancer therapy. Advanced Drug Delivery Reviews 180:114034. doi: 10.1016/j.addr.2021.114034.
  • Jiang, Z., Y. Wang, D. Xiang, and Z. Zhang. 2022. Structural properties, antioxidant and hypoglycemic activities of polysaccharides purified from pepper leaves by high-speed counter-current chromatography. Journal of Functional Foods 89:104916. doi: 10.1016/j.jff.2021.104916.
  • Jiao, Y., D. Hua, D. Huang, Q. Zhang, and C. Yan. 2018. Characterization of a new heteropolysaccharide from green guava and its application as an alpha-glucosidase inhibitor for the treatment of type II diabetes. Food & Function 9 (7):3997–4007. doi: 10.1039/c8fo00790j.
  • Jin, M., K. Zhao, Q. Huang, C. Xu, and P. Shang. 2012. Isolation, structure and bioactivities of the polysaccharides from Angelica sinensis (Oliv.) Diels: a review. Carbohydrate Polymers 89 (3):713–722. doi: 10.1016/j.carbpol.2012.04.049.
  • Jin, Q. L., Z.-F. Zhang, G.-Y. Lv, W.-M. Cai, J.-W. Cheng, J.-G. Wang, and L.-F. Fan. 2016. Antioxidant and DNA damage protecting potentials of polysaccharide extracted from Phellinus baumii using a delignification method. Carbohydrate Polymers 152:575–582. doi: 10.1016/j.carbpol.2016.07.027.
  • Justino, A.-B., F.-R.-B. de Moura, R.-R. Franco, and F.-S. Espindola. 2020. α-Glucosidase and non-enzymatic glycation inhibitory potential of Eugenia dysenterica fruit pulp extracts. Food Bioscience 35:100573. doi: 10.1016/j.fbio.2020.100573.
  • Kang, G.-G., N. Francis, R. Hill, D. Waters, C. Blanchard, and A. B. Santhakumar. 2019. Dietary Polyphenols and gene expression in molecular pathways associated with type 2 diabetes mellitus: a review. International Journal of Molecular Sciences 21 (1):140. doi: 10.3390/ijms21010140.
  • Kanwugu, O.-N., T.-V. Glukhareva, I.-G. Danilova, and E.-G. Kovaleva. 2022. Natural antioxidants in diabetes treatment and management: prospects of astaxanthin. Critical Reviews in Food Science and Nutrition 62 (18):5005–5028. doi: 10.1080/10408398.2021.1881434.
  • Karamali, M., M. Kashanian, S. Alaeinasab, and Z. Asemi. 2018. The effect of dietary soy intake on weight loss, glycaemic control, lipid profiles and biomarkers of inflammation and oxidative stress in women with polycystic ovary syndrome: a randomised clinical trial. Journal of Human Nutrition and Dietetics 31 (4):533–543. doi: 10.1111/jhn.12545.
  • Karan, A., E. Bhakkiyalakshmi, R. Jayasuriya, D.-V.-L. Sarada, and K.-M. Ramkumar. 2020. The pivotal role of nuclear factor erythroid 2-related factor 2 in diabetes-induced endothelial dysfunction. Pharmacological Research 153:104601. doi: 10.1016/j.phrs.2019.104601.
  • Khan, I., G. Huang, X. Li, W. Leong, W. Xia, and W.-L.-W. Hsiao. 2018. Mushroom polysaccharides from Ganoderma lucidum and Poria cocos reveal prebiotic functions. Journal of Functional Foods 41:191–201. doi: 10.1016/j.jff.2017.12.046.
  • Khorshidian, M., M. Asli, A.-M. Arab, A.-A. Mortazavian, and Mirzaie, N. 2016. Fenugreek: potential applications as a functional food and nutraceutical. Nutrition and Food Sciences Research 3 (1):5–16. doi: 10.18869/acadpub.nfsr.3.1.5.
  • Kim, K.-T., L.-E. Rioux, and S.-L. Turgeon. 2015. Molecular weight and sulfate content modulate the inhibition of α-amylase by fucoidan relevant for type 2 diabetes management. PharmaNutrition 3 (3):108–114. doi: 10.1016/j.phanu.2015.02.001.
  • Krycer, J.-R., L.-E. Quek, D. Francis, D.-J. Fazakerley, S.-D. Elkington, A. Diaz-Vegas, K.-C. Cooke, F.-C. Weiss, X. Duan, S. Kurdyukov, et al. 2020. Lactate production is a prioritized feature of adipocyte metabolism. The Journal of Biological Chemistry 295 (1):83–98. doi: 10.1074/jbc.RA119.011178.
  • Kumar, S., S. Narwal, V. Kumar, and O. Prakash. 2011. Alpha-glucosidase inhibitors from plants: a natural approach to treat diabetes. Pharmacognosy Reviews 5 (9):19–29. doi: 10.4103/0973-7847.79096.
  • Li, D., L. Sun, Y. Yang, Z. Wang, X. Yang, T. Zhao, T. Gong, L. Zou, and Y. Guo. 2019. Young apple polyphenols postpone starch digestion in vitro and in vivo. Journal of Functional Foods 56:127–135. doi: 10.1016/j.jff.2019.03.009.
  • Li, F., Y. Wei, L. Liang, L. Huang, G. Yu, and Q. Li. 2021. A novel low-molecular-mass pumpkin polysaccharide: structural characterization, antioxidant activity, and hypoglycemic potential. Carbohydrate Polymers 251:117090. doi: 10.1016/j.carbpol.2020.117090.
  • Li, F., Y. Wei, J. Zhao, L. Zhang, and Q. Li. 2022. In vivo pharmacokinetic study of a Cucurbita moschata polysaccharide after oral administration. International Journal of Biological Macromolecules 203:19–28. doi: 10.1016/j.ijbiomac.2022.01.111.
  • Li, F., J. Zhao, Y. Wei, X. Jiao, and Q. Li. 2021. Holistic review of polysaccharides isolated from pumpkin: preparation methods, structures and bioactivities. International Journal of Biological Macromolecules 193 (Pt A):541–552. doi: 10.1016/j.ijbiomac.2021.10.037.
  • Li, J., M. Luo, Z. Luo, A.-Y. Guo, X. Yang, M. Hu, Q. Zhang, and Y. Zhu. 2019. Transcriptome profiling reveals the anti-diabetic molecular mechanism of Cyclocarya paliurus polysaccharides. Journal of Functional Foods 55:1–8. doi: 10.1016/j.jff.2018.12.039.
  • Li, J., B. Pang, X. Yan, X. Shang, X. Hu, and J. Shi. 2020. Prebiotic properties of different polysaccharide fractions from Artemisia sphaerocephala Krasch seeds evaluated by simulated digestion and in vitro fermentation by human fecal microbiota. International Journal of Biological Macromolecules 162:414–424. doi: 10.1016/j.ijbiomac.2020.06.174.
  • Li, L., J.-X. Xu, Y.-J. Cao, Y.-C. Lin, W.-L. Guo, J.-Y. Liu, W.-D. Bai, Y.-Y. Zhang, L. Ni, B. Liu, et al. 2019. Preparation of Ganoderma lucidum polysaccharidechromium (III) complex and its hypoglycemic and hypolipidemic activities in high-fat and high-fructose diet-induced pre-diabetic mice. International Journal of Biological Macromolecules 140:782–793. doi: 10.1016/j.ijbiomac.2019.08.072.
  • Li, P., N. Xiao, L. Zeng, J. Xiao, J. Huang, Y. Xu, Y. Chen, Y. Ren, and B. Du. 2020. Structural characteristics of a mannoglucan isolated from Chinese yam and its treatment effects against gut microbiota dysbiosis and DSS-induced colitis in mice. Carbohydrate Polymers 250:116958. doi: 10.1016/j.carbpol.2020.116958.
  • Li, Q., W. Li, Q. Gao, and Y. Zou. 2017. Hypoglycemic effect of Chinese Yam (Dioscorea opposita rhizoma) polysaccharide in different structure and molecular weight. Journal of Food Science 82 (10):2487–2494. doi: 10.1111/1750-3841.13919.
  • Li, S., H. Chen, J. Wang, X. Wang, B. Hu, and F. Lv. 2015. Involvement of the PI3K/Akt signal pathway in the hypoglycemic effects of tea polysaccharides on diabetic mice. International Journal of Biological Macromolecules 81:967–974. doi: 10.1016/j.ijbiomac.2015.09.037.
  • Li, S., Q. Xiong, X. Lai, X. Li, M. Wan, J. Zhang, Y. Yan, M. Cao, L. Lu, J. Guan, et al. 2016. Molecular modification of polysaccharides and resulting bioactivities. Comprehensive Reviews in Food Science and Food Safety 15 (2):237–250. doi: 10.1111/1541-4337.12161.
  • Li, W., K. Lin, M. Zhou, Q. Xiong, C. Li, and Q. Ru. 2020. Polysaccharides from Opuntia milpa alta alleviate alloxan-induced INS-1 cells apoptosis via reducing oxidative stress and upregulating Nrf2 expression. Nutrition Research (New York, N.Y.) 77:108–118. doi: 10.1016/j.nutres.2020.02.004.
  • Li, X., S. Li, M. Chen, J. Wang, B. Xie, and Z. Sun. 2018. (-)-Epigallocatechin-3-gallate (EGCG) inhibits starch digestion and improves glucose homeostasis through direct or indirect activation of PXR/CAR-mediated phase II metabolism in diabetic mice. Food & Function 9 (9):4651–4663. doi: 10.1039/c8fo01293h.
  • Li, X., Z. Qi, L. Zhao, and Z. Yu. 2016. Astaxanthin reduces type 2 diabeticassociated cognitive decline in rats via activation of PI3K/Akt and attenuation of oxidative stress. Molecular Medicine Reports 13 (1):973–979. doi: 10.3892/mmr.2015.4615.
  • Li, X., X. Wang, Y. Dong, R. Song, J. Wei, A. Yu, Q. Fan, J. Yao, D. Shan, F. Lv, et al. 2022. Preparation, structural analysis, antioxidant and digestive enzymes inhibitory activities of polysaccharides from Thymus quinquecostatus Celak. leaves. Industrial Crops and Products 175:114288. doi: 10.1016/j.indcrop.2021.114288.
  • Li, Y.-M., R.-F. Zhong, J. Chen, and Z.-G. Luo. 2021. Structural characterization, anticancer, hypoglycemia and immune activities of polysaccharides from Russula virescens. International Journal of Biological Macromolecules 184:380–392. doi: 10.1016/j.ijbiomac.2021.06.026.
  • Li, Y., Y. Sheng, X. Lu, X. Guo, G. Xu, X. Han, L. An, and P. Du. 2020. Isolation and purification of acidic polysaccharides from Agaricus blazei Murill and evaluation of their lipid-lowering mechanism. International Journal of Biological Macromolecules 157:276–287. doi: 10.1016/j.ijbiomac.2020.04.190.
  • Li, Z. P., Y.-H. Song, Z. Uddin, Y. Wang, and K.-H. Park. 2018. Inhibition of protein tyrosine phosphatase 1B (PTP1B) and alpha-glucosidase by xanthones from Cratoxylum cochinchinense, and their kinetic characterization. Bioorganic & Medicinal Chemistry 26 (3):737–746. doi: 10.1016/j.bmc.2017.12.043.
  • Liang, J., M. Zhang, X. Wang, Y. Ren, T. Yue, Z. Wang, and Z. Gao. 2021. Edible fungal polysaccharides, the gut microbiota, and host health. Carbohydrate Polymers 273:118558. doi: 10.1016/j.carbpol.2021.118558.
  • Liao, Z., J. Zhang, B. Liu, T. Yan, F. Xu, F. Xiao, B. Wu, K. Bi, and Y. Jia. 2019. Polysaccharide from Okra (Abelmoschus esculentus (L.) Moench) improves antioxidant capacity via PI3K/AKT pathways and Nrf2 translocation in a type 2 diabetes model. Molecules 24 (10):1906. doi: 10.3390/molecules24101906.
  • Liatis, S., P. Tsapogas, E. Chala, C. Dimosthenopoulos, K. Kyriakopoulos, E. Kapantais, and N. Katsilambros. 2009. The consumption of bread enriched with betaglucan reduces LDL-cholesterol and improves insulin resistance in patients with type 2 diabetes. Diabetes & Metabolism 35 (2):115–120. doi: 10.1016/j.diabet.2008.09.004.
  • Lin, E.-E., E. Scott-Solomon, and R. Kuruvilla. 2021. Peripheral innervation in the regulation of glucose homeostasis. Trends in Neurosciences 44 (3):189–202. doi: 10.1016/j.tins.2020.10.015.
  • Lin, S., M. Al-Wraikat, L. Niu, F. Zhou, Y. Zhang, M. Wang, J. Ren, J. Fan, B. Zhang, and L. Wang. 2019. Degradation enhances the anticoagulant and antiplatelet activities of polysaccharides from Lycium barbarum L. leaves. International Journal of Biological Macromolecules 133:674–682. doi: 10.1016/j.ijbiomac.2019.04.147.
  • Lin, X. 2019. Research progress in the mechanism of polysaccharide in relieving type 2 diabetes. International Conference on Frontiers of Biological Sciences and Engineering (FBSE 2018) 2058:020010. doi: 10.1063/1.5085523.
  • Liu, D., H. Gao, W. Tang, and S. Nie. 2017. Plant non-starch polysaccharides that inhibit key enzymes linked to type 2 diabetes mellitus. Annals of the New York Academy of Sciences 1401 (1):28–36. doi: 10.1111/nyas.13430.
  • Liu, G., L. Liang, G. Yu, and Q. Li. 2018. Pumpkin polysaccharide modifies the gut microbiota during alleviation of type 2 diabetes in rats. International Journal of Biological Macromolecules 115:711–717. doi: 10.1016/j.ijbiomac.2018.04.127.
  • Liu, H., X. Zeng, J. Huang, X. Yuan, Q. Wang, and L. Ma. 2021. Dietary fiber extracted from pomelo fruitlets promotes intestinal functions, both in vitro and in vivo. Carbohydrate Polymers 252:117186. doi: 10.1016/j.carbpol.2020.117186.
  • Liu, L., W.-L. Kerr, F. Kong, D.-R. Dee, and M. Lin. 2018. Influence of nano-fibrillated cellulose (NFC) on starch digestion and glucose absorption. Carbohydrate Polymers 196:146–153. doi: 10.1016/j.carbpol.2018.04.116.
  • Liu, W., W. Lu, Y. Chai, Y. Liu, W. Yao, and X. Gao. 2017. Preliminary structural characterization and hypoglycemic effects of an acidic polysaccharide SERP1 from the residue of Sarcandra glabra. Carbohydrate Polymers 176:140–151. doi: 10.1016/j.carbpol.2017.08.071.
  • Liu, Y., Y. Li, W. Zhang, M. Sun, and Z. Zhang. 2019. Hypoglycemic effect of inulin combined with ganoderma lucidum polysaccharides in T2DM rats. Journal of Functional Foods 55:381–390. doi: 10.1016/j.jff.2019.02.036.
  • Liu, Y., Y. You, Y. Li, L. Zhang, L. Yin, Y. Shen, C. Li, H. Chen, S. Chen, B. Hu, et al. 2017. The characterization, selenylation and antidiabetic activity of mycelial polysaccharides from Catathelasma ventricosum. Carbohydrate Polymers 174:72–81. doi: 10.1016/j.carbpol.2017.06.050.
  • Liu, Y., Y. Liu, M. Zhang, C. Li, Z. Zhang, A. Liu, Y. Wu, H. Wu, H. Chen, X. Hu, et al. 2020. Structural characterization of a polysaccharide from Suillellus luridus and its antidiabetic activity via Nrf2/HO-1 and NF-kappaB pathways. International Journal of Biological Macromolecules 162:935–945. doi: 10.1016/j.ijbiomac.2020.06.212.
  • Liu, Y., L. Yang, Y. Zhang, X. Liu, Z. Wu, R. G. Gilbert, B. Deng, and K. Wang. 2020. Dendrobium officinale polysaccharide ameliorates diabetic hepatic glucose metabolism via glucagon-mediated signaling pathways and modifying liver-glycogen structure. Journal of Ethnopharmacology 248:112308. doi: 10.1016/j.jep.2019.112308.
  • Lobley, G.-E., G. Holtrop, D.-M. Bremner, A.-G. Calder, E. Milne, and A.-M. Johnstone. 2013. Impact of short term consumption of diets high in either non-starch polysaccharides or resistant starch in comparison with moderate weight loss on indices of insulin sensitivity in subjects with metabolic syndrome. Nutrients 5 (6):2144–2172. doi: 10.3390/nu5062144.
  • Lochocka, K., J. Bajerska, A. Glapa, E. Fidler-Witon, J.-K. Nowak, T. Szczapa, P. Grebowiec, A. Lisowska, and J. Walkowiak. 2015. Green tea extract decreases starch digestion and absorption from a test meal in humans: a randomized, placebo-controlled crossover study. Scientific Reports 5:12015. doi: 10.1038/srep12015.
  • Lovegrove, A., C.-H. Edwards, I. De Noni, H. Patel, S.-N. El, T. Grassby, C. Zielke, M. Ulmius, L. Nilsson, P.-J. Butterworth, et al. 2017. Role of polysaccharides in food, digestion, and health. Critical Reviews in Food Science and Nutrition 57 (2):237–253. doi: 10.1080/10408398.2014.939263.
  • Lu, A., M. Yu, Z. Fang, B. Xiao, L. Guo, W. Wang, J. Li, S. Wang, and Y. Zhang. 2019. Preparation of the controlled acid hydrolysates from pumpkin polysaccharides and their antioxidant and antidiabetic evaluation. International Journal of Biological Macromolecules 121:261–269. doi: 10.1016/j.ijbiomac.2018.09.158.
  • Lu, C.-L., Z. Wei, W. Min, M.-M. Hu, W.-L. Chen, X.-J. Xu, and C.-J. Lu. 2015. Polysaccharides from Smilax glabra inhibit the pro-inflammatory mediators via ERK1/2 and JNK pathways in LPS-induced RAW264.7 cells. Carbohydrate Polymers 122:428–436. doi: 10.1016/j.carbpol.2014.11.035.
  • Lu, J., R. He, P. Sun, F. Zhang, R.-J. Linhardt, and A. Zhang. 2020. Molecular mechanisms of bioactive polysaccharides from Ganoderma lucidum (Lingzhi), a review. International Journal of Biological Macromolecules 150:765–774. doi: 10.1016/j.ijbiomac.2020.02.035.
  • Lu, Z. X., K. Z. Walker, J. G. Muir, T. Mascara, and K. O’Dea. 2000. Arabinoxylan fiber, a byproduct of wheat flour processing, reduces the postprandial glucose response in normoglycemic subjects. The American Journal of Clinical Nutrition 71 (5):1123–1128. doi: 10.1079/095442200108729025.
  • Lu, Z.-X., K.-Z. Walker, J.-G. Muir, and K. O’Dea. 2004. Arabinoxylan fibre improves metabolic control in people with Type II diabetes. European Journal of Clinical Nutrition 58 (4):621–628. doi: 10.1038/sj.ejcn.1601857.
  • Luo, Y., B. Peng, Y. Liu, Y. Wu, and Z. Wu. 2018. Ultrasound extraction of polysaccharides from guava leaves and their antioxidant and antiglycation activity. Process Biochemistry 73:228–234. doi: 10.1016/j.procbio.2018.08.003.
  • Ma, C., J. Bai, C. Shao, J. Liu, Y. Zhang, X. Li, Y. Yang, Y. Xu, and L. Wang. 2021. Degradation of blue honeysuckle polysaccharides, structural characteristics and antiglycation and hypoglycemic activities of degraded products. Food Research International (Ottawa, Ont.) 143:110281. doi: 10.1016/j.foodres.2021.110281.
  • Ma, J., C.-K. Rayner, K.-L. Jones, and M. Horowitz. 2009. Insulin secretion in healthy subjects and patients with Type 2 diabetes–role of the gastrointestinal tract. Best Practice & Research. Clinical Endocrinology & Metabolism 23 (4):413–424. doi: 10.1016/j.beem.2009.03.009.
  • Ma, Q., Y. Li, P. Li, M. Wang, J. Wang, Z. Tang, T. Wang, L. Luo, C. Wang, T. Wang, et al. 2019. Research progress in the relationship between type 2 diabetes mellitus and intestinal flora. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 117:109138. doi: 10.1016/j.biopha.2019.109138.
  • Ma, W., L. Xiao, H. Liu, and X. Hao. 2022. Hypoglycemic natural products with in vivo activities and their mechanisms: a review. Food Science and Human Wellness 11 (5):1087–1100. doi: 10.1016/j.fshw.2022.04.001.
  • Magnusson, I., R, D.-L. othman, L.-D. Katz, R.-G. Shulman, and G.-I. Shulman. 1992. Increased rate of gluconeogenesis in type II diabetes mellitus. A 13C nuclear magnetic resonance study. Journal of Clinical Investigation 90 (4):1323–1327. doi: 10.1172/JCI115997.
  • Makki, K., E.-C. Deehan, J. Walter, and F. Backhed. 2018. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host & Microbe 23 (6):705–715. doi: 10.1016/j.chom.2018.05.012.
  • Mao, J., J. Yang, Y. Zhang, T. Li, C. Wang, L. Xu, Q. Hu, X. Wang, S. Jiang, X. Nie, et al. 2016. Arsenic trioxide mediates HAPI microglia inflammatory response and subsequent neuron apoptosis through p38/JNK MAPK/STAT3 pathway. Toxicology and Applied Pharmacology 303:79–89. doi: 10.1016/j.taap.2016.05.003.
  • Mariadoss, A.-V.-A., A.-S. Sivakumar, C.-H. Lee, and S.-J. Kim. 2022. Diabetes mellitus and diabetic foot ulcer: etiology, biochemical and molecular based treatment strategies via gene and nanotherapy. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 151:113134. doi: 10.1016/j.biopha.2022.113134.
  • Martel, J., D.-M. Ojcius, C.-J. Chang, C.-S. Lin, C.-C. Lu, Y. F. Ko, S.-F. Tseng, H.-C. Lai, and J.-D. Young. 2017. Anti-obesogenic and antidiabetic effects of plants and mushrooms. Nature Reviews. Endocrinology 13 (3):149–160. doi: 10.1038/nrendo.2016.142.
  • Masci, A., S. Carradori, M.-A. Casadei, P. Paolicelli, S. Petralito, R. Ragno, and S. Cesa. 2018. Lycium barbarum polysaccharides: extraction, purification, structural characterisation and evidence about hypoglycaemic and hypolipidaemic effects. A review. Food Chemistry 254:377–389. doi: 10.1016/j.foodchem.2018.01.176.
  • Medici Dualib, P., J. Ogassavara, R. Mattar, E. M. Koga da Silva, S. Atala Dib, and B. de Almeida Pititto. 2021. Gut microbiota and gestational diabetes mellitus: a systematic review. Diabetes Research and Clinical Practice 180:109078. doi: 10.1016/j.diabres.2021.109078.
  • Meenu, M, and B. Xu. 2019. A critical review on anti-diabetic and anti-obesity effects of dietary resistant starch. Critical Reviews in Food Science and Nutrition 59 (18):3019–3031. doi: 10.1080/10408398.2018.1481360.
  • Meng, Q., F. Chen, T. Xiao, and L. Zhang. 2019. Inhibitory effects of polysaccharide from Diaphragma juglandis fructus on alpha-amylase and alpha-d-glucosidase activity, streptozotocin-induced hyperglycemia model, advanced glycation end-products formation, and H2O2-induced oxidative damage. International Journal of Biological Macromolecules 124:1080–1089. doi: 10.1016/j.ijbiomac.2018.12.011.
  • Meng, X., H. Liang, and L. Luo. 2016. Antitumor polysaccharides from mushrooms: a review on the structural characteristics, antitumor mechanisms and immunomodulating activities. Carbohydrate Research 424:30–41. doi: 10.1016/j.carres.2016.02.008.
  • Miceli, V., M. Pampalone, G. Frazziano, G. Grasso, E. Rizzarelli, C. Ricordi, A. Casu, G. Iannolo, and P. G. Conaldi. 2018. Carnosine protects pancreatic beta cells and islets against oxidative stress damage. Molecular and Cellular Endocrinology 474:105–118. doi: 10.1016/j.mce.2018.02.016.
  • Morel, F.-B., Q. Dai, J. Ni, D. Thomas, P. Parnet, and P. Fança-Berthon. 2015. α-galacto-oligosaccharides dose-dependently reduce appetite and decrease inflammation in overweight adults. The Journal of Nutrition 145 (9):2052–2059. doi: 10.3945/jn.114.204909.
  • Mudgil, D. 2017. The interaction between insoluble and soluble fiber. In Dietary Fiber for the Prevention of Cardiovascular Disease, ed. Rodney A. Samaan, 35–59. Los Angeles, CA, United States: Elsevier.
  • Muthukumaran, P., G. Thiyagarajan, R. Arun Babu, and B.-S. Lakshmi. 2018. Raffinose from Costus speciosus attenuates lipid synthesis through modulation of PPARs/SREBP1c and improves insulin sensitivity through PI3K/AKT. Chemico-Biological Interactions 284:80–89. doi: 10.1016/j.cbi.2018.02.011.
  • Nasab, S.-B., A. Homaei, B.-I. Pletschke, C. Salinas-Salazar, C. Castillo-Zacarias, and R. Parra-Saldívar. 2020. Marine resources effective in controlling and treating diabetes and its associated complications. Process Biochemistry 92:313–342. doi: 10.1016/j.procbio.2020.01.024.
  • Neelakantan, N., M.-R. Narayanan, J-d Souza, and R.-M v Dam. 2014. Effect of fenugreek (Trigonella foenum-graecum L.) intake on glycemia: a meta-analysis of clinical trials. Nutrition Journal 13:7. doi: 10.1186/1475-2891-13-7.
  • Negi, C.-K, and G. Jena. 2019. Nrf2, a novel molecular target to reduce type 1 diabetes associated secondary complications: the basic considerations. European Journal of Pharmacology 843:12–26. doi: 10.1016/j.ejphar.2018.10.026.
  • Nie, C., P. Zhu, M. Wang, S. Ma, and Z. Wei. 2017. Optimization of water-soluble polysaccharides from stem lettuce by response surface methodology and study on its characterization and bioactivities. International Journal of Biological Macromolecules 105 (Pt 1):912–923. doi: 10.1016/j.ijbiomac.2017.07.125.
  • Nie, Q., H. Chen, J. Hu, S. Fan, and S.-P. Nie. 2019. Dietary compounds and traditional Chinese medicine ameliorate type 2 diabetes by modulating gut microbiota. Critical Reviews in Food Science and Nutrition 59 (6):848–863. doi: 10.1080/10408398.2018.1536646.
  • Nie, Q., M. Xing, H. Chen, J. Hu, and S.-P. Nie. 2019. Metabolomics and lipidomics profiling reveals hypocholesterolemic and hypolipidemic effects of arabinoxylan on type 2 diabetic rats. Journal of Agricultural and Food Chemistry 67 (38):10614–10623. doi: 10.1021/acs.jafc.9b03430.
  • Nie, Q., J. Hu, H. Chen, F. Geng, and S.-P. Nie. 2022. Arabinoxylan ameliorates type 2 diabetes by regulating the gut microbiota and metabolites. Food Chemistry 371:131106. doi: 10.1016/j.foodchem.2021.131106.
  • Nie, Q., J. Hu, H. Gao, M. Li, Y. Sun, H. Chen, S. Zuo, Q. Fang, X. Huang, J. Yin, et al. 2021. Bioactive dietary fibers selectively promote gut microbiota to exert antidiabetic effects. Journal of Agricultural and Food Chemistry 69 (25):7000–7015. doi: 10.1021/acs.jafc.1c01465.
  • Nolan, C.-J., P. Damm, and M. Prentki. 2011. Type 2 diabetes across generations: from pathophysiology to prevention and management. The Lancet 378 (9786):169–181. doi: 10.1016/S0140-6736(11)60614-4.
  • Oleson, B.-J, and J.-A. Corbett. 2020. Can insulin secreting pancreatic β-cells provide novel insights into the metabolic regulation of the DNA damage response? Biochemical Pharmacology 176:113907. doi: 10.1016/j.bcp.2020.113907.
  • Ou, S., K.-C. Kwok, Y. Li, and L. Fu. 2001. In vitro study of possible role of dietary fiber in lowering postprandial serum glucose. Journal of Agricultural and Food Chemistry 49 (2):1026–1029. doi: 10.1021/jf000574n.
  • Padhi, S., A.-K. Nayak, and A. Behera. 2020. Type II diabetes mellitus: a review on recent drug based therapeutics. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 131:110708. doi: 10.1016/j.biopha.2020.110708.
  • Pal, S., S. Ho, R. Gahler, and S. Wood. 2017. Effect on insulin, glucose and lipids in overweight/obese Australian adults of 12 months consumption of two different fibre supplements in a randomised trial. Nutrients 9 (2):91. doi: 10.3390/nu9020091.
  • Pan, D., L. Wang, C. Chen, B. Hu, and P. Zhou. 2015. Isolation and characterization of a hyperbranched proteoglycan from Ganoderma lucidum for anti-diabetes. Carbohydrate Polymers 117:106–114. doi: 10.1016/j.carbpol.2014.09.051.
  • Pan, L.-H., X.-F. Li, M.-N. Wang, X.-Q. Zha, X.-F. Yang, Z.-J. Liu, Y.-B. Luo, and J.-P. Luo. 2014. Comparison of hypoglycemic and antioxidative effects of polysaccharides from four different Dendrobium species. International Journal of Biological Macromolecules 64:420–427. doi: 10.1016/j.ijbiomac.2013.12.024.
  • Pan, Y., X. Wan, F. Zeng, R. Zhong, W. Guo, X.-C. Lv, C. Zhao, and B. Liu. 2020. Regulatory effect of Grifola frondosa extract rich in polysaccharides and organic acids on glycolipid metabolism and gut microbiota in rats. International Journal of Biological Macromolecules 155:1030–1039. doi: 10.1016/j.ijbiomac.2019.11.067.
  • Papoutsis, K., J. Zhang, M.-C. Bowyer, N. Brunton, E.-R. Gibney, and J. Lyng. 2021. Fruit, vegetables, and mushrooms for the preparation of extracts with alpha-amylase and alpha-glucosidase inhibition properties: a review. Food Chemistry 338:128119. doi: 10.1016/j.foodchem.2020.128119.
  • Peitsch, W.-K., I. Hofmann, J. Bulkescher, H.-M. ergt, H. Spring, U. Bleyl, S. Goerdt, and W.-W. Franke. 2005. Drebrin, an actin-binding, cell-type characteristic protein: induction and localization in epithelial skin tumors and cultured keratinocytes. The Journal of Investigative Dermatology 125 (4):761–774. doi: 10.1111/j.0022-202X.2005.23793.x.
  • Peixoto Araujo, N.-M., H.-S. Arruda, D. de Paulo Farias, G. Molina, G.-A. Pereira, and G.-M. Pastore. 2021. Plants from the genus Eugenia as promising therapeutic agents for the management of diabetes mellitus: a review. Food Research International (Ottawa, Ont.) 142:110182. doi: 10.1016/j.foodres.2021.110182.
  • Peng, M, and X. Yang. 2015. Controlling diabetes by chromium complexes: the role of the ligands. Journal of Inorganic Biochemistry 146:97–103. doi: 10.1016/j.jinorgbio.2015.01.002.
  • Piparo, E.-L., H. Scheib, N. Frei, G. Williamson, M. Grigorov, and C.-J. Chou. 2008. Flavonoids for controlling starch digestion: structural requirements for inhibiting human r-amylase. Journal of Medicinal Chemistry 51 (12):3555–3561. doi: 10.1021/jm800115x.
  • Pino, J.-L., V. Mujica, and M. Arredondo. 2021. Effect of dietary supplementation with oat β-glucan for 3 months in subjects with type 2 diabetes: a randomized, double-blind, controlled clinical trial. Journal of Functional Foods 77:104311. doi: 10.1016/j.jff.2020.104311.
  • Polfus, L. M., B. F. Darst, H. Highland, X. Sheng, M. C. Ng, J. E. Below, L. Petty, S. Bien, X. Sim, W. Wang, et al. 2021. Genetic discovery and risk characterization in type 2 diabetes across diverse populations. Human Genetics and Genomics Advances 2 (2):100029. doi: 10.1016/j.xhgg.2021.100029.
  • Prawitt, J., M. Abdelkarim, J.-H. Stroeve, I. Popescu, H. Duez, V.-R. Velagapudi, J. Dumont, E. Bouchaert, T.-H. van Dijk, A. Lucas, et al. 2011. Farnesoid X receptor deficiency improves glucose homeostasis in mouse models of obesity. Diabetes 60 (7):1861–1871. doi: 10.2337/db11-0030.
  • Qian, H.-F., Y. Li, and L. Wang. 2017. Vaccinium bracteatum Thunb. Leaves’ polysaccharide alleviates hepatic gluconeogenesis via the downregulation of miR-137. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 95:1397–1403. doi: 10.1016/j.biopha.2017.09.040.
  • Qu, J., P. Huang, L. Zhang, Y. Qiu, H. Qi, A. Leng, and D. Shang. 2020. Hepatoprotective effect of plant polysaccharides from natural resources: a review of the mechanisms and structure-activity relationship. International Journal of Biological Macromolecules 161:24–34. doi: 10.1016/j.ijbiomac.2020.05.196.
  • Rakoff-Nahoum, S., K.-R. Foster, and L.-E. Comstock. 2016. The evolution of cooperation within the gut microbiota. Nature 533 (7602):255–259. doi: 10.1038/nature17626.
  • Rao, Y., Q. Wen, R. Liu, M. He, Z. Jiang, K. Qian, C. Zhou, J. Li, H. Du, H. Ouyang, et al. 2020. PL-S2, a homogeneous polysaccharide from Radix Puerariae lobatae, attenuates hyperlipidemia via farnesoid X receptor (FXR) pathway-modulated bile acid metabolism. International Journal of Biological Macromolecules 165 (Pt B):1694–1705. doi: 10.1016/j.ijbiomac.2020.10.029.
  • Rashid, R., H. Ahmad, Z. Ahmed, F. Rashid, and N. Khalid. 2019. Clinical investigation to modulate the effect of fenugreek polysaccharides on type-2 diabetes. Bioactive Carbohydrates and Dietary Fibre 19:100194. doi: 10.1016/j.bcdf.2019.100194.
  • Ren, C., Y. Zhang, W. Cui, G. Lu, Y. Wang, H. Gao, L. Huang, and Z. Mu. 2015. A polysaccharide extract of mulberry leaf ameliorates hepatic glucose metabolism and insulin signaling in rats with type 2 diabetes induced by high fat-diet and streptozotocin. International Journal of Biological Macromolecules 72:951–959. doi: 10.1016/j.ijbiomac.2014.09.060.
  • Ren, L., C. Perera, and Y. Hemar. 2012. Antitumor activity of mushroom polysaccharides: a review. Food & Function 3 (11):1118–1130. doi: 10.1039/c2fo10279j.
  • Rhea, E.-M., J. Raber, and W.-A. Banks. 2020. ApoE and cerebral insulin: trafficking, receptors, and resistance. Neurobiology of Disease 137:104755. doi: 10.1016/j.nbd.2020.104755.
  • Robyt, J.-F. 2008. Starch: structure, properties, chemistry, and enzymology. In Glycoscience, ed. B.O. Fraser-Reid, K. Tatsuta, and J. Thiem, 1437–1472. Berlin: Heidelberg. doi: 10.1007/978-3-540-30429-6_35.
  • Ru, Y., K. Liu, X. Kong, X. Li, X. Shi, and H. Chen. 2020. Synthesis of selenylated polysaccharides from Momordica charantia L. and its hypoglycemic activity in streptozotocin-induced diabetic mice. International Journal of Biological Macromolecules 152:295–304. doi: 10.1016/j.ijbiomac.2020.02.288.
  • Sakai, C., S. Abe, M. Kouzuki, H. Shimohiro, Y. Ota, H. Sakinada, T. Takeuchi, T. Okura, T. Kasagi, and K. Hanaki. 2019. A randomized placebo-controlled trial of an oral preparation of high molecular weight fucoidan in patients with type 2 diabetes with evaluation of taste sensitivity. Yonago Acta Medica 62 (1):14–23. doi: 10.33160/yam.2019.03.003.
  • Sang, T., C. Guo, D. Guo, J. Wu, Y. Wang, Y. Wang, J. Chen, C. Chen, K. Wu, K. Na, et al. 2021. Suppression of obesity and inflammation by polysaccharide from sporoderm-broken spore of Ganoderma lucidum via gut microbiota regulation. Carbohydrate Polymers 256:117594. doi: 10.1016/j.carbpol.2020.117594.
  • Schmidt, M. 2022. Cereal beta-glucans: an underutilized health endorsing food ingredient. Critical Reviews in Food Science and Nutrition 62 (12):3281–3300. doi: 10.1080/10408398.2020.1864619.
  • Schwarz, K, and W. Mertz. 1959. Chromium (III) and the glucose tolerance factor. Archives of Biochemistry and Biophysics 85 (1):292–295. doi: 10.1016/0003-9861(59)90479-5.
  • Shang, H., J. Zhao, Y. Guo, H. Zhang, M. Duan, and H. Wu. 2020. Extraction, purification, emulsifying property, hypoglycemic activity, and antioxidant activity of polysaccharides from comfrey. Industrial Crops and Products 146:112183. doi: 10.1016/j.indcrop.2020.112183.
  • Shao, J.-W., J.-L. Jiang, J.-J. Zou, M.-Y. Yang, F.-M. Chen, Y.-J. Zhang, and L. Jia. 2020. Therapeutic potential of ginsenosides on diabetes: from hypoglycemic mechanism to clinical trials. Journal of Functional Foods 64:103630. doi: 10.1016/j.jff.2019.103630.
  • Shao, W., C. Xiao, T. Yong, Y. Zhang, H. Hu, T. Xie, R. Liu, L. Huang, X. Li, Y. Xie, et al. 2022. A polysaccharide isolated from Ganoderma lucidum ameliorates hyperglycemia through modulating gut microbiota in type 2 diabetic mice. International Journal of Biological Macromolecules 197:23–38. doi: 10.1016/j.ijbiomac.2021.12.034.
  • Sharma, R. 1986. Effect of feaugreek seeds and leaves on blood glucose and serum insulln responses in human subjects. Nutrition Research 6 (12):1353–1364. doi: 10.1016/S0271-5317(86)80020-3.
  • Shi, Z.-Q., L.-Y. Wang, J.-Y. Zheng, G.-Z. Xin, and L. Chen. 2021. Lipidomics characterization of the mechanism of Cynomorium songaricum polysaccharide on treating type 2 diabetes. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 1176:122737. doi: 10.1016/j.jchromb.2021.122737.
  • Slavin, J. 2013. Fiber and prebiotics: mechanisms and health benefits. Nutrients 5 (4):1417–1435. doi: 10.3390/nu5041417.
  • Song, Q., Y. Wang, L. Huang, M. Shen, Y. Yu, Q. Yu, Y. Chen, and J. Xie. 2021. Review of the relationships among polysaccharides, gut microbiota, and human health. Food Research International (Ottawa, Ont.) 140:109858. doi: 10.1016/j.foodres.2020.109858.
  • Sousa, S.-G., L.-A. Oliveira, D. de Aguiar Magalhaes, T.-V. de Brito, J.-A. Batista, C.-M.-C. Pereira, M. de Souza Costa, J.-C.-R. Mazulo, M. de Carvalho Filgueiras, D.-F.-P. Vasconselos, et al. 2018. Chemical structure and anti-inflammatory effect of polysaccharide extracted from Morinda citrifolia Linn (Noni). Carbohydrate Polymers 197:515–523. doi: 10.1016/j.carbpol.2018.06.042.
  • Stagi, S., F. Ricci, M. Bianconi, M.-A. Sammarco, G. Municchi, S. Toni, L. Lenzi, A. Verrotti, and M. de Martino. 2017. Retrospective evaluation of metformin and/or metformin plus a new polysaccharide complex in treating severe hyperinsulinism and insulin resistance in obese children and adolescents with metabolic syndrome. Nutrients 9 (5):524. doi: 10.3390/nu9050524.
  • Su, J., X. Liu, H. Li, X. Cheng, S. Shi, N. Li, J. Wu, Y. Xu, R. Liu, X. Tian, et al. 2020. Hypoglycaemic effect and mechanism of an RG-II type polysaccharide purified from Aconitum coreanum in diet-induced obese mice. International Journal of Biological Macromolecules 149:359–370. doi: 10.1016/j.ijbiomac.2020.01.209.
  • Sun, C., Y. Liu, L. Zhan, G. R. Rayat, J. Xiao, H. Jiang, X. Li, and K. Chen. 2021. Anti-diabetic effects of natural antioxidants from fruits. Trends in Food Science & Technology 117:3–14. doi: 10.1016/j.tifs.2020.07.024.
  • Sun, J., H. Chen, J. Kan, Y. Gou, J. Liu, X. Zhang, X. Wu, S. Tang, R. Sun, C. Qian, et al. 2020. Anti-inflammatory properties and gut microbiota modulation of an alkali-soluble polysaccharide from purple sweet potato in DSS-induced colitis mice. International Journal of Biological Macromolecules 153:708–722. doi: 10.1016/j.ijbiomac.2020.03.053.
  • Sun, L., Y. Wang, and M. Miao. 2020. Inhibition of α-amylase by polyphenolic compounds: substrate digestion, binding interactions and nutritional intervention. Trends in Food Science & Technology 104:190–207. doi: 10.1016/j.tifs.2020.08.003.
  • Sun, L., F.-J. Warren, and M.-J. Gidley. 2019. Natural products for glycaemic control: polyphenols as inhibitors of alpha-amylase. Trends in Food Science & Technology 91:262–273. doi: 10.1016/j.tifs.2019.07.009.
  • Sun, Q., L. Cheng, X. Zeng, X. Zhang, Z. Wu, and P. Weng. 2020. The modulatory effect of plant polysaccharides on gut flora and the implication for neurodegenerative diseases from the perspective of the microbiota-gut-brain axis. International Journal of Biological Macromolecules 164:1484–1492. doi: 10.1016/j.ijbiomac.2020.07.208.
  • Sun, S.-S., K. Wang, K. Ma, L. Bao, and H.-W. Liu. 2019. An insoluble polysaccharide from the sclerotium of Poria cocos improves hyperglycemia, hyperlipidemia and hepatic steatosis in ob/ob mice via modulation of gut microbiota. Chinese Journal of Natural Medicines 17 (1):3–14. doi: 10.1016/S1875-5364(19)30003-2.
  • Sun, X., M. Duan, Y. Liu, T. Luo, N. Ma, S. Song, and C. Ai. 2018. The beneficial effects of Gracilaria lemaneiformis polysaccharides on obesity and the gut microbiota in high fat diet-fed mice. Journal of Functional Foods 46:48–56. doi: 10.1016/j.jff.2018.04.041.
  • Sun, Y.-Y., H.-Q. Sun, L.-C. Pan, Y.-Q. Jia, C.-Y. Liu, H.-X. Wang, X.-C. Liu, Z.-Y. Zhu, and C.-L. Si. 2022. Preparation, structure and α-glucosidase inhibitory of oligosaccharides by enzymatic hydrolysis from Annona squamosa polysaccharide. Industrial Crops and Products 177:114468. doi: 10.1016/j.indcrop.2021.114468.
  • Tabuchi, M., M. Ozaki, A. Tamura, N. Yamada, T. Ishida, M. Hosoda, and A. Hosono. 2003. Antidiabetic effect of Lactobacillus GG in streptozotocin-induced diabetic rats. Bioscience Biotechnology and Biochemistry 67 (6):1421–1424. doi: 10.1271/bbb.67.1421.
  • Tahrani, A.-A., M.-K. Piya, A. Kennedy, and A. H. Barnett. 2010. Glycaemic control in type 2 diabetes: targets and new therapies. Pharmacology & Therapeutics 125 (2):328–361. doi: 10.1016/j.pharmthera.2009.11.001.
  • Tan, H, and S. Nie. 2020. Deciphering diet-gut microbiota-host interplay: investigations of pectin. Trends in Food Science & Technology 106:171–181. doi: 10.1016/j.tifs.2020.10.010.
  • Teixeira, C., O. Prykhodko, M. Alminger, F. F. Hallenius, and M. Nyman. 2018. Barley products of different fiber composition selectively change microbiota composition in rats. Molecular Nutrition & Food Research 62 (19):1701023. doi: 10.1002/mnfr.201701023.
  • Teng, H., B. Yuan, S. Gothai, P. Arulselvan, X. Song, and L. Chen. 2018. Dietary triterpenes in the treatment of type 2 diabetes: to date. Trends in Food Science & Technology 72:34–44. doi: 10.1016/j.tifs.2017.11.012.
  • Tessari, P, and A. Lante. 2017. A multifunctional bread rich in beta glucans and low in starch improves metabolic control in type 2 diabetes: a controlled trial. Nutrients 9 (3):297. doi: 10.3390/nu9030297.
  • Thissera, B., R. Visvanathan, M.-A. Khanfar, M.-M. Qader, M.-H.-A. Hassan, H.-M. Hassan, M. Bawazeer, F.-A. Behery, M. Yaseen, R. Liyanage, et al. 2020. Sesbania grandiflora L. Poir leaves: a dietary supplement to alleviate type 2 diabetes through metabolic enzymes inhibition. South African Journal of Botany 130:282–299. doi: 10.1016/j.sajb.2020.01.011.
  • Tian, Y., Y. Zhao, J. Huang, H. Zeng, and B. Zheng. 2016. Effects of different drying methods on the product quality and volatile compounds of whole shiitake mushrooms. Food Chemistry 197 (Pt A):714–722. doi: 10.1016/j.foodchem.2015.11.029.
  • Tilg, H., N. Zmora, T.-E. Adolph, and E. Elinav. 2020. The intestinal microbiota fuelling metabolic inflammation. Nature Reviews. Immunology 20 (1):40–54. doi: 10.1038/s41577-019-0198-4.
  • Umirah, F., C.-F. Neoh, K. Ramasamy, and S.-M. Lim. 2021. Differential gut microbiota composition between type 2 diabetes mellitus patients and healthy controls: a systematic review. Diabetes Research and Clinical Practice 173:108689. doi: 10.1016/j.diabres.2021.108689.
  • Van Dijk, T.-H., A. Grefhorst, M.-H. Oosterveer, V.-W. Bloks, B. Staels, D.-J. Reijngoud, and F. Kuipers. 2009. An increased flux through the glucose 6-phosphate pool in enterocytes delays glucose absorption in Fxr-/- mice. The Journal of Biological Chemistry 284 (16):10315–10323. doi: 10.1074/jbc.M807317200.
  • Vermeulen, M.-A., M.-C. Richir, M.-K. Garretsen, A. van Schie, M.-A. Ghatei, J.-J. Holst, A.-C. Heijboer, B.-M.-J. Uitdehaag, M. Diamant, M.-W. Eekhoff, et al. 2011. Gastric emptying, glucose metabolism and gut hormones: evaluation of a common preoperative carbohydrate beverage. Nutrition (Burbank, Los Angeles County, Calif.) 27 (9):897–903. doi: 10.1016/j.nut.2010.10.001.
  • Vetrani, C., L. Bozzetto, M. Giorgini, L. Cavagnuolo, E. D. Mattia, P. Cipriano, P. Cipriano, A. Mangione, A. Todisco, G. Inghilterra, et al. 2019. Fibre-enriched buckwheat pasta modifies blood glucose response compared to corn pasta in individuals with type 1 diabetes and celiac disease: acute randomized controlled trial. Diabetes Research and Clinical Practice 149:156–162. doi: 10.1016/j.diabres.2019.02.013.
  • Vincent, J.-B. 2000. Elucidating a biological role for chromium at a molecular level. Accounts of Chemical Research 33 (7):503–510. doi: 10.1002/chin.200041279.
  • Vuksan, V., D.-J.-A. Jenkins, P. Spadafora, J.-L. Sievenpiper, R. Owen, E. Vidgen, F. Brighenti, R. Josse, L.-A. Leiter, and C. Bruce-Thompson. 1999. Konjac-Mannan (Glucomannan) improves glycemia and other associated risk factors for coronary heart disease in type 2 diabetes. Diabetes Care 22 (6):913–919. doi: 10.2337/DIACARE.22.6.913.
  • Wang, B.-H., J.-J. Cao, B. Zhang, and H.-Q. Chen. 2019. Structural characterization, physicochemical properties and alpha-glucosidase inhibitory activity of polysaccharide from the fruits of wax apple. Carbohydrate Polymers 211:227–236. doi: 10.1016/j.carbpol.2019.02.006.
  • Wang, C., W. Li, Z. Chen, X. Gao, G. Yuan, Y. Pan, and H. Chen. 2018. Effects of simulated gastrointestinal digestion in vitro on the chemical properties, antioxidant activity, α-amylase and α-glucosidase inhibitory activity of polysaccharides from Inonotus obliquus. Food Research International 103:280–288. doi: 10.1016/j.foodres.2017.10.058.
  • Wang, C., Y. Yin, X. Cao, and X. Li. 2016. Effects of Maydis stigma polysaccharide on the intestinal microflora in type-2 diabetes. Pharmaceutical Biology 54 (12):3086–3092. doi: 10.1080/13880209.2016.1211153.
  • Wang, G., Y. Zhang, R. Zhang, J. Pan, D. Qi, J. Wang, and X. Yang. 2020. The protective effects of walnut green husk polysaccharide on liver injury, vascular endothelial dysfunction and disorder of gut microbiota in high fructose-induced mice. International Journal of Biological Macromolecules 162:92–106. doi: 10.1016/j.ijbiomac.2020.06.055.
  • Wang, H.-Y., L.-X. Guo, W.-H. Hu, Z.-T. Peng, C. Wang, Z.-C. Chen, E.-Y.-L. Liu, T.-T.-X. Dong, T.-J. Wang, and K.-W.-K. Tsim. 2019. Polysaccharide from tuberous roots of Ophiopogon japonicus regulates gut microbiota and its metabolites during alleviation of high-fat diet-induced type-2 diabetes in mice. Journal of Functional Foods 63:103593. doi: 10.1016/j.jff.2019.103593.
  • Wang, H.-Y., Q.-M. Li, N.-J. Yu, W.-D. Chen, X.-Q. Zha, D.-L. Wu, L.-H. Pan, J. Duan, and J.-P. Luo. 2019. Dendrobium huoshanense polysaccharide regulates hepatic glucose homeostasis and pancreatic β-cell function in type 2 diabetic mice. Carbohydrate Polymers 211:39–48. doi: 10.1016/j.carbpol.2019.01.101.
  • Wang, J., J. Bai, M. Fan, T. Li, Y. Li, H. Qian, H. Qian, L. Wang, H. Zhang, X. Qi, et al. 2020. Cereal-derived arabinoxylans: structural features and structure–activity correlations. Trends in Food Science & Technology 96:157–165. doi: 10.1016/j.tifs.2019.12.016.
  • Wang, K., F. Cheng, X. Pan, T. Zhou, X. Liu, Z. Zheng, L. Luo, and Y. Zhang. 2017. Investigation of the transport and absorption of Angelica sinensis polysaccharide through gastrointestinal tract both in vitro and in vivo. Drug Delivery 24 (1):1360–1371. doi: 10.1080/10717544.2017.1375576.
  • Wang, K., H. Wang, Y. Liu, W. Shui, J. Wang, P. Cao, H. Wang, R. You, and Y. Zhang. 2018. Dendrobium officinale polysaccharide attenuates type 2 diabetes mellitus via the regulation of PI3K/Akt-mediated glycogen synthesis and glucose metabolism. Journal of Functional Foods 40:261–271. doi: 10.1016/j.jff.2017.11.004.
  • Wang, L., T. Liu, R. Liang, G. Wang, Y. Liu, J. Zou, N. Liu, B. Zhang, Y. Liu, X. Ding, et al. 2020. Mesenchymal stem cells ameliorate beta cell dysfunction of human type 2 diabetic islets by reversing beta cell dedifferentiation. EBioMedicine 51:102615. doi: 10.1016/j.ebiom.2019.102615.
  • Wang, L., P.-Z. Zhang, J.-W. Shen, Y.-Y. Qian, M. Liu, Y. Ruan, X.-G. Wang, S.-N. Zhang, and B.-J. Ma. 2019. Physicochemical properties and bioactivities of original and Se-enriched polysaccharides with different molecular weights extracted from Pleurotus ostreatus. International Journal of Biological Macromolecules 141:150–160. doi: 10.1016/j.ijbiomac.2019.08.250.
  • Wang, W., C. Liu, M. Jimenez-Gonzalez, W.-J. Song, and M.-A. Hussain. 2017. The undoing and redoing of the diabetic beta-cell. Journal of Diabetes and Its Complications 31 (5):912–917. doi: 10.1016/j.jdiacomp.2017.01.028.
  • Wang, Y., G. Hou, J. Li, M. M. Surhio, and M. Ye. 2018. Structure characterization, modification through carboxymethylation and sulfation, and in vitro antioxidant and hypoglycemic activities of a polysaccharide from Lachnum sp. Process Biochemistry 72:177–187. doi: 10.1016/j.procbio.2018.06.002.
  • Wang, Y., Y. Peng, X. Wei, Z. Yang, J. Xiao, and Z. Jin. 2010. Sulfation of tea polysaccharides: synthesis, characterization and hypoglycemic activity. International Journal of Biological Macromolecules 46 (2):270–274. doi: 10.1016/j.ijbiomac.2009.12.007.
  • Wang, Y.-R., Z. Liu, G.-Y. Liu, and H.-J. Wang. 2022. Research progress of active ingredients of Scutellaria baicalensis in the treatment of type 2 diabetes and its complications. Biomedicine & Pharmacotherapy. 148:112690. doi: 10.1016/j.biopha.2022.112690.
  • Wang, Z., J. Xie, Y. Yang, F. Zhang, S. Wang, T. Wu, M. Shen, and M. Xie. 2017. Sulfated Cyclocarya paliurus polysaccharides markedly attenuates inflammation and oxidative damage in lipopolysaccharide-treated macrophage cells and mice. Scientific Reports 7:40402. doi: 10.1038/srep40402.
  • Wei, J., Z. Gou, Y. Wen, Q. Luo, and Z. Huang. 2020. Marine compounds targeting the PI3K/Akt signaling pathway in cancer therapy. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 129:110484. doi: 10.1016/j.biopha.2020.110484.
  • Wei, Z., S. Weng, L. Wang, and Z. Mao. 2018. Mechanism of Astragalus polysaccharides in attenuating insulin resistance in Rats with type 2 diabetes mellitus via the regulation of liver microRNA‑203a‑3p. Molecular Medicine Reports 17:1617–1624. doi: 10.3892/mmr.2017.8084.
  • Weickert, M.-O, and A.-F.-H. Pfeiffer. 2018. Impact of dietary fiber consumption on insulin resistance and the prevention of type 2 diabetes. The Journal of Nutrition 148 (1):7–12. doi: 10.1093/jn/nxx008.
  • Wen, Y., L. Gao, H. Zhou, C. Ai, X. Huang, M. Wang, Y.-Y. Zhang, and C. Zhao. 2021. Opportunities and challenges of algal fucoidan for diabetes management. Trends in Food Science & Technology 111:628–641. doi: 10.1016/j.tifs.2021.03.028.
  • Whitehead, A., E.-J. Beck, S. Tosh, and T.-M. Wolever. 2014. Cholesterol-lowering effects of oat beta-glucan: a meta-analysis of randomized controlled trials. The American Journal of Clinical Nutrition 100 (6):1413–1421. doi: 10.3945/ajcn.114.086108.
  • Wu, H., M. Li, X. Yang, Q. Wei, L. Sun, J. Zhao, and H. Shang. 2020. Extraction optimization, physicochemical properties and antioxidant and hypoglycemic activities of polysaccharides from roxburgh rose (Rosa roxburghii Tratt.) leaves. International Journal of Biological Macromolecules 165 (Pt A):517–529. doi: 10.1016/j.ijbiomac.2020.09.198.
  • Wu, J., S.-S. Hou, W. Wang, M. Yin, N. Cheng, L.-L. Ge, J.-J. Yin, and J. Xu. 2015. Hepatic phosphoenolpyruvate carboxykinase expression after gastric bypass surgery in rats with type 2 diabetes mellitus. Genetics and Molecular Research 14 (4):16938–16947. doi: 10.4238/2015.December.14.22.
  • Wu, J., S. Shi, H. Wang, and S. Wang. 2016. Mechanisms underlying the effect of polysaccharides in the treatment of type 2 diabetes: a review. Carbohydrate Polymers 144:474–494. doi: 10.1016/j.carbpol.2016.02.040.
  • Wu, M., W. Li, Y. Zhang, L. Shi, Z. Xu, W. Xia, and W. Zhang. 2021. Structure characteristics, hypoglycemic and immunomodulatory activities of pectic polysaccharides from Rosa setate x Rosa rugosa waste. Carbohydrate Polymers 253:117190. doi: 10.1016/j.carbpol.2020.117190.
  • Wu, M., Q. Yang, Y. Wu, and J. Ouyang. 2021. Inhibitory effects of acorn (Quercus variabilis Blume) kernel-derived polyphenols on the activities of α-amylase, α-glucosidase, and dipeptidyl peptidase IV. Food Bioscience 43:101224. doi: 10.1016/j.fbio.2021.101224.
  • Wu, T., M. Shen, X. Guo, L. Huang, J. Yang, Q. Yu, Y. Chen, and J. Xie. 2020. Cyclocarya paliurus polysaccharide alleviates liver inflammation in mice via beneficial regulation of gut microbiota and TLR4/MAPK signaling pathways. International Journal of Biological Macromolecules 160:164–174. doi: 10.1016/j.ijbiomac.2020.05.187.
  • Wu, T., M. Shen, Q. Yu, Y. Chen, X. Chen, J. Yang, L. Huang, X. Guo, and J. Xie. 2021. Cyclocarya paliurus polysaccharide improves metabolic function of gut microbiota by regulating short-chain fatty acids and gut microbiota composition. Food Research International (Ottawa, Ont.) 141:110119. doi: 10.1016/j.foodres.2021.110119.
  • Xia, T., C.-S. Liu, Y.-N. Hu, Z.-Y. Luo, F.-L. Chen, L.-X. Yuan, and X.-M. Tan. 2021. Coix seed polysaccharides alleviate type 2 diabetes mellitus via gut microbiota-derived short-chain fatty acids activation of IGF1/PI3K/AKT signaling. Food Research International (Ottawa, Ont.) 150 (Pt A):110717. doi: 10.1016/j.foodres.2021.110717.
  • Xiao, H., X. Fu, C. Cao, C. Li, C. Chen, and Q. Huang. 2019. Sulfated modification, characterization, antioxidant and hypoglycemic activities of polysaccharides from Sargassum pallidum. International Journal of Biological Macromolecules 121:407–414. doi: 10.1016/j.ijbiomac.2018.09.197.
  • Xiao, Z., Q. Deng, W. Zhou, and Y. Zhang. 2022. Immune activities of polysaccharides isolated from Lycium barbarum L. What do we know so far? Pharmacology & Therapeutics 229:107921. doi: 10.1016/j.pharmthera.2021.107921.
  • Xie, L., M. Shen, Z. Wang, and J. Xie. 2021. Structure, function and food applications of carboxymethylated polysaccharides: a comprehensive review. Trends in Food Science & Technology 118:539–557. doi: 10.1016/j.tifs.2021.09.016.
  • Xu, L., Y. Li, L. Yin, Y. Qi, H. Sun, P. Sun, M. Xu, Z. Tang, and J. Peng. 2018. miR-125a-5p ameliorates hepatic glycolipid metabolism disorder in type 2 diabetes mellitus through targeting of STAT3. Theranostics 8 (20):5593–5609. doi: 10.7150/thno.27425.
  • Xu, Y., Y. Guo, S. Duan, H. Wei, Y. Liu, L. Wang, X. Huo, and Y. Yang. 2018. Effects of ultrasound irradiation on the characterization and bioactivities of the polysaccharide from blackcurrant fruits. Ultrasonics Sonochemistry 49:206–214. doi: 10.1016/j.ultsonch.2018.08.005.
  • Xu, Y., Y. Guo, Y. Gao, X. Niu, L. Wang, X. Li, X. Li, H. Chen, Z. Yu, and Y. Yang. 2018. Seperation, characterization and inhibition on α-glucosidase, α-amylase and glycation of a polysaccharide from blackcurrant fruits. Lwt 93:16–23. doi: 10.1016/j.lwt.2018.03.023.
  • Xu, Y., X. Niu, N. Liu, Y. Gao, L. Wang, G. Xu, X. Li, and Y. Yang. 2018. Characterization, antioxidant and hypoglycemic activities of degraded polysaccharides from blackcurrant (Ribes nigrum L.) fruits. Food Chemistry 243:26–35. doi: 10.1016/j.foodchem.2017.09.107.
  • Yan, J.-K., C. Wang, Y.-B. Yu, L.-X. Wu, T.-T. Chen, and Z.-W. Wang. 2021. Physicochemical characteristics and in vitro biological activities of polysaccharides derived from raw garlic (Allium sativum L.) bulbs via three-phase partitioning combined with gradient ethanol precipitation method. Food Chemistry 339:128081. doi: 10.1016/j.foodchem.2020.128081.
  • Yang, B., Q. Wu, Y. Luo, Q. Yang, X. Wei, and J. Kan. 2019. High-pressure ultrasonic-assisted extraction of polysaccharides from Hovenia dulcis: extraction, structure, antioxidant activity and hypoglycemic. International Journal of Biological Macromolecules 137:676–687. doi: 10.1016/j.ijbiomac.2019.07.034.
  • Yang, C.-F., S.-S. Lai, Y.-H. Chen, D. Liu, B. Liu, C. Ai, X.-Z. Wan, L.-Y. Gao, X.-H. Chen, and C. Zhao. 2019. Anti-diabetic effect of oligosaccharides from seaweed Sargassum confusum via JNK-IRS1/PI3K signalling pathways and regulation of gut microbiota. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 131:110562. doi: 10.1016/j.fct.2019.110562.
  • Yang, J., H. Chen, Q. Nie, X. Huang, and S. Nie. 2020. Dendrobium officinale polysaccharide ameliorates the liver metabolism disorders of type II diabetic rats. International Journal of Biological Macromolecules 164:1939–1948. doi: 10.1016/j.ijbiomac.2020.08.007.
  • Yang, J., Y. Sun, F. Xu, W. Liu, T. Hayashi, S. Onodera, S.-I. Tashiro, and T. Ikejima. 2018. Involvement of estrogen receptors in silibinin protection of pancreatic beta-cells from TNFα- or IL-1β-induced cytotoxicity. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 102:344–353. doi: 10.1016/j.biopha.2018.01.128.
  • Yang, L., D. Wang, Z. Zhang, Y. Jiang, and Y. Liu. 2022. Isoliquiritigenin alleviates diabetic symptoms via activating AMPK and inhibiting mTORC1 signaling in diet-induced diabetic mice Treating type 2 diabetes with isoliquiritigenin. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology 98:153950. doi: 10.1016/j.phymed.2022.153950.
  • Yang, X., Y. Zhao, and Y. Lv. 2008. In vivo macrophage activation and physicochemical property of the different polysaccharide fractions purified from Angelica sinensis. Carbohydrate Polymers 71 (3):372–379. doi: 10.1016/j.carbpol.2007.06.002.
  • Yang, Y., J. Ji, L. Di, J. Li, L. Hu, H. Qiao, L. Wang, and Y. Feng. 2020. Resource, chemical structure and activity of natural polysaccharides against alcoholic liver damages. Carbohydrate Polymers 241:116355. doi: 10.1016/j.carbpol.2020.116355.
  • Yang, Z., C. Chen, J. Zhao, W. Xu, Y. He, H. Yang, and P. Zhou. 2018. Hypoglycemic mechanism of a novel proteoglycan, extracted from Ganoderma lucidum, in hepatocytes. European Journal of Pharmacology 820:77–85. doi: 10.1016/j.ejphar.2017.12.020.
  • Yao, Y., L. Yan, H. Chen, N. Wu, W. Wang, and D. Wang. 2020. Cyclocarya paliurus polysaccharides alleviate type 2 diabetic symptoms by modulating gut microbiota and short-chain fatty acids. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology 77:153268. doi: 10.1016/j.phymed.2020.153268.
  • Yap, P.-G, and C.-Y. Gan. 2020. In vivo challenges of anti-diabetic peptide therapeutics: gastrointestinal stability, toxicity and allergenicity. Trends in Food Science & Technology 105:161–175. doi: 10.1016/j.tifs.2020.09.005.
  • Ye, Y., D. Ji, L. You, L. Zhou, Z. Zhao, and C. Brennan. 2018. Structural properties and protective effect of Sargassum fusiforme polysaccharides against ultraviolet B radiation in hairless Kun Ming mice. Journal of Functional Foods 43:8–16. doi: 10.1016/j.jff.2018.01.025.
  • Yeh, T.-H., L.-W. Hsu, M.-T. Tseng, P.-L. Lee, K. Sonjae, Y.-C. Ho, and H.-W. Sung. 2011. Mechanism and consequence of chitosan-mediated reversible epithelial tight junction opening. Biomaterials 32 (26):6164–6173. doi: 10.1016/j.biomaterials.2011.03.056.
  • Yeung, A. W. K., N. T. Tzvetkov, A. Durazzo, M. Lucarini, E. B. Souto, A. Santini, R.-Y. Gan, A. Jozwik, W. Grzybek, J. O. Horbańczuk, et al. 2021. Natural products in diabetes research: quantitative literature analysis. Natural Product Research 35 (24):5813–5827. doi: 10.1080/14786419.2020.1821019.
  • Yin, L., S. Fu, R. Wu, S. Wei, J. Yi, L.-M. Zhang, and L. Yang. 2020. Chain conformation of an acidic polysaccharide from green tea and related mechanism of alpha-amylase inhibitory activity. International Journal of Biological Macromolecules 164:1124–1132. doi: 10.1016/j.ijbiomac.2020.07.125.
  • Ying, Y., C.-B. Sun, S.-Q. Zhang, B.-J. Chen, J.-Z. Yu, F.-Y. Liu, J. Wen, J. Hou, S.-S. Han, J.-Y. Yan, et al. 2021. Induction of autophagy via the TLR4/NF-kappaB signaling pathway by astragaloside contributes to the amelioration of inflammation in RAW264.7 cells. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 137:111271. doi: 10.1016/j.biopha.2021.111271.
  • Yoshida, M., C.-A. Vanstone, W.-D. Parsons, J. Zawistowski, and P.-J. Jones. 2006. Effect of plant sterols and glucomannan on lipids in individuals with and without type II diabetes. European Journal of Clinical Nutrition 60 (4):529–537. doi: 10.1038/sj.ejcn.1602347.
  • You, R., K. Wang, J. Liu, M. Liu, L. Luo, and Y. Zhang. 2011. A comparison study between different molecular weight polysaccharides derived from Lentinus edodes and their antioxidant activities in vivo. Pharmaceutical Biology 49 (12):1298–1305. doi: 10.3109/13880209.2011.621960.
  • Younis, M.-A., H.-M. Tawfeek, A.-A.-H. Abdellatif, J.-A. Abdel-Aleem, and H. Harashima. 2022. Clinical translation of nanomedicines: challenges, opportunities, and keys. Advanced Drug Delivery Reviews 181:114083. doi: 10.1016/j.addr.2021.114083.
  • Yuan, Q., Y. He, P.-Y. Xiang, S.-P. Wang, Z.-W. Cao, T. Gou, M.-M. Shen, L. Zhao, W. Qin, R.-Y. Gan, et al. 2020. Effects of simulated saliva-gastrointestinal digestion on the physicochemical properties and bioactivities of okra polysaccharides. Carbohydrate Polymers 238:116183. doi: 10.1016/j.carbpol.2020.116183.
  • Yuan, Y., J. Zhou, Y. Zheng, Z. Xu, Y. Li, S. Zhou, and C. Zhang. 2020. Beneficial effects of polysaccharide-rich extracts from Apocynum venetum leaves on hypoglycemic and gut microbiota in type 2 diabetic mice. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 127:110182. doi: 10.1016/j.biopha.2020.110182.
  • Yue, C., C. Chu, J. Zhao, H. Zhang, W. Chen, and Q. Zhai. 2022. Dietary strategies to promote the abundance of intestinal Akkermansia muciniphila, a focus on the effect of plant extracts. Journal of Functional Foods 93:105093. doi: 10.1016/j.jff.2022.105093.
  • Yue, J., J. Xu, J. Cao, X. Zhang, and Y. Zhao. 2017. Cucurbitane triterpenoids from Momordica charantia L. and their inhibitory activity against α-glucosidase, α-amylase and protein tyrosine phosphatase 1B (PTP1B). Journal of Functional Foods 37:624–631. doi: 10.1016/j.jff.2017.07.041.
  • Zarneshan, S.-N., S. Fakhri, M.-H. Farzaei, H. Khan, and L. Saso. 2020. Astaxanthin targets PI3K/Akt signaling pathway toward potential therapeutic applications. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 145:111714. doi: 10.1016/j.fct.2020.111714.
  • Zhang, H., X.-T. Cai, Q.-H. Tian, L.-X. Xiao, Z. Zeng, X.-T. Cai, J. Z. Yan, and Q.-Y. Li. 2019. Microwave-assisted degradation of polysaccharide from Polygonatum sibiricum and antioxidant activity. Journal of Food Science 84 (4):754–761. doi: 10.1111/1750-3841.14449.
  • Zhang, H.-Y., J.-X. Tian, F.-M. Lian, M. Li, W.-K. Liu, Z. Zhen, J.-Q. Liao, and X.-L. Tong. 2021. Therapeutic mechanisms of traditional Chinese medicine to improve metabolic diseases via the gut microbiota. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 133:110857. doi: 10.1016/j.biopha.2020.110857.
  • Zhang, H., J. Zhao, H. Shang, Y. Guo, and S. Chen. 2020. Extraction, purification, hypoglycemic and antioxidant activities of red clover (Trifolium pratense L.) polysaccharides. International Journal of Biological Macromolecules 148:750–760. doi: 10.1016/j.ijbiomac.2020.01.194.
  • Zhang, H., J. Zhong, Q. Zhang, D. Qing, and C. Yan. 2019. Structural elucidation and bioactivities of a novel arabinogalactan from Coreopsis tinctoria. Carbohydrate Polymers 219:219–228. doi: 10.1016/j.carbpol.2019.05.019.[PMC].[31151520.
  • Zhang, Q., J. Li, M. Luo, G.-Y. Xie, W. Zeng, Y. Wu, Y. Zhu, X. Yang, and A.-Y. Guo. 2020. Systematic transcriptome and regulatory network analyses reveal the hypoglycemic mechanism of Dendrobium fimbriatum. Molecular Therapy - Nucleic Acids 19:1–14. doi: 10.1016/j.omtn.2019.10.033.
  • Zhang, Q., J. Xie, B. Xue, X. Li, J. Gan, X. Bian, Y. Qin, and T. Sun. 2021. Effect of sulfated modification on rheological and physiological properties of oat β-glucan oligosaccharides prepared by acid or oxidative degradation. Journal of Cereal Science 99:103209. doi: 10.1016/j.jcs.2021.103209.
  • Zhang, R., X. Qin, T. Zhang, Q. Li, J. Zhang, and J. Zhao. 2018. Astragalus polysaccharide improves insulin sensitivity via AMPK activation in 3T3-L1 adipocytes. Molecules 23 (10):2711. doi: 10.3390/molecules23102711.
  • Zhang, S.-L., Y.-L. Cai, C.-Z. Meng, X.-Y. Ding, J.-L. Huang, X.-G. Luo, Y. Cao, F. Gao, and M.-C. Zou. 2021. The role of the microbiome in diabetes mellitus. Diabetes Research and Clinical Practice 172:108645. doi: 10.1016/j.diabres.2020.108645.
  • Zhang, S, and X. Li. 2018. Hypoglycemic activity in vitro of polysaccharides from Camellia oleifera Abel. seed cake. International Journal of Biological Macromolecules 115:811–819. doi: 10.1016/j.ijbiomac.2018.04.054.
  • Zhang, S, and X.-Z. Li. 2015. Inhibition of alpha-glucosidase by polysaccharides from the fruit hull of Camellia oleifera Abel. Carbohydrate Polymers 115:38–43. doi: 10.1016/j.carbpol.2014.08.059.
  • Zhang, S., L. Lei, Y. Zhou, F-y Ye, and G-h Zhao. 2022. Roles of mushroom polysaccharides in chronic disease management. Journal of Integrative Agriculture 21 (7):1839–1866. doi: 10.1016/S2095-3119(21)63871-6.
  • Zhang, X., N. Zhang, J. Kan, R. Sun, S. Tang, Z. Wang, M. Chen, J. Liu, and C. Jin. 2020. Anti-inflammatory activity of alkali-soluble polysaccharides from Arctium lappa L. and its effect on gut microbiota of mice with inflammation. International Journal of Biological Macromolecules 154:773–787. doi: 10.1016/j.ijbiomac.2020.03.111.
  • Zhang, Y., X. Pan, S. Ran, and K. Wang. 2019. Purification, structural elucidation and anti-inflammatory activity in vitro of polysaccharides from Smilax china L. International Journal of Biological Macromolecules 139:233–243. doi: 10.1016/j.ijbiomac.2019.07.209.
  • Zhang, Y., H. Wang, L. Zhang, Y. Yuan, and D. Yu. 2020. Codonopsis lanceolata polysaccharide CLPS alleviates high fat/high sucrose diet-induced insulin resistance via anti-oxidative stress. International Journal of Biological Macromolecules 145:944–949. doi: 10.1016/j.ijbiomac.2019.09.185.
  • Zhang, Z., G. Lv, J. Cheng, W. Cai, L. Fan, and L. Miao. 2019. Characterization and biological activities of polysaccharides from artificially cultivated Phellinus baumii. International Journal of Biological Macromolecules 129:861–868. doi: 10.1016/j.ijbiomac.2019.02.082.
  • Zhao, C., C. Li, Q. Huang, and X. Fu. 2019. Characterization, functional and biological properties of degraded polysaccharides from Hylocereus undatus flowers. Journal of Food Processing and Preservation 43 (7):13973. doi: 10.1111/jfpp.13973.
  • Zhao, L., P. Ma, Y. Peng, M. Wang, C. Peng, Y. Zhang, and X. Li. 2021. Amelioration of hyperglycaemia and hyperlipidaemia by adjusting the interplay between gut microbiota and bile acid metabolism: radix scutellariae as a case. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology 83:153477. doi: 10.1016/j.phymed.2021.153477.
  • Zhao, M., J. Bai, X. Bu, Y. Yin, L. Wang, Y. Yang, and Y. Xu. 2021. Characterization of selenized polysaccharides from Ribes nigrum L. and its inhibitory effects on alpha-amylase and alpha-glucosidase. Carbohydrate Polymers 259:117729. doi: 10.1016/j.carbpol.2021.117729.
  • Zhao, Y., M. Jayachandran, and B. Xu. 2020. In vivo antioxidant and anti-inflammatory effects of soluble dietary fiber Konjac glucomannan in type-2 diabetic rats. International Journal of Biological Macromolecules 159:1186–1196. doi: 10.1016/j.ijbiomac.2020.05.105.
  • Zheng, Q., R.-B. Jia, Z.-R. Ou, Z.-R. Li, M. Zhao, D. Luo, and L. Lin. 2022. Comparative study on the structural characterization and alpha-glucosidase inhibitory activity of polysaccharide fractions extracted from Sargassum fusiforme at different pH conditions. International Journal of Biological Macromolecules 194:602–610. doi: 10.1016/j.ijbiomac.2021.11.103.
  • Zheng, Y., L. Bai, Y. Zhou, R. Tong, M. Zeng, X. Li, and J. Shi. 2019. Polysaccharides from Chinese herbal medicine for anti-diabetes recent advances. International Journal of Biological Macromolecules 121:1240–1253. doi: 10.1016/j.ijbiomac.2018.10.072.
  • Zheng, Y., B. Xu, P. Shi, H. Tian, Y. Li, X. Wang, S. Wu, and P. Liang. 2022. The influences of acetylation, hydroxypropylation, enzymatic hydrolysis and crosslinking on improved adsorption capacities and in vitro hypoglycemic properties of millet bran dietary fibre. Food Chemistry 368:130883. doi: 10.1016/j.foodchem.2021.130883.
  • Zheng, Z., X. Pan, L. Luo, Q. Zhang, X. Huang, Y. Liu, K. Wang, and Y. Zhang. 2022. Advances in oral absorption of polysaccharides: mechanism, affecting factors, and improvement strategies. Carbohydrate Polymers 282:119110. doi: 10.1016/j.carbpol.2022.119110.
  • Zhong, Q.-W., T.-S. Zhou, W.-H. Qiu, Y.-K. Wang, Q.-L. Xu, S.-Z. Ke, S.-J. Wang, W.-H. Jin, J.-W. Chen, H.-W. Zhang, et al. 2021. Characterization and hypoglycemic effects of sulfated polysaccharides derived from brown seaweed Undaria pinnatifida. Food Chemistry 341 (Pt 1):128148. doi: 10.1016/j.foodchem.2020.128148.
  • Zhou, W., G. Chen, D. Chen, H. Ye, and X. Zeng. 2020. The antidiabetic effect and potential mechanisms of natural polysaccharides based on the regulation of gut microbiota. Journal of Functional Foods 75:104222. doi: 10.1016/j.jff.2020.104222.
  • Zhou, Z., F. Ye, L. Lei, S. Zhou, and G. Zhao. 2022. Fabricating low glycaemic index foods: enlightened by the impacts of soluble dietary fibre on starch digestibility. Trends in Food Science & Technology 122:110–122. doi: 10.1016/j.tifs.2022.02.016.
  • Zhu, J., M. Wu, H. Zhou, L. Cheng, X. Wei, and Y. Wang. 2021. Liubao brick tea activates the PI3K-Akt signaling pathway to lower blood glucose, metabolic disorders and insulin resistance via altering the intestinal flora. Food Research International (Ottawa, Ont.) 148:110594. doi: 10.1016/j.foodres.2021.110594.
  • Zhu, J., C. Yu, Z. Han, Z. Chen, X. Wei, and Y. Wang. 2020. Comparative analysis of existence form for selenium and structural characteristics in artificial selenium-enriched and synthetic selenized green tea polysaccharides. International Journal of Biological Macromolecules 154:1408–1418. doi: 10.1016/j.ijbiomac.2019.11.022.
  • Zhu, Q., L. Lin, and M. Zhao. 2020. Sulfated fucan/fucosylated chondroitin sulfate-dominated polysaccharide fraction from low-edible-value sea cucumber ameliorates type 2 diabetes in rats: new prospects for sea cucumber polysaccharide based-hypoglycemic functional food. International Journal of Biological Macromolecules 159:34–45. doi: 10.1016/j.ijbiomac.2020.05.043.
  • Zhu, Y., J. Bai, Y. Zhou, Y. Zhang, Y. Zhao, Y. Dong, and X. Xiao. 2021. Water-soluble and alkali-soluble polysaccharides from bitter melon inhibited lipid accumulation in HepG2 cells and Caenorhabditis elegans. International Journal of Biological Macromolecules 166:155–165. doi: 10.1016/j.ijbiomac.2020.10.128.
  • Zhu, Y., L. Dong, L. Huang, Z. Shi, J. Dong, Y. Yao, and R. Shen. 2020. Effects of oat β-glucan, oat resistant starch, and the whole oat flour on insulin resistance, inflammation, and gut microbiota in high-fat-diet-induced type 2 diabetic rats. Journal of Functional Foods 69:103939. doi: 10.1016/j.jff.2020.103939.
  • Zubiaga, L., R. Vilallonga, J. Ruiz-Tovar, A. Torres, and F. Pattou. 2018. Importance of the gastrointestinal tract in type 2 diabetes. Metabolic surgery is more than just incretin effect. Cirugía Española (English Edition) 96 (9):537–545. doi: 10.1016/j.cireng.2018.10.018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.