907
Views
1
CrossRef citations to date
0
Altmetric
Reviews

Analysis and detection using novel terahertz spectroscopy technique in dietary carbohydrate-related research: Principles and application advances

, & ORCID Icon

References

  • Afsah-Hejri, L., P. Hajeb, P. Ara, and R. J. Ehsani. 2019. A comprehensive review on food applications of terahertz spectroscopy and imaging. Comprehensive Reviews in Food Science and Food Safety 18 (5):1563–621. doi: 10.1111/1541-4337.12490.
  • Akiyama, K., K. Horita, T. Sakamoto, H. Satozono, H. Takahashi, and Y. Goda. 2019. Monitoring the progress of lactic acid fermentation in yogurt manufacturing using terahertz time-domain–attenuated total-reflection spectroscopy. Journal of Infrared, Millimeter, and Terahertz Waves 40 (11-12):1160–7. doi: 10.1007/s10762-019-00642-9.
  • Akyildiz, I. F., J. M. Jornet, and C. Han. 2014. Terahertz band: Next frontier for wireless communications. Physical Communication 12:16–32. doi: 10.1016/j.phycom.2014.01.006.
  • Awano, T., and T. Takahashi. 2009. Coherent THz wave induced excitation in superionic conductors. Journal of Physics: Conference Series 148 (1): 012040. doi: 10.1088/1742-6596/148/1/012040.
  • Bandyopadhyay, A., A. Sengupta, R. B. Barat, D. E. Gary, and J. F. Federici. 2006. Grain size dependent scattering studies of common materials using THz time domain techniques. Proceedings of SPIE - The International Society for Optical Engineering (Vol 6120). doi: 10.1117/12.647868.
  • Baranova, A., A. Lykina, D. Antonova, and O. Smolyanskaya. 2021. Optical properties of crystalline lactose fluidized with dilutions of various substances in the terahertz frequency range. Pharmaceutics 14 (1):32. doi: 10.3390/pharmaceutics14010032.
  • Beruete, M., and I. Jáuregui‐López. 2020. Terahertz sensing based on metasurfaces. Advanced Optical Materials 8 (3):1900721. doi: 10.1002/adom.201900721.
  • Blazek, J., and E. P. Gilbert. 2011. Application of small-angle X-ray and neutron scattering techniques to the characterisation of starch structure: A review. Carbohydrate Polymers 85 (2):281–93. doi: 10.1016/j.carbpol.2011.02.041.
  • Botelho, B. G., N. Reis, L. S. Oliveira, and M. M. Sena. 2015. Development and analytical validation of a screening method for simultaneous detection of five adulterants in raw milk using mid-infrared spectroscopy and PLS-DA. Food Chemistry 181:31–7. doi: 10.1016/j.foodchem.2015.02.077.
  • Chen, Q., S. Jia, J. Qin, Y. Du, and Z. Zhao. 2020. A feasible approach to detect pesticides in food samples using THz-FDS and chemometrics. Journal of Spectroscopy 2020:1–10. doi: 10.1155/2020/3859076.
  • Chua, H. S., P. C. Upadhya, A. D. Haigh, J. Obradovic, A. A. P. Gibson, and E. H. Linfield. 2004. Terahertz time-domain spectroscopy of wheat grain. Conference Digest of the 2004 Joint 29th International Conference on Infrared and Millimeter Waves and 12th International Conference on Terahertz Electronics (399–400).
  • Cogdill, R. P., S. M. Short, R. Forcht, Z. Shi, Y. Shen, P. F. Taday, C. A. Anderson, and J. K. Drennen. 2006. An efficient method-development strategy for quantitative chemical imaging using terahertz pulse spectroscopy. Journal of Pharmaceutical Innovation 1 (1):63–75. doi: 10.1007/BF02784882.
  • Cummings, J. H., and A. M. Stephen. 2007. Carbohydrate terminology and classification. European Journal of Clinical Nutrition 61 Suppl 1:S5–S18. doi: 10.1038/sj.ejcn.1602936.
  • Dohi, M., W. Momose, K. Yamashita, T. Hakomori, S. Sato, S. Noguchi, and K. Terada. 2017. Application of terahertz attenuated total reflection spectroscopy to detect changes in the physical properties of lactose during the lubrication process required for drug formulation. Chemical & Pharmaceutical Bulletin 65 (2):186–93. doi: 10.1248/cpb.c16-00824.
  • Du, C., X. Zhang, and Z. Zhang. 2019. Quantitative analysis of ternary isomer mixtures of saccharide by terahertz time domain spectroscopy combined with chemometrics. Vibrational Spectroscopy 100:64–70. doi: 10.1016/j.vibspec.2018.11.003.
  • Englyst, K. N., S. Liu, and H. N. Englyst. 2007. Nutritional characterization and measurement of dietary carbohydrates. European Journal of Clinical Nutrition 61 Suppl 1:S19–S39. doi: 10.1038/sj.ejcn.1602937.
  • Fawole, O., K. Sinha, and M. Tabib-Azar. 2015. Monitoring yeast activation with sugar and zero-calorie sweetener using terahertz waves. 2015 IEEE SENSORS - Proceedings. doi: 10.1109/ICSENS.2015.7370322.
  • Fawole, O., and M. Tabib-Azar. 2016. Terahertz quantification of ethanol and sugar concentrations in water and its application for noninvasive real-time monitoring of fermentation. IEEE MTT-S International Microwave Symposium Digest (Vol. 2016-August).
  • Feng, Y. Z., and D.-W. Sun. 2012. Application of hyperspectral imaging in food safety inspection and control: A review. Critical Reviews in Food Science and Nutrition 52 (11):1039–58. doi: 10.1080/10408398.2011.651542.
  • Fernandes, A. M., C. Franco, A. Mendes-Ferreira, A. Mendes-Faia, P. L. D. Costa, and P. Melo-Pinto. 2015. Brix, pH and anthocyanin content determination in whole Port wine grape berries by hyperspectral imaging and neural networks. Computers and Electronics in Agriculture 115:88–96. doi: 10.1016/j.compag.2015.05.013.
  • Fox, G., and M. Manley. 2014. Applications of single kernel conventional and hyperspectral imaging near infrared spectroscopy in cereals. Journal of the Science of Food and Agriculture 94 (2):174–9. doi: 10.1002/jsfa.6367.
  • Ge, M., H. Zhao, T. Ji, X. Yu, W. Wang, and W. Li. 2006. Terahertz time-domain spectroscopy of some pentoses. Science in China Series B 49 (3):204–8. doi: 10.1007/s11426-006-0204-0.
  • Gowen, A. A., C. O’Sullivan, and C. P. O’Donnell. 2012. Terahertz time domain spectroscopy and imaging: Emerging techniques for food process monitoring and quality control. Trends in Food Science & Technology 25 (1):40–6. doi: 10.1016/j.tifs.2011.12.006.
  • Grazia Mignani, A., L. Ciaccheri, A. A. Mencaglia, R. Di Sanzo, S. Carabetta, and M. Russo. 2016. Dispersive Raman spectroscopy for the nondestructive and rapid assessment of the quality of Southern Italian honey types. Journal of Lightwave Technology 34 (19):4479–85. doi: 10.1109/JLT.2016.2539550.
  • Gregory, I. S., C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous. 2005. Optimization of photomixers and antennas for continuous-wave terahertz emission. IEEE Journal of Quantum Electronics 41 (5):717–28. doi: 10.1109/JQE.2005.844471.
  • Haff, R. P., and N. Toyofuku. 2008. X-ray detection of defects and contaminants in the food industry. Sensing and Instrumentation for Food Quality and Safety 2 (4):262–73. doi: 10.1007/s11694-008-9059-8.
  • Hao, G., J. Liu, and Z. Hong. 2011. Determination of soluble solids content in apple products by terahertz time-domain spectroscopy. Proceedings of SPIE - The International Society for Optical Engineering (Vol. 8195). doi: 10.1117/12.900671.
  • He, H., D.-W. Sun, H. Pu, and Z. Wu. (2023). A SERS-fluorescence dual-signal aptasensor for sensitive and robust determination of AFB1 in nut samples based on Apt-Cy5 and MNP@Ag-PEI. Talanta 253:123962. doi: 10.1016/j.talanta.2022.123962.
  • He, H., D.-W. Sun, Z. Wu, H. Pu, and Q. Wei. (2022). On-off-on fluorescent nanosensing: Materials, detection strategies and recent food applications. Trends in Food Science and Technology 119:243–56. doi: 10.1016/j.tifs.2021.11.029.
  • Herrmann, M., M. Tani, M. Watanabe, and K. Sakai. 2002. Terahertz imaging of objects in powders. IEE Proceedings - Optoelectronics 149 (3):116–20. doi: 10.1049/ip-opt:20020185.
  • Hisazumi, J., T. Watanabe, T. Suzuki, N. Wakiyama, and K. Terada. 2012. Using terahertz reflectance spectroscopy to quantify drug substance in tablets. Chemical & Pharmaceutical Bulletin 60 (12):1487–93. doi: 10.1248/cpb.c12-00524.
  • Ho, L., R. Müller, M. Römer, K. C. Gordon, J. Heinämäki, P. Kleinebudde, M. Pepper, T. Rades, Y. C. Shen, C. J. Strachan, et al. 2007. Analysis of sustained-release tablet film coats using terahertz pulsed imaging. Journal of Controlled Release 119 (3):253–61. doi: 10.1016/j.jconrel.2007.03.011.
  • Hu, B., H. Pu, and D.-W. Sun. (2021). Multifunctional cellulose based substrates for SERS smart sensing: Principles, applications and emerging trends for food safety detection. Trends in Food Science and Technology 110:304–20. doi: 10.1016/j.tifs.2021.02.005.
  • Huang, L., D.-W. Sun, and H. Pu. (2022). Photosensitized peroxidase mimicry at the hierarchical 0D/2D heterojunction-like quasi metal-organic framework interface for boosting biocatalytic disinfection. Small 18 (20):2200178. doi: 10.1002/smll.202200178.
  • Huang, L., D.-W. Sun, H. Pu, C. Zhang, and D. Zhang. (2023). Nanocellulose-based polymeric nanozyme as bioinspired spray coating for fruit preservation. Food Hydrocolloids 135:108138. doi: 10.1016/j.foodhyd.2022.108138.
  • Huang, L., D.-W. Sun, Z. Wu, H. Pu, and Q. Wei. (2021). Reproducible, shelf-stable, and bioaffinity SERS nanotags inspired by multivariate polyphenolic chemistry for bacterial identification. Analytica Chimica Acta 1167:338570. doi: 10.1016/j.aca.2021.338570.
  • Huang, Y., W. Xu, J. Qin, L. Xie, and Y. Ying. 2018. Monitoring high-absorption aqueous solution with multiple attenuated total reflection terahertz time-domain spectroscopy. 2018 Detroit, Michigan July 29 - August 1, 2018. doi: 10.13031/aim.201801091.
  • Ishak, N. S., F. C. Seman, N. Zainal, and N. A. Awang. 2022. Detection of low sugar concentration solution using frequency selective surface (fss). Computers, Materials & Continua 71 (2):2869–82. doi: 10.32604/cmc.2022.022694.
  • Jayan, H., H. Pu, and D.-W. Sun. (2022a). Analyzing macromolecular composition of E. Coli O157:H7 using Raman-stable isotope probing. Spectrochimica Acta – Part A: Molecular and Biomolecular Spectroscopy 276:121217. doi: 10.1016/j.saa.2022.121217.
  • Jayan, H., H. Pu, and D.-W. Sun. (2022b). Detection of bioactive metabolites in Escherichia coli cultures using surface-enhanced Raman spectroscopy. Applied Spectroscopy 76 (7):812–22. doi: 10.1177/00037028221079661.
  • Jayan, H., H. Pu, and D.-W. Sun. (2022c). Recent developments in Raman spectral analysis of microbial single cells: Techniques and applications. Critical Reviews in Food Science and Nutrition 62 (16):4294–308. doi: 10.1080/10408398.2021.1945534.
  • Jayan, H., D.-W. Sun, H. Pu, and Q. Wei. (2022). Surface-enhanced Raman spectroscopy combined with stable isotope probing to assess the metabolic activity of Escherichia coli cells in chicken carcass wash water. Spectrochimica Acta – Part A: Molecular and Biomolecular Spectroscopy 280:121549. doi: 10.1016/j.saa.2022.121549.
  • Jayan, H., D.-W. Sun, H. Pu, and Q. Wei. (2023). Mesoporous silica coated core-shell nanoparticles substrate for size-selective SERS detection of chloramphenicol. Spectrochimica Acta – Part A: Molecular and Biomolecular Spectroscopy 284:121817. doi: 10.1016/j.saa.2022.121817.
  • Jepsen, P. U., D. G. Cooke, and M. Koch. 2011. Terahertz spectroscopy and imaging - Modern techniques and applications. Laser & Photonics Reviews 5 (1):124–66. doi: 10.1002/lpor.201000011.
  • Jiang, Y., H. Ge, F. Lian, Y. Zhang, and S. Xia. 2016. Early detection of germinated wheat grains using terahertz image and chemometrics. Scientific Reports 6:21299. doi: 10.1038/srep21299.
  • Jiang, Y., H. Ge, and Y. Zhang. 2020. Quantitative analysis of wheat maltose by combined terahertz spectroscopy and imaging based on Boosting ensemble learning. Food Chemistry 307:125533. doi: 10.1016/j.foodchem.2019.125533.
  • Jie, L., Z. Yuan, Z. Yu, and F. Xue-Song. 2021. Progress in the pretreatment and analysis of carbohydrates in food: An update since 2013. Journal of Chromatography. A 1655:462496. doi: 10.1016/j.chroma.2021.462496.
  • Jiusheng, L. I. 2010. Optical parameters of vegetable oil studied by terahertz time-domain spectroscopy. Applied Spectroscopy 64 (2):231–4. doi: 10.1366/000370210790619663.
  • Kaltenecker, K., B. Zhou, K. H. Tybussek, S. Engelbrecht, R. Lehmann, S. Walker, … B. M. Fischer. (2018). Ultra-broadband THz spectroscopy for sensing and identification for security applications. International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz (Vol. 2018-September).
  • Karagoz, B., H. Altan, and K. Kamburoglu. 2015. Terahertz pulsed imaging study of dental caries. Medical Laser Applications and Laser-Tissue Interactions VII. doi: 10.1117/12.2183673.
  • Kasote, D. M., M. D. Oak, S. S. Nilegaonkar, and V. V. Agte. 2018. Effect of soaking and autoclaving treatments on structure, properties and resistant starch (RS3) content of edible tapioca pearls. International Food Research Journal 25 (1):262–9. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041333290&partnerID=40&md5=d24d36d179f23a4e62bf93fd12610c39.
  • Komandin, G. A., A. A. Gavdush, Y. G. Goncharov, O. E. Porodinkov, V. S. Nozdrin, S. V. Chuchupal, and I. E. Spektor. 2019. Electrodynamical characteristics of α-lactose monohydrate in the terahertz range. Optics and Spectroscopy 126 (5):514–22. doi: 10.1134/S0030400X1905014X.
  • Leisawitz, D., W. Danchi, M. DiPirro, L. D. Feinberg, D. Gezari, M. Hagopian, … X. Zhang. 2000. Scientific motivation and technology requirements for the SPIRIT and SPECS far-infrared/submillimeter space interferometers. Proceedings of SPIE - The International Society for Optical Engineering 4013:36–46.
  • Li, D., Z. Zhu, and D.-W. Sun. (2021). Quantification of hydrogen bonding strength of water in saccharide aqueous solutions by confocal Raman microscopy. Journal of Molecular Liquids 342:117498. doi: 10.1016/j.molliq.2021.117498.
  • Li, D., Z. Zhu, and D.-W. Sun. (2022). Visualization and quantification of content and hydrogen bonding state of water in apple and potato cells by confocal Raman microscopy: A comparison study. Food Chemistry 385:132679. doi: 10.1016/j.foodchem.2022.132679.
  • Liu, J., and L. Fan. 2020. Qualitative and quantitative determination of potassium aluminum sulfate dodecahydrate in potato starch based on terahertz spectroscopy. Microwave and Optical Technology Letters 62 (2):525–30. doi: 10.1002/mop.32061.
  • Liu, W., C. Liu, J. Yu, Y. Zhang, J. Li, Y. Chen, and L. Zheng. 2018. Discrimination of geographical origin of extra virgin olive oils using terahertz spectroscopy combined with chemometrics. Food Chemistry 251:86–92. doi: 10.1016/j.foodchem.2018.01.081.
  • Liu, W., X. Yin, Y. Chen, M. Li, D. Han, and W. Liu. 2022. Quantitative determination of acacia honey adulteration by terahertz-frequency dielectric properties as an alternative technique. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 274:121106. doi: 10.1016/j.saa.2022.121106.
  • Liu, W., Y. Zhang, and D. Han. 2016. Feasibility study of determination of high-fructose syrup content of Acacia honey by terahertz technique. Proceedings of SPIE - The International Society for Optical Engineering (Vol. 10030). doi: 10.1117/12.2245966.
  • Liu, W., Y. Zhang, M. Li, D. Han, and W. Liu. 2020. Determination of invert syrup adulterated in acacia honey by terahertz spectroscopy with different spectral features. Journal of the Science of Food and Agriculture 100 (5):1913–21. doi: 10.1002/jsfa.10202.
  • Liu, W., Y. Zhang, S. Yang, and D. Han. 2018. Terahertz time-domain attenuated total reflection spectroscopy applied to the rapid discrimination of the botanical origin of honeys. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 196:123–30. doi: 10.1016/j.saa.2018.02.009.
  • Liu, Y., H. Zhang, H. K. Feng, Q. Sun, J. Huang, J. J. Wang, and G. J. Yang. 2021. Estimation of potato above ground biomass based on hyperspectral images of UAV. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis 41 (9):2657–64. doi: 10.3964/j.issn.1000-0593(2021)09-2657-08.
  • Lobstein, T., L. Baur, and R. Uauy. 2004. Obesity in children and young people: A crisis in public health. Obesity Reviews 5 (s1):4–85. https://www.scopus.com/inward/record.uri?eid=2-s2.0-3242765196&partnerID=40&md5=9ce1ea8b4895b27002dd0eb1da2b079b. doi: 10.1111/j.1467-789X.2004.00133.x.
  • Lohumi, S., S. Lee, W. H. Lee, M. S. Kim, C. Mo, H. Bae, and B. K. Cho. 2014. Detection of starch adulteration in onion powder by FT-NIR and FT-IR spectroscopy. Journal of Agricultural and Food Chemistry 62 (38):9246–51. doi: 10.1021/jf500574m.
  • Lv, M., D.-W. Sun, L. Huang, and H. Pu. (2022). Precision release systems of food bioactive compounds based on metal-organic frameworks: Synthesis, mechanisms and recent applications. Critical Reviews in Food Science and Nutrition 62 (15):3991–4009. doi: 10.1080/10408398.2021.2004086.
  • Mahlein, A. K., T. Rumpf, P. Welke, H. W. Dehne, L. Plümer, U. Steiner, and E. C. Oerke. 2013. Development of spectral indices for detecting and identifying plant diseases. Remote Sensing of Environment 128:21–30. doi: 10.1016/j.rse.2012.09.019.
  • Mann, J., J. H. Cummings, H. N. Englyst, T. Key, S. Liu, G. Riccardi, C. Summerbell, R. Uauy, R. M. van Dam, B. Venn, et al. 2007. FAO/WHO scientific update on carbohydrates in human nutrition: Conclusions. European Journal of Clinical Nutrition 61 Suppl 1:S132–S137. doi: 10.1038/sj.ejcn.1602943.
  • Markl, D., P. Bawuah, C. Ridgway, S. van den Ban, D. J. Goodwin, J. Ketolainen, P. Gane, K.-E. Peiponen, and J. A. Zeitler. 2018. Fast and non-destructive pore structure analysis using terahertz time-domain spectroscopy. International Journal of Pharmaceutics 537 (1–2):102–10. doi: 10.1016/j.ijpharm.2017.12.029.
  • Massaouti, M., C. Daskalaki, A. Gorodetsky, A. D. Koulouklidis, and S. Tzortzakis. 2013. Detection of harmful residues in honey using terahertz time-domain spectroscopy. Applied Spectroscopy 67 (11):1264–9. doi: 10.1366/13-07111.
  • Missori, M., D. Pawcenis, J. Bagniuk, A. Mosca Conte, C. Violante, M. S. Maggio, M. Peccianti, O. Pulci, and J. Łojewska. 2018. Quantitative diagnostics of ancient paper using THz time-domain spectroscopy. Microchemical Journal 142:54–61. doi: 10.1016/j.microc.2018.06.010.
  • Moradi, A., M. Lindsjo, J. Stake, S. Folestad, and H. Rodilla. 2019. Non-destructive characterization of pharmaceutical tablets using terahertz frequency domain spectroscopy. International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-thz vol 2019. September).
  • Nogales-Bueno, J., J. M. Hernández-Hierro, F. J. Rodríguez-Pulido, and F. J. Heredia. 2014. Determination of technological maturity of grapes and total phenolic compounds of grape skins in red and white cultivars during ripening by near infrared hyperspectral image: A preliminary approach. Food Chemistry 152:586–91. doi: 10.1016/j.foodchem.2013.12.030.
  • Ok, G., K. Park, H. J. Kim, H. S. Chun, and S. W. Choi. 2014. High-speed terahertz imaging toward food quality inspection. Applied Optics 53 (7):1406–12. doi: 10.1364/AO.53.001406.
  • Otsuji, T., T. Komori, T. Watanabe, T. Suemitsu, D. Coquillat, and W. Knap. 2010. Plasmon-resonant microchip emitters and detectors for terahertz sensing and spectroscopic applications. Proceedings of SPIE - The International Society for Optical Engineering (Vol. 7671). doi: 10.1117/12.850009.
  • Pan, S., H. Zhang, Z. Li, T. Chen, and X. Yin. 2022. Quantitative determination of sucrose adulterated in red ginseng by terahertz time-domain spectroscopy (THz-TDS) with Monte Carlo uninformative variable elimination (MCUVE) and support vector regression (SVR). Journal of Spectroscopy 2022:1–10. doi: 10.1155/2022/5847819.
  • Pérez, S., and E. Bertoft. 2010. The molecular structures of starch components and their contribution to the architecture of starch granules: A comprehensive review. Starch - Stärke 62 (8):389–420. doi: 10.1002/star.201000013.
  • Probst, T., M. Scheller, and M. Koch. 2011. Nondestructive thickness determination of plastic pipes in a nearby industrial environment using terahertz time domain spectroscopy. IRMMW-THz 2011 - 36th International Conference on Infrared, Millimeter, and Terahertz Waves.
  • Scapaticci, R., S. Zappia, I. Catapano, G. Ruello, G. Bellizzi, N. Pasquino, … L. Crocco. 2021. Broadband Electromagnetic Sensing for Food Quality Control: A Preliminary Experimental Study. 15th European Conference on Antennas and Propagation, EuCAP 2021.
  • Shen, Y., B. Li, G. Li, C. Lang, H. Wang, J. Zhu, N. Jia, and L. Liu. 2022. Rapid identification of producing area of wheat using terahertz spectroscopy combined with chemometrics. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 269:120694. doi: 10.1016/j.saa.2021.120694.
  • Shin, H. J., S. W. Choi, and G. Ok. 2018. Qualitative identification of food materials by complex refractive index mapping in the terahertz range. Food Chemistry 245:282–8. doi: 10.1016/j.foodchem.2017.10.056.
  • Skelbaek-Pedersen, A. L., M. Al-Sharabi, T. K. Vilhelmsen, J. Rantanen, and J. A. Zeitler. 2020. Effect of particle size and deformation behaviour on water ingress into tablets. International Journal of Pharmaceutics 587:119645. doi: 10.1016/j.ijpharm.2020.119645.
  • Skelbaek-Pedersen, A. L., M. Anuschek, T. K. Vilhelmsen, J. Rantanen, and J. A. Zeitler. 2020. Non-destructive quantification of fragmentation within tablets after compression from scattering analysis of terahertz transmission measurements. International Journal of Pharmaceutics 588:119769. doi: 10.1016/j.ijpharm.2020.119769.
  • Smith, G., A. Hussain, N. I. Bukhari, and I. Ermolina. 2015. Quantification of residual crystallinity of ball-milled, commercially available, anhydrous β-lactose by differential scanning calorimetry and terahertz spectroscopy. Journal of Thermal Analysis and Calorimetry 121 (1):327–33. doi: 10.1007/s10973-015-4469-4.
  • Song, C., W. H. Fan, L. Ding, X. Chen, Z. Y. Chen, and K. Wang. 2018. Terahertz and infrared characteristic absorption spectra of aqueous glucose and fructose solutions. Scientific Reports 8 (1) :8964. doi: 10.1038/s41598-018-27310-7.
  • Suhandy, D., T. Suzuki, Y. Ogawa, N. Kondo, T. Ishihara, and Y. Takemoto. 2011. A quantitative study for determination of sugar concentration using attenuated total reflectance terahertz (ATR-THz) spectroscopy. Proceedings of SPIE - The International Society for Optical Engineering (Vol. 8027). doi: 10.1117/12.886183.
  • Sun, P., and Y. Zou. 2016. Complex dielectric properties of anhydrous polycrystalline glucose in the terahertz region. Optical and Quantum Electronics 48 (1):1–10. doi: 10.1007/s11082-015-0273-4.
  • Sun, D.-W., L. Huang, H. Pu, and J. Ma. (2021). Introducing reticular chemistry into agrochemistry. Chemical Society Reviews 50 (2):1070–110. doi: 10.1039/c9cs00829b.
  • Tajima, T., M. Nakamura, K. Shiraga, Y. Ogawa, K. Ajito, and H. Koizumi. 2016. Double-beam CW THz system with photonic phase modulator for sub-THz glucose hydration sensing. 2016 IEEE MTT-S International Microwave Symposium (IMS) (1–4).
  • Takahashi, T., T. Matsuyama, K. Kobayashi, Y. Fujita, Y. Shibata, K. Ishi, and M. Ikezawa. 1998. Utilization of coherent transition radiation from a linear accelerator as a source of millimeter-wave spectroscopy. Review of Scientific Instruments 69 (11):3770–5. doi: 10.1063/1.1149177.
  • Upadhya, P. C., Y. C. Shen, A. G. Davies, and E. H. Linfield. 2003. Terahertz time-domain spectroscopy of glucose and uric acid. Journal of Biological Physics 29 (2-3):117–21. doi: 10.1023/A:1024476322147.
  • Wang, C. Y., A. Hevaganinge, D. Wang, M. Ali, M. Cattaneo, and Y. Tao. 2021. Prediction of aqueous glucose concentration using hyperspectral imaging. Annu Int Conf IEEE Eng Med Biol Soc, 2021, 3237–3240. doi: 10.1109/EMBC46164.2021.9630670.
  • Wang, H., Y. Horikawa, S. Tsuchikawa, and T. Inagaki. 2020. Terahertz time-domain spectroscopy as a novel tool for crystallographic analysis in cellulose. Cellulose 27 (17):9767–77. doi: 10.1007/s10570-020-03508-9.
  • Wang, H., S. Tsuchikawa, and T. Inagaki. 2021. Terahertz time-domain spectroscopy as a novel tool for crystallographic analysis in cellulose: The potentiality of being a new standard for evaluating crystallinity. Cellulose 28 (9):5293–304. doi: 10.1007/s10570-021-03902-x.
  • Wang, K., Z. Li, J. Li, and H. Lin. 2021. Raman spectroscopic techniques for nondestructive analysis of agri-foods: A state-of-the-art review. Trends in Food Science & Technology 118:490–504. doi: 10.1016/j.tifs.2021.10.010.
  • Wang, K., D.-W. Sun, and H. Pu. 2017. Emerging non-destructive terahertz spectroscopic imaging technique: Principle and applications in the agri-food industry. Trends in Food Science & Technology 67:93–105. doi: 10.1016/j.tifs.2017.06.001.
  • Wang, K., D.-W. Sun, H. Pu, and Q. Wei. (2021). Polymer multilayers enabled stable and flexible Au@Ag nanoparticle array for nondestructive SERS detection of pesticide residues. Talanta 223:121782. doi: 10.1016/j.talanta.2020.121782.
  • Wang, T., S. Wang, C. Zhai, L. Wang, Y. Xie, Q. Li, and X. Zheng. 2021. Study of starch aging characteristics based on Terahertz technology. Food Science & Nutrition 9 (8):4431–9. doi: 10.1002/fsn3.2417.
  • Wang, Y., Z. Zhao, J. Qin, H. Liu, A. Liu, and M. Xu. 2020. Rapid in situ analysis of L-histidine and α-lactose in dietary supplements by fingerprint peaks using terahertz frequency-domain spectroscopy. Talanta 208:120469. doi: 10.1016/j.talanta.2019.120469.
  • Warnecke, S., J. X. Wu, Å. Rinnan, M. Allesø, F. van den Berg, P. U. Jepsen, and S. B. Engelsen. 2019. Quantifying crystalline α-lactose monohydrate in amorphous lactose using terahertz time domain spectroscopy and near infrared spectroscopy. Vibrational Spectroscopy 102:39–46. doi: 10.1016/j.vibspec.2019.03.004.
  • Wu, H., E. J. Heilweil, A. S. Hussain, and M. A. Khan. 2007. Process analytical technology (PAT): effects of instrumental and compositional variables on terahertz spectral data quality to characterize pharmaceutical materials and tablets. International Journal of Pharmaceutics 343 (1–2):148–58. doi: 10.1016/j.ijpharm.2007.05.014.
  • Wu, Z., H. Pu, and D.-W. Sun. (2021). Fingerprinting and tagging detection of mycotoxins in agri-food products by surface-enhanced Raman spectroscopy: Principles and recent applications. Trends in Food Science and Technology 110:393–404. doi: 10.1016/j.tifs.2021.02.013.
  • Wu, Z., D.-W. Sun, H. Pu, and Q. Wei. (2023). A novel fluorescence biosensor based on CRISPR/Cas12a integrated MXenes for detecting Aflatoxin B1. Talanta 252:123773. doi: 10.1016/j.talanta.2022.123773.
  • Wu, Z., D.-W. Sun, H. Pu, Q. Wei, and X. Lin. (2022). Ti3C2Tx MXenes loaded with Au nanoparticle dimers as a surface-enhanced Raman scattering aptasensor for AFB1 detection. Food Chemistry 372:131293. doi: 10.1016/j.foodchem.2021.131293.
  • Xu, L., Z. Zhu, and D.-W. Sun. (2021). Bioinspired nanomodification strategies: Moving from chemical-based agrosystems to sustainable agriculture. ACS Nano 15 (8):12655–86. doi: 10.1021/acsnano.1c03948.
  • Zhang, C., L. Huang, H. Pu, and D.-W. Sun. (2021). Magnetic surface-enhanced Raman scattering (MagSERS) biosensors for microbial food safety: Fundamentals and applications. Trends in Food Science and Technology 113:366–81. doi: 10.1016/j.tifs.2021.05.007.
  • Zhang, D., L. Huang, D.-W. Sun, H. Pu, and Q. Wei. (2023). Bio-interface engineering of MXene nanosheets with immobilized lysozyme for light-enhanced enzymatic inactivation of methicillin-resistant Staphylococcus aureus. Chemical Engineering Journal 452:139078. doi: 10.1016/j.cej.2022.139078.
  • Zhang, D., H. Pu, L. Huang, and D.-W. Sun. (2021). Advances in flexible surface-enhanced Raman scattering (SERS) substrates for nondestructive food detection: Fundamentals and recent applications. Trends in Food Science and Technology 109:690–701. doi: 10.1016/j.tifs.2021.01.058.
  • Zhang, T., S. Yan, J. Hao, and D. Li. 2021. Experimental and theoretical investigations of terahertz spectra of the structural isomers: Mannose and galactose. Journal of Spectroscopy 2021:1–9. doi: 10.1155/2021/3469262.
  • Zhang, W., J. Ma, and D.-W. Sun. (2021). Raman spectroscopic techniques for detecting structure and quality of frozen foods: Principles and applications. Critical Reviews in Food Science and Nutrition 61 (16):2623–39. doi: 10.1080/10408398.2020.1828814.
  • Zhang, W., D.-W. Sun, J. Ma, J. Cheng, Z. Wang, and B. Z. Tang. (2022). A volatile basic nitrogens-responsive tag based on aggregation-induced emission luminogen for real-time monitoring and in situ visualization of salmon freshness. Analytica Chimica Acta 1221:340122. doi: 10.1016/j.aca.2022.340122.
  • Zheng, Z.-P., W.-H. Fan, H. Li, and J. Tang. 2014. Terahertz spectral investigation of anhydrous and monohydrated glucose using terahertz spectroscopy and solid-state theory. Journal of Molecular Spectroscopy 296:9–13. doi: 10.1016/j.jms.2013.12.002.
  • Zheng, Z.-P., W.-H. Fan, Y.-Q. Liang, and H. Yan. 2012. Application of terahertz spectroscopy and molecular modeling in isomers investigation: Glucose and fructose. Optics Communications 285 (7):1868–71. doi: 10.1016/j.optcom.2011.12.016.
  • Zhou, X., H. Pu, and D.-W. Sun. (2021). DNA functionalized metal and metal oxide nanoparticles: Principles and recent advances in food safety detection. Critical Reviews in Food Science and Nutrition 61 (14):2277–96. doi: 10.1080/10408398.2020.1809343.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.