354
Views
3
CrossRef citations to date
0
Altmetric
Review

Rapid smartphone-based assays for pesticides inspection in foods: current status, limitations, and future directions

, & ORCID Icon

References

  • Alex, A. V., and A. Mukherjee. 2021. Review of recent developments (2018–2020) on acetylcholinesterase inhibition based biosensors for organophosphorus pesticides detection. Microchemical Journal 161:105779. doi: 10.1016/j.microc.2020.105779.
  • Banik S., S. K. Melanthota, J. M. Vaz, V. M. Kadambalithaya, I. Hussain, S. Dutta, N., and Mazumder, Arbaaz. 2021. Recent trends in smartphone-based detection for biomedical applications: A review. Analytical and Bioanalytical Chemistry 413 (9):2389–406., doi: 10.1007/s00216-021-03184-z.
  • Bigas, M., E. Cabruja, J. Forest, and J. Salvi. 2006. Review of CMOS image sensors. Microelectronics Journal 37:433–51. doi: 10.1016/j.mejo.2005.07.002.
  • Chandran, S., and R. S. Singh. 2007. Comparison of various international guidelines for analytical method validation. Die Pharmazie 62 (1):4–14. doi: 10.1691/ph.2007.1.5064.
  • Cheng, N., Y. Song, Q. Fu, D. Du, Y. Luo, Y. Wang, W. Xu, and Y. Lin. 2018. Aptasensor based on fluorophore-quencher nano-pair and smartphone spectrum reader for on-site quantification of multi-pesticides. Biosensors & Bioelectronics 117:75–83. doi: 10.1016/j.bios.2018.06.002.
  • Chu, S., H. Wang, X. Ling, S. Yu, L. Yang, and C. Jiang. 2020. A portable smartphone platform using a ratiometric fluorescent paper strip for visual quantitative sensing. ACS Applied Materials & Interfaces 12 (11):12962–71. doi: 10.1021/acsami.9b20458.
  • Dutta, S. 2019. Point of care sensing and biosensing using ambient light sensor of smartphone: Critical review. TrAC Trends in Analytical Chemistry 110:393–400. doi: 10.1016/j.trac.2018.11.014.
  • Emmanuel, N., R. B. Nair, B. Abraham, and K. Yoosaf. 2021. Fabricating a low-cost Raman spectrometer to introduce students to spectroscopy basics and applied instrument design. Journal of Chemical Education 98:2109–16. doi: 10.1021/acs.jchemed.0c01028.
  • European Food Safety Authority. 2004. Chemical contaminants. Accessed August 2, 2021. https://www.efsa.europa.eu/en/topics/topic/chemical-contaminants.
  • Fan, Y., J. Li, Y. Guo, L. Xie, and G. Zhang. 2021. Digital image colorimetry on smartphone for chemical analysis: A review. Measurement 171:108829. doi: 10.1016/j.measurement.2020.108829.
  • Guo, J., J. X. H. Wong, C. Cui, X. Li, and H.-Z. Yu. 2015. A smartphone-readable barcode assay for the detection and quantitation of pesticide residues. The Analyst 140 (16):5518–25. doi: 10.1039/C5AN00874C.
  • Hassaan, M. A., and A. El Nemr. 2020. Pesticides pollution: Classifications, human health impact, extraction and treatment techniques. The Egyptian Journal of Aquatic Research 46:207–20. doi: 10.1016/j.ejar.2020.08.007.
  • Hendriadi, A., M. Sulistiyorini, and R. Devilana. 2021. Pesticides residues in fresh food of plant origin: Study case in Indonesia. AGRIVITA Journal of Agricultural Science 43:285–99. doi: 10.17503/agrivita.v43i2.2570.
  • Hu, B., D. Sun, H. Pu, and Q. Wei. 2020. Rapid nondestructive detection of mixed pesticides residues on fruit surface using SERS combined with self-modeling mixture analysis method. Talanta 217:120998. doi: 10.1016/j.talanta.2020.120998.
  • Huang, W., S. Luo, D. Yang, and S. Zhang. 2021. Applications of smartphone-based near-infrared (NIR) imaging, measurement, and spectroscopy technologies to point-of-care (POC) diagnostics. Journal of Zhejiang University Science. B 22 (3):171–89. doi: 10.1631/jzus.B2000388.
  • Hussain, I., and A. K. Bowden. 2021. Smartphone-based optical spectroscopic platforms for biomedical applications: A review. Biomedical Optics Express 12:1974–98. doi: 10.1364/BOE.416753.
  • Hussain, I., A. J. Bora, D. Sarma, K. U. Ahamad, and P. Nath. 2018. Design of a smartphone platform compact optical system operational both in visible and near infrared spectral regime. IEEE Sensors Journal 18:4933–9. doi: 10.1109/JSEN.2018.2832848.
  • Jia, M., E. Zhongbo, F. Zhai, and X. Bing. 2020. Rapid multi-residue detection methods for pesticides and veterinary drugs. Molecules 25:3590. doi: 10.3390/molecules25163590.
  • Jiang, Y., D.-W. Sun, H. Pu, and Q. Wei. 2018. Surface enhanced Raman spectroscopy (SERS): A novel reliable technique for rapid detection of common harmful chemical residues. Trends in Food Science and Technology 75:10–22. doi: 10.1016/j.tifs.2018.02.020.
  • Jin, R., D. Kong, X. Zhao, H. Li, X. Yan, F. Liu, P. Sun, D. Du, Y. Lin, and G. Lu. 2019. Tandem catalysis driven by enzymes directed hybrid nanoflowers for on-site ultrasensitive detection of organophosphorus pesticide. Biosensors & Bioelectronics 141:111473. doi: 10.1016/j.bios.2019.111473.
  • Jin, R., F. Wang, Q. Li, X. Yan, M. Liu, Y. Chen, W. Zhou, H. Gao, P. Sun, and G. Lu. 2021. Construction of multienzyme-hydrogel sensor with smartphone detector for on-site monitoring of organophosphorus pesticide. Sensors and Actuators B: Chemical 327:128922. doi: 10.1016/j.snb.2020.128922.
  • Karadurmus, L., S. I. Kaya, and S. A. Ozkan. 2021. Recent advances of enzyme biosensors for pesticide detection in foods. Journal of Food Measurement and Characterization 15:4582–95. doi: 10.1007/s11694-021-01032-3.
  • Kumar, A., and V. Santhanam. 2019. Paper swab based SERS detection of non-permitted colourants from dals and vegetables using a portable spectrometer. Analytica Chimica Acta 1090:106–13. doi: 10.1016/j.aca.2019.08.073.
  • Laohaudomchok, W., N. Nankongnab, S. Siriruttanapruk, P. Klaimala, W. Lianchamroon, P. Ousap, M. Jatiket, P. Kajitvichyanukul, N. Kitana, W. Siriwong, et al. 2021. Pesticide use in Thailand: Current situation, health risks, and gaps in research and policy. Human and Ecological Risk Assessment: HERA 27 (5):1147–69. doi: 10.1080/10807039.2020.1808777.
  • Li, Y., Y. Peng, J. Qin, and K. Chao. 2019. A correction method of mixed pesticide content prediction in apple by using Raman spectra. Applied Sciences 9:1699. doi: 10.3390/app9081699.
  • Liang, Z., A. Mahmoud Abdelshafy, Z. Luo, T. Belwal, X. Lin, Y. Xu, L. Wang, M. Yang, M. Qi, Y. Dong, et al. 2022. Occurrence, detection, and dissipation of pesticide residue in plant-derived foodstuff: A state-of-the-art review. Food Chemistry 384:132494. doi: 10.1016/j.foodchem.2022.132494.
  • Lin, L., T. Dong, P. Nie, F. Qu, Y. He, B. Chu, and S. Xiao. 2018. Rapid determination of thiabendazole pesticides in rape by surface enhanced Raman spectroscopy. Sensors 18:1082. doi: 10.3390/s18041082.
  • Łozowicka, B., P. Kaczyński, P. Mojsak, J. Rusiłowska, Z. Beknazarova, G. Ilyasova, and D. Absatarova. 2020. Systemic and non-systemic pesticides in apples from Kazakhstan and their impact on human health. Journal of Food Composition and Analysis 90:103494. doi: 10.1016/j.jfca.2020.103494.
  • Lundsgaard-Nielsen, S. M., A. Pors, S. O. Banke, J. E. Henriksen, D. K. Hepp, and A. Weber. 2018. Critical-depth Raman spectroscopy enables home-use non-invasive glucose monitoring. PLoS One. 13 (5):e0197134. doi: 10.1371/journal.pone.0197134.
  • Martelo-Vidal, M. J., and M. Vázquez. 2014. Evaluation of ultraviolet, visible, and Near Infrared spectroscopy for the analysis of wine compounds. Czech Journal of Food Sciences 32:37–47. doi: 10.17221/167/2013-CJFS.
  • Mei, Q., H. Jing, Y. Li, W. Yisibashaer, J. Chen, B. N. Li, and Y. Zhang. 2016. Smartphone based visual and quantitative assays on upconversional paper sensor. Biosensors & Bioelectronics 75:427–32. doi: 10.1016/j.bios.2015.08.054.
  • Montali, L., M. M. Calabretta, A. Lopreside, M. D'Elia, M. Guardigli, and E. Michelini. 2020. Multienzyme chemiluminescent foldable biosensor for on-site detection of acetylcholinesterase inhibitors. Biosensors & Bioelectronics 162:112232. doi: 10.1016/j.bios.2020.112232.
  • Mu, T., S. Li, H. Feng, C. Zhang, B. Wang, X. Ma, J. Guo, B. Huang, and L. Zhu. 2019. High-sensitive smartphone-based Raman system based on cloud network architecture. IEEE Journal of Selected Topics in Quantum Electronics 25:7200306. doi: 10.1109/JSTQE.2018.2832661.
  • Nagabooshanam, S., S. Roy, A. Mathur, I. Mukherjee, S. Krishnamurthy, and L. M. Bharadwaj. 2019. Electrochemical micro analytical device interfaced with portable potentiostat for rapid detection of chlorpyrifos using acetylcholinesterase conjugated metal organic framework using Internet of things. Scientific Reports 9 (1):19862. doi: 10.1038/s41598-019-56510-y.
  • Narenderan, S. T., S. N. Meyyanathan, and B. Babu. 2020. Review of pesticide residue analysis in fruits and vegetables. Pre-treatment, extraction and detection techniques. Food Research International (Ottawa, Ont.) 133:109141. doi: 10.1016/j.foodres.2020.109141.
  • Nazarloo, A. S., V. R. Sharabiani, Y. A. Gilandeh, E. Taghinezhad, M. Szymanek, and M. Sprawka. 2021. Feasibility of using VIS/NIR spectroscopy and multivariate analysis for pesticide residue detection in tomatoes. Processes 9:196. doi: 10.3390/pr9020196.
  • Nelis, J. L. D., L. Bura, Y. Zhao, K. M. Burkin, K. Rafferty, C. T. Elliott, and K. Campbell. 2019. The efficiency of color space channels to quantify color and color intensity change in liquids, pH strips, and lateral flow assays with smartphones. Sensors 19:5104. doi: 10.3390/s19235104.
  • Nelis, J. L. D., A. S. Tsagkaris, M. J. Dillon, J. Hajslova, and C. T. Elliott. 2020. Smartphone-based optical assays in the food safety field. Trends in Analytical Chemistry : TRAC 129:115934. doi: 10.1016/j.trac.2020.115934.
  • No, H.-Y., Y. A. Kim, Y. T. Lee, and H.-S. Lee. 2007. Cholinesterase-based dipstick assay for the detection of organophosphate and carbamate pesticides. Analytica Chimica Acta 594 (1):37–43. doi: 10.1016/j.aca.2007.05.008.
  • Omer, S. A., and N. A. Fakhre. 2019. Three different spectrophotometric methods for simultaneous determination of pyriproxyfen and chlorothalonil residues in cucumber and cabbage samples. Journal of Spectroscopy 2019:8241625. doi: 10.1155/2019/8241625.
  • Pan, L., P. Zhang, C. Daengngam, S. Peng, and M. Chongcheawchamnan. 2022. A review of artificial intelligence methods combined with Raman spectroscopy to identify the composition of substances. Journal of Raman Spectroscopy 53:. 6–19. doi: 10.1002/jrs.6225.
  • Panuwet, P., W. Siriwong, T. Prapamontol, P. B. Ryan, N. Fiedler, M. G. Robson, and D. B. Barr. 2012. Agricultural pesticide management in Thailand: Situation and population health risk. Environmental Science & Policy 17:72–81. doi: 10.1016/j.envsci.2011.12.005.
  • S. Patel., K. Shrivas, D. Sinha, T. Kumar Patle, S. Yadav, S. S. Thakur, M. K. Deb, S., and Pervez, Monisha. 2022. Smartphone-integrated printed-paper sensor designed for on-site determination of dimethoate pesticide in food samples. Food Chemistry 383:132449. doi: 10.1016/j.foodchem.2022.132449.
  • Pilot, R., R. Signorini, C. Durante, L. Orian, M. Bhamidipati, and L. Fabris. 2019. A review on surface-enhanced Raman scattering. Biosensors 9:57. doi: 10.3390/bios9020057.
  • Rather, I. A., W. Y. Koh, W. K. Paek, and J. Lim. 2017. The sources of chemical contaminants in food and their health implications. Frontiers in Pharmacology 8:830. doi: 10.3389/fphar.2017.00830.
  • Ray, B. H., and K. T. Carron. 2018. From portable Raman to mobile Raman: The progression of Raman spectroscopy. Proceedings SPIE 10657. doi: 10.1117/12.2303721.
  • Rodriguez-Saona, L., H. Ayvaz, and R. L. Wehling. 2021. Infrared and Raman spectroscopy. In Food analysis, ed. S. S. Nielsen, 107–27. Cham, Switzerland: Springer.
  • Rodriguez, F. S., P. R. Armstrong, E. B. Maghirang, K. F. Yaptenco, E. D. Scully, F. H. Arthur, D. L. Brabec, A. D. Adviento-Borbe, and D. C. Suministrado. 2020. NIR spectroscopy detects chlorpyrifos-methyl pesticide residue in rough, brown, and milled rice. Applied Engineering in Agriculture 36:983–93. doi: 10.13031/aea.14001.
  • SANTE/2020/12830/Rev.1. 2020. Guidance document on pesticide analytical methods for risk assessment and post-approval control and monitoring purposes. Accessed October 27, 2021. https://ec.europa.eu/food/system/files/2021-03/pesticides_ppp_app-proc_guide_res_mrl-guidelines-2020-12830.pdf.
  • Shao, Y., L. Jiang, H. Zhou, J. Pan, and Y. He. 2016. Identification of pesticide varieties by testing microalgae using visible/near infrared hyperspectral imaging technology. Scientific Reports 6:24221. doi: 10.1038/srep24221.
  • Sharma, A., V. Kumar, B. Shahzad, M. Tanveer, G. P. S. Sidhu, N. Handa, S. K. Kohli, P. Yadav, A. S. Bali, R. D. Parihar, et al. 2019. Worldwide pesticide usage and its impacts on ecosystem. SN Applied Sciences 1:1446. doi: 10.1007/s42452-019-1485-1.
  • Shen, Y., Y. Wei, C. Zhu, J. Cao, and D.-M. Han. 2022. Ratiometric fluorescent signals-driven smartphone-based portable sensors for onsite visual detection of food contaminants. Coordination Chemistry Reviews 458:214442. doi: 10.1016/j.ccr.2022.214442.
  • Sivashanmugan, K., H. Lee, C.-H. Syu, B. H.-C. Liu, and J.-D. Liao. 2017. Nanoplasmonic Au/Ag/Au nanorod arrays as SERS-active substrate for the detection of pesticides residue. Journal of the Taiwan Institute of Chemical Engineers 75:287–91. doi: 10.1016/j.jtice.2017.03.022.
  • Smith, Z. J., K. Chu, A. R. Espenson, M. Rahimzadeh, A. Gryshuk, M. Molinaro, D. M. Dwyre, S. Lane, D. Matthews, and S. Wachsmann-Hogiu. 2011. Cell-phone-based platform for biomedical device development and education applications. PLoS One. 6 (3):e17150. doi: 10.1371/journal.pone.0017150.
  • Sulaiman, N. S., K. Rovina, and V. M. Joseph. 2019. Classification, extraction and current analytical approaches for detection of pesticides in various food products. Journal of Consumer Protection and Food Safety 14:209–21. doi: 10.1007/s00003-019-01242-4.
  • Sun, M., B. Li, X. Liu, J. Chen, T. Mu, L. Zhu, J. Guo, and X. Ma. 2019. Performance enhancement of paper-based SERS chips by shell-isolated nanoparticle-enhanced Raman spectroscopy. Journal of Materials Science & Technology 35:2207–12. doi: 10.1016/j.jmst.2019.05.055.
  • Tang, W., J. Yang, F. Wang, J. Wang, and Z. Li. 2019. Thiocholine-triggered reaction in personal glucose meters for portable quantitative detection of organophosphorus pesticide. Analytica Chimica Acta 1060:97–102. doi: 10.1016/j.aca.2019.01.051.
  • Tsagkaris, A. S., J. Pulkrabova, and J. Hajslova. 2021. Optical screening methods for pesticide residue detection in food matrices: Advances and emerging analytical trends. Foods 10:88. doi: 10.3390/foods10010088.
  • Turchetta, R. 2020. Complementary metal-oxide-semiconductor (CMOS) sensors for high-performance scientific imaging. In High performance silicon imaging, ed. D. Durini, 289–317. Duxford, UK: Woodhead Publishing.
  • Umapathi, R., S. M. Ghoreishian, S. Sonwal, G. M. Rani, and Y. S. Huh. 2022. Portable electrochemical sensing methodologies for on-site detection of pesticide residues in fruits and vegetables. Coordination Chemistry Reviews 453:214305. doi: 10.1016/j.ccr.2021.214305.
  • Umapathi, R., B. Park, S. Sonwal, G. M. Rani, Y. Cho, and Y. S. Huh. 2022. Advances in optical-sensing strategies for the on-site detection of pesticides in agricultural foods. Trends in Food Science and Technology 119:69–89. doi: 10.1016/j.tifs.2021.11.018.
  • USDA. 2020. Thailand: Thailand issues its revised pesticide residues monitoring procedures on fresh produce. Accessed October 20, 2021. https://www.fas.usda.gov/data/thailand-thailand-issues-its-revised-pesticide-residues-monitoring-procedures-fresh-produce.
  • Wang, T., S. Wang, Z. Cheng, J. Wei, L. Yang, Z. Zhong, H. Hu, Y. Wang, B. Zhou, and P. Li. 2021. Emerging core–shell nanostructures for surface-enhanced Raman scattering (SERS) detection of pesticide residues. Chemical Engineering Journal 424:130323. doi: 10.1016/j.cej.2021.130323.
  • Wang, X., Q. Pan, X. Fan, and Y. Xu. 2021. Component identification for Raman spectra with deep learning network. Journal of Physics: Conference Series 1914: 12044. doi: 10.1088/1742-6596/1914/1/012044.
  • Wang, Y., X. Liu, P. Chen, N. T. Tran, J. Zhang, W. S. Chia, S. Boujday, and B. Liedberg. 2016. Smartphone spectrometer for colorimetric biosensing. The Analyst 141 (11):3233–8. doi: 10.1039/C5AN02508G.
  • WHO. 2018. Pesticide residues in food. Accessed August 5, 2021. https://www.who.int/news-room/fact-sheets/detail/pesticide-residues-in-food.
  • WHO. 2019. WHO recommended classification of pesticides by hazard and guidelines to classification, 2019 edition. Accessed August 6, 2021. https://www.who.int/publications/i/item/9789240005662.
  • Xu, G., C. Cheng, W. Yuan, Z. Liu, L. Zhu, X. Li, Y. Lu, Z. Chen, J. Liu, Z. Cui, et al. 2019. Smartphone-based battery-free and flexible electrochemical patch for calcium and chloride ions detections in biofluids. Sensors and Actuators B: Chemical 297:126743. doi: 10.1016/j.snb.2019.126743.
  • Yadav, I. C., and N. L. Devi. 2017. Pesticides classification and its impact on human and environment. In Environmental science and engineering Toxicology, eds. B. Gurja and R. Chandra, vol. 6, 140–58. Houston, TX: Studium Press.
  • Yaseen, T., H. Pu, and D.-W. Sun. 2019. Rapid detection of multiple organophosphorus pesticides (triazophos and parathion-methyl) residues in peach by SERS based on core-shell bimetallic Au@Ag NPs. Food Additives & Contaminants: Part A 36:762–78. doi: 10.1080/19440049.2019.1582806.
  • Yu, G., B. Ma, J. Chen, X. Li, Y. Li, and C. Li. 2020. Nondestructive identification of pesticide residues on the Hami melon surface using deep feature fusion by Vis/NIR spectroscopy and 1D-CNN. Journal of Food Process Engineering 44:e13602. doi: 10.1111/jfpe.13602.
  • Zeng, F., T. Mou, C. Zhang, X. Huang, B. Wang, X. Ma, and J. Guo. 2019. Paper-based SERS analysis with smartphones as Raman spectral analyzers. Analyst 144:137–42. doi: 10.1039/C8AN01901K.
  • Zhai, C., Y. Peng, Y. Li, and K. Chao. 2016. Extraction and identification of mixed pesticides’ Raman signal and establishment of their prediction models. Journal of Raman Spectroscopy 48:494–500. doi: 10.1002/jrs.5049.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.