3,691
Views
19
CrossRef citations to date
0
Altmetric
Review

Recent advances in nanomaterial-based optical biosensors for food safety applications: Ochratoxin-A detection, as case study

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Agriopoulou, S., E. Stamatelopoulou, and T. Varzakas. 2020a. Advances in occurrence, importance, and mycotoxin control strategies: prevention and detoxification in foods. Foods 9 (2):137. doi: 10.3390/foods9020137.
  • Agriopoulou, S., E. Stamatelopoulou, and T. Varzakas. 2020b. Advances in analysis and detection of major mycotoxins in foods. Foods 9 (4):518. doi: 10.3390/foods9040518.
  • Akgönüllü, S., C. Armutcu, and A. Denizli. 2021. Molecularly imprinted polymer film based plasmonic sensors for detection of Ochratoxin A in dried fig. Polymer Bulletin 79:4049–67. doi: 10.1007/s00289-021-03699-6.
  • Akgönüllü, S., and A. Denizli. 2022. Recent advances in optical biosensing approaches for biomarkers detection. Biosensors and Bioelectronics: X 12 (December):100269. doi: 10.1016/j.biosx.2022.100269.
  • Alahi, M., E. Eshrat, and S. C. Mukhopadhyay. 2017. Detection methodologies for pathogen and toxins: a review. Sensors (Switzerland) 17 (8):1885. doi: 10.3390/s17081885.
  • Alberti, G., C. Zanoni, L. R. Magnaghi, and R. Biesuz. 2020. Disposable and low-cost colorimetric sensors for environmental analysis. International Journal of Environmental Research and Public Health 17 (22):8331. doi: 10.3390/ijerph17228331.
  • Alizadeh, N., J. Hashemi, and F. Shahdost-Fard. 2021. Spectrofluorimetric study of the complexation of Ochratoxin A and Cu2+: towards the hybrid fluorimetric sensor and visual detection of Ochratoxin A in wheat flour samples from farm to fork. Food Chemistry 350 (July):129204. doi: 10.1016/j.foodchem.2021.129204.
  • Altafini, A., G. Fedrizzi, and P. Roncada. 2019. Occurrence of Ochratoxin A in typical salami produced in different regions of Italy. Mycotoxin Research 35 (2):141–8. doi: 10.1007/s12550-018-0338-x.
  • Andrade, M. A., and F. M. Lanças. 2017. Determination of Ochratoxin A in wine by packed in-tube solid phase microextraction followed by high performance liquid chromatography coupled to tandem mass spectrometry. Journal of Chromatography. A 1493:41–8. doi: 10.1016/j.chroma.2017.02.053.
  • Andryukov, B. G. 2020. Six decades of lateral flow immunoassay: from determining metabolic markers to diagnosing Covid-19. AIMS Microbiology 6 (3):280–304. doi: 10.3934/microbiol.2020018.
  • Anfossi, L., C. Giovannoli, G. Giraudi, F. Biagioli, C. Passini, and C. Baggiani. 2012. A lateral flow immunoassay for the rapid detection of Ochratoxin A in wine and grape must. Journal of Agricultural and Food Chemistry 60 (46):11491–7. doi: 10.1021/jf3031666.
  • Artigues, M., J. Abellà, and S. Colominas. 2017. Analytical parameters of an amperometric glucose biosensor for fast analysis in food samples. Sensors 17 (11):2620. doi: 10.3390/s17112620.
  • Barbosa, A. I., A. P. Castanheira, and N. M. Reis. 2018. Sensitive optical detection of clinically relevant biomarkers in affordable microfluidic devices: overcoming substrate diffusion limitations. Sensors and Actuators, B: Chemical 258 (April):313–20. doi: 10.1016/j.snb.2017.11.086.
  • Barbosa, A. I., A. D. Edwards, and N. M. Reis. 2021. Antibody surface coverage drives matrix interference in microfluidic capillary immunoassays. ACS Sensors 6 (7):2682–90. doi: 10.1021/acssensors.1c00704.
  • Barbosa, A. I., and N. M. Reis. 2017. A critical insight into the development pipeline of microfluidic immunoassay devices for the sensitive quantitation of protein biomarkers at the point of care. The Analyst 142 (6):858–82. doi: 10.1039/c6an02445a.
  • Battilani, P., R. Palumbo, P. Giorni, C. Dall’Asta, L. Dellafiora, A. Gkrillas, P. Toscano, A. Crisci, C. Brera, B. De Santis, et al. 2020. Mycotoxin mixtures in food and feed: holistic, innovative, flexible risk assessment modelling approach. EFSA Supporting Publications 17 (1):1757E. doi: 10.2903/sp.efsa.2020.EN-1757.
  • Becheva, Z. R., M. K. Atanasova, Y. Lukanov Ivanov, and T. I. Godjevargova. 2020. Magnetic nanoparticle-based fluorescence immunoassay for determination of Ochratoxin A in milk. Food Analytical Methods 13 (12):2238–48. doi: 10.1007/s12161-020-01848-7.
  • Belmadani, A., G. Tramu, A. M. Betbeder, P. S. Steyn, and E. E. Creppy. 1998. Regional selectivity to Ochratoxin A, distribution and cytotoxicity in rat brain. Archives of Toxicology 72 (10):656–62. doi: 10.1007/s002040050557.
  • Ben Taheur, F., B. Kouidhi, Y. M. A. Al Qurashi, J. Ben Salah-Abbès, and K. Chaieb. 2019. Review: biotechnology of mycotoxins detoxification using microorganisms and enzymes. Toxicon : Official Journal of the International Society on Toxinology 160 (March):12–22. doi: 10.1016/j.toxicon.2019.02.001.
  • Bennett, J. W. 1987. Mycotoxins, mycotoxicoses, mycotoxicology and mycopathologia. Mycopathologia 100 (1):3–5. doi: 10.1007/BF00769561.
  • Bennett, J. W., and M. Klich. 2003. Mycotoxins. Clinical Microbiology Reviews 16 (3):497–516. doi: 10.1128/CMR.16.3.497-516.2003.
  • Bhattacharya, K., L. Bernasconi, and D. Picard. 2018. Luminescence resonance energy transfer between genetically encoded donor and acceptor for protein-protein interaction studies in the molecular chaperone HSP70/HSP90 complexes. Scientific Reports 8 (1):2801. doi: 10.1038/s41598-018-21210-6.
  • Bi, X., L. Luo, L. Li, X. Liu, B. Chen, and T. You. 2020. A FRET-based aptasensor for Ochratoxin A detection using graphitic carbon nitride quantum dots and CoOOH nanosheets as donor-acceptor pair. Talanta 218 (October):121159. doi: 10.1016/j.talanta.2020.121159.
  • Błajet-Kosicka, A., M. Twarużek, R. Kosicki, E. Sibiorowska, and J. Grajewski. 2014. Co-occurrence and evaluation of mycotoxins in organic and conventional rye grain and products. Food Control. 38 (1):61–6. doi: 10.1016/j.foodcont.2013.10.003.
  • Blesa, J., J. M. Soriano, J. C. Moltó, and J. Mañes. 2006. Factors affecting the presence of Ochratoxin A in wines. Critical Reviews in Food Science and Nutrition 46 (6):473–8. doi: 10.1080/10408390500215803.
  • Bueno, D., R. Muñoz, and J. Marty. 2014. Common methods to detect mycotoxins: a review with particular emphasis on electrochemical detection. Sensing in Electroanalysis 8:85–114.
  • Bui-Klimke, T. R., and F. Wu. 2015. Ochratoxin A and human health risk: a review of the evidence. Critical Reviews in Food Science and Nutrition 55 (13):1860–9. doi: 10.1080/10408398.2012.724480.
  • Bunney, J., S. Williamson, D. Atkin, M. Jeanneret, D. Cozzolino, J. Chapman, A. Power, and S. Chandra. 2017. The use of electrochemical biosensors in food analysis. Current Research in Nutrition and Food Science Journal 5 (3):183–95. doi: 10.12944/CRNFSJ.5.3.02.
  • Byrne, B., E. Stack, N. Gilmartin, and R. O’Kennedy. 2009. Antibody-based sensors: principles, problems and potential for detection of pathogens and associated toxins. Sensors (Basel, Switzerland) 9 (6):4407–45. doi: 10.3390/s90604407.
  • Castanheira, A. P., A. I. Barbosa, A. D. Edwards, and N. M. Reis. 2015. Multiplexed femtomolar quantitation of human cytokines in a fluoropolymer microcapillary film. The Analyst 140 (16):5609–18. doi: 10.1039/c5an00238a.
  • Chen, R., Y. Sun, B. Huo, X. Zhao, H. Huang, S. Li, J. Bai, J. Liang, and Z. Gao. 2021. A copper monosulfide-nanoparticle-based fluorescent probe for the sensitive and specific detection of Ochratoxin A. Talanta 222 (January):121678. doi: 10.1016/j.talanta.2020.121678.
  • Cheng, Y., L. Liu, H. Liu, L. Xu, and H. Kuang. 2020. Rapid and sensitive detection of Ochratoxin A in rice flour using a fluorescent microsphere immunochromatographic test strip assay. Food and Agricultural Immunology 31 (1):563–74. doi: 10.1080/09540105.2020.1745157.
  • Cong, H., and N. Zhang. 2022. Perspectives in translating microfluidic devices from laboratory prototyping into scale-up production. Biomicrofluidics 16 (2):021301. doi: 10.1063/5.0079045.
  • Dachery, B., F. Fonseca Veras, L. Dal Magro, V. Manfroi, and J. E. Welke. 2017. Exposure risk assessment to Ochratoxin A through consumption of juice and wine considering the effect of steam extraction time and vinification stages. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association 109 (Pt 1):237–44. doi: 10.1016/j.fct.2017.09.013.
  • Ding, Y., H. Shang, X. Wang, and L. Chen. 2020. A SERS-based competitive immunoassay for highly sensitive and specific detection of Ochratoxin A. The Analyst 145 (18):6079–84. doi: 10.1039/d0an01220c.
  • Duarte, S. C., A. Pena, and C. M. Lino. 2009. Ochratoxin A non-conventional exposure sources—A review. Microchemical Journal 93 (2): 115–20. doi: 10.1016/j.microc.2009.06.002.
  • El Khoury, A., and A. Atoui. 2010. Ochratoxin A: general overview and actual molecular status. Toxins 2 (4):461–93. doi: 10.3390/toxins2040461.
  • Eskola, M., G. Kos, C. T. Elliott, J. Hajšlová, S. Mayar, and R. Krska. 2020. Worldwide contamination of food-crops with mycotoxins: validity of the widely cited ‘FAO estimate’ of 25%. Critical Reviews in Food Science and Nutrition 60 (16):2773–89. doi: 10.1080/10408398.2019.1658570.
  • European Food Safety Authority (EFSA). 2006. Opinion of the scientific panel on contaminants in the food chain [CONTAM] related to Ochratoxin A in food. EFSA Journal 4 (6):365. doi: 10.2903/j.efsa.2006.365.
  • Fadlalla, M., S. Hassan, R. Ling, X. Wang, J. Li, S. Yuan, K. Xiao, S. Wang, H. Tang, S. Elsir, et al. 2020. Development of ELISA and lateral flow immunoassays for Ochratoxins (OTA and OTB) detection based on monoclonal antibody. Frontiers in Cellular and Infection Microbiology 10:80. doi: 10.3389/fcimb.2020.00080.
  • Fink-Gremmels, J. 1999. Mycotoxins: their implications for human and animal health. The Veterinary Quarterly 21 (4):115–20. doi: 10.1080/01652176.1999.9695005.
  • Freire, L., P. A. C. Braga, M. M. Furtado, J. Delafiori, F. L. Dias-Audibert, G. E. Pereira, F. G. Reyes, R. R. Catharino, A. S. Sant’Ana, et al. 2020. From grape to wine: fate of Ochratoxin A during red, rose, and white winemaking process and the presence of Ochratoxin derivatives in the final products. Food Control. 113 (July):107167. doi: 10.1016/j.foodcont.2020.107167.
  • Freire, L., and A. S. Sant’Ana. 2018. Modified mycotoxins: an updated review on their formation, detection, occurrence, and toxic effects. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association 111 (January):189–205. doi: 10.1016/j.fct.2017.11.021.
  • Fuchs, R., B. Radić, M. Peraica, K. Hult, and R. Pleština. 1988. Enterohepatic circulation of Ochratoxin A in rats. Periodicum Biologorum 90:39–42.
  • Gordon, J., and G. Michel. 2008. Analytical sensitivity limits for lateral flow immunoassays. Clinical Chemistry 54 (7):1250–1. doi: 10.1373/clinchem.2007.102491.
  • Gruber-Dorninger, C., T. Jenkins, and G. Schatzmayr. 2019. Global mycotoxin occurrence in feed: a ten-year survey. Toxins 11 (7):375. doi: 10.3390/toxins11070375.
  • Guo, L., Joshua A. Jackman, H. H. Yang, P. Chen, N. J. Cho, and D. H. Kim. 2015. Strategies for enhancing the sensitivity of plasmonic nanosensors. Nano Today 10 (2):213–39. doi: 10.1016/j.nantod.2015.02.007.
  • Guo, Z., J. Tian, C. Cui, Y. Wang, H. Yang, M. Yuan, and H. Yu. 2021. A label-free aptasensor for turn-on fluorescent detection of Ochratoxin A based on SYBR gold and single walled carbon nanohorns. Food Control 123 (May):107741. doi: 10.1016/j.foodcont.2020.107741.
  • Ha, T. H. 2015. Recent advances for the detection of Ochratoxin A. Toxins 7 (12):5276–300. doi: 10.3390/toxins7124882.
  • Hao, L., J. Chen, X. Chen, T. Ma, X. Cai, H. Duan, Y. Leng, X. Huang, and Y. Xiong. 2021. A novel magneto-gold nanohybrid-enhanced lateral flow immunoassay for ultrasensitive and rapid detection of Ochratoxin A in grape juice. Food Chemistry 336 (January):127710. doi: 10.1016/j.foodchem.2020.127710.
  • Hao, N., Z. Dai, X. Meng, R. Hua, J. Lu, and K. Wang. 2020. A portable solar-driven ratiometric photo-electrochromic visualization biosensor for detection of Ochratoxin A. Sensors and Actuators B: Chemical 306 (March):127594. doi: 10.1016/j.snb.2019.127594.
  • Haschek, W. M., and K. A. Voss. 2013. Mycotoxins. In Haschek and Rousseaux’s handbook of toxicologic pathology, 3rd ed., 1187–258. Academic Press. Elsevier. doi: 10.1016/B978-0-12-415759-0.00039-X.
  • Hitabatuma, A., Y. H. Pang, L. H. Yu, and X. F. Shen. 2021. A competitive fluorescence assay based on free-complementary DNA for Ochratoxin A detection. Food Chemistry 342 (April):128303. doi: 10.1016/j.foodchem.2020.128303.
  • Holzinger, M., A. L. Goff, and S. Cosnier. 2014. Nanomaterials for biosensing applications: a review. Frontiers in Chemistry 2:63. doi: 10.3389/fchem.2014.00063.
  • Hosnedlova, B., J. Sochor, M. Baron, G. Bjørklund, and R. Kizek. 2020. Application of nanotechnology based-biosensors in analysis of wine compounds and control of wine quality and safety: a critical review. Critical Reviews in Food Science and Nutrition 60 (19):3271–89. doi: 10.1080/10408398.2019.1682965.
  • Huang, D., J. Chen, L. Ding, L. Guo, P. Kannan, F. Luo, B. Qiu, and Z. Lin. 2020a. Core-satellite assemblies and exonuclease assisted double amplification strategy for ultrasensitive SERS detection of biotoxin. Analytica Chimica Acta 1110 (May):56–63. doi: 10.1016/j.aca.2020.02.058.
  • Huang, L., S. Tian, W. Zhao, K. Liu, X. Ma, and J. Guo. 2020b. Multiplexed detection of biomarkers in lateral-flow immunoassays. The Analyst 145 (8):2828–40. doi: 10.1039/c9an02485a.
  • Huang, X. B., S. H. Wu, H. C. Hu, and J. J. Sun. 2020c. AuNanostar@4-MBA@Au core-shell nanostructure coupled with exonuclease III-assisted cycling amplification for ultrasensitive SERS detection of Ochratoxin A. ACS Sensors 5 (8):2636–43. doi: 10.1021/acssensors.0c01162.
  • Hussein, S, and J. M. Brasel. 2001. Toxicity, metabolism, and impact of mycotoxins on humans and animals. Toxicology 167 (2):101–34. doi: 10.1016/S0300-483X(01)00471-1.
  • IARC. 1993. Some naturally occurring substances: food items and constituents, heterocyclic aromatic amines and mycotoxins. IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Humans No. 56 http://monographs.iarc.fr/ENG/Monographs/vol56/mono56.pdf.
  • International Organization of Vine and Wine (OIV). 2021. State of the world vitinicultural sector in 2020. Paris, France: International Organization of Vine and Wine (OIV).
  • Iqbal, S., Zafar, Z. Mehmood, M. R. Asi, M. Shahid, M. Sehar, and N. Malik. 2018. Co-occurrence of aflatoxins and Ochratoxin A in nuts, dry fruits, and nuty products. Journal of Food Safety 38 (4):e12462. doi: 10.1111/jfs.12462.
  • Janik, E., M. Niemcewicz, M. Podogrocki, M. Ceremuga, L. Gorniak, S. Maksymilian, and M. Bijak. 2021. The existing methods and novel approaches in mycotoxins’ detection. Molecules 26 (13):3981. doi: 10.3390/molecules26133981.
  • Jiang, Y. Y., X. Zhao, L. J. Chen, C. Yang, X. B. Yin, and X. P. Yan. 2020. Persistent luminescence nanorod based luminescence resonance energy transfer aptasensor for autofluorescence-free detection of mycotoxin. Talanta 218 (October):121101. doi: 10.1016/j.talanta.2020.121101.
  • Jing, X., L. Chang, L. Shi, X. Liu, Y. Zhao, and W. Zhang. 2020. Au Film-Au@Ag core-shell nanoparticle structured surface-enhanced raman spectroscopy aptasensor for accurate Ochratoxin A detection. ACS Applied Biomaterials 3 (4):2385–91. doi: 10.1021/acsabm.0c00120.
  • Joint FAO/WHO Expert Committee on Food Additives. 2007. Evaluation of certain food additives and contaminants. World Health Organization Technical Report Series 940:1–92. http://www.ncbi.nlm.nih.gov/pubmed/17687927.
  • Karami-Osboo, R. 2020. Nanofluid extraction of Ochratoxin A in food. Journal of Food Composition and Analysis 87 (January):103425. doi: 10.1016/j.jfca.2020.103425.
  • Khaneghah, A. M., Y. Fakhri, L. Abdi, C. F. S. C. Coppa, L. T. Franco, and C. A. F. de Oliveira. 2019. The concentration and prevalence of Ochratoxin A in coffee and coffee-based products: a global systematic review, meta-analysis and meta-regression. Fungal Biology 123 (8):611–7. doi: 10.1016/j.funbio.2019.05.012.
  • Kim, M. G., L. Bo Bin, P. Jin Ho, and J. Y. Byun. 2018a. A reusable optical fiber aptasensor based on photo-thermal effect. Korea.
  • Kim, Y., J. Gonzales, and Y. Zheng. 2021. Sensitivity-enhancing strategies in optical biosensing. Small 17 (4):2004988. doi: 10.1002/smll.202004988.
  • Kim, M.-G., P. Jin-Ho, and J. Y. Byun. 2018b. LSPR-based high sensitivity aptamer sensor using intercalation agent. Korea.
  • Kochman, J., K. Jakubczyk, and K. Janda. 2021. Mycotoxins in red wine: occurrence and risk assessment. Food Control 129:108229. doi: 10.1016/j.foodcont.2021.108229.
  • Kőszegi, T., and M. Poór. 2016. Ochratoxin A: molecular interactions, mechanisms of toxicity and prevention at the molecular level. Toxins 8 (4):111. doi: 10.3390/toxins8040111.
  • Krishna, V. D., K. Wu, D. Su, Maxim, C. J. Cheeran, J. P. Wang, and A. Perez. 2018. Nanotechnology: review of concepts and potential application of sensing platforms in food safety. Food Microbiology 75 (October):47–54. doi: 10.1016/j.fm.2018.01.025.
  • Krska, R., P. Schubert-Ullrich, A. Molinelli, M. Sulyok, S. MacDonald, and C. Crews. 2008. Mycotoxin analysis: an update. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 25 (2):152–63. doi: 10.1080/02652030701765723.
  • Kumar, P., D. K. Mahato, M. Kamle, Tapan, K. Mohanta, and S. G. Kang. 2017. Aflatoxins: a global concern for food safety, human health and their management. Frontiers in Microbiology 7:2170. doi: 10.3389/fmicb.2016.02170.
  • Kutsanedzie, F. Y., A. A. Agyekum, V. Annavaram, and Q. Chen. 2020. Signal-enhanced SERS-sensors of CAR-PLS and GA-PLS coupled AgNPs for Ochratoxin A and Aflatoxin B1 detection. Food Chemistry 315 (June):126231. doi: 10.1016/j.foodchem.2020.126231.
  • Langer, J., D. Jimenez de Aberasturi, J. Aizpurua, R. A. Alvarez-Puebla, B. Auguié, J. J. Baumberg, G. C. Bazan, S. E. J. Bell, A. Boisen, A. G. Brolo, et al. 2020. Present and future of surface-enhanced raman scattering. ACS Nano 14 (1):28–117. doi: 10.1021/acsnano.9b04224.
  • Lee, B., J.-H. Park, J.-Y. Byun, J. H. Kim, and M.-G. Kim. 2018. An optical fiber-based LSPR aptasensor for simple and rapid in-situ detection of Ochratoxin A. Biosensors & Bioelectronics 102 (April):504–9. doi: 10.1016/j.bios.2017.11.062.
  • Li, G. 2018. Biosensing technologies for protein assay. Nano-inspired biosensors for protein assay with clinical applications, 313–30. Elsevier. doi: 10.1016/C2016-0-01779-5.
  • Liu, L., Q. Huang, Z. Iqbal Tanveer, K. Jiang, J. Zhang, H. Pan, L. Luan, X. Liu, Z. Han, and Y. Wu. 2020. Turn off-on’ fluorescent sensor based on quantum dots and self-assembled porphyrin for rapid detection of Ochratoxin A. Sensors and Actuators B: Chemical 302 (January):127212. doi: 10.1016/j.snb.2019.127212.
  • Li, R., Y. Wen, F. Wang, and P. He. 2021. Recent advances in immunoassays and biosensors for mycotoxins detection in feedstuffs and foods. Journal of Animal Science and Biotechnology 12 (1):108. doi: 10.1186/s40104-021-00629-4.
  • López-Puertollano, D., C. Agulló, J. V. Mercader, A. Abad-Somovilla, and A. Abad-Fuentes. 2021. Immunoanalytical methods for Ochratoxin A monitoring in wine and must based on innovative immunoreagents. Food Chemistry 345 (May):128828. doi: 10.1016/j.foodchem.2020.128828.
  • Lu, L., W. Yuan, Q. Xiong, M. Wang, Y. Liu, M. Cao, and X. Xiong. 2021. One-step grain pretreatment for Ochratoxin A detection based on bipolar electrode-electrochemiluminescence biosensor. Analytica Chimica Acta 1141 (January):83–90. doi: 10.1016/j.aca.2020.10.035.
  • Mahmoudpour, M., J. Ezzati Nazhad Dolatabadi, M. Torbati, A. Pirpour Tazehkand, A. Homayouni-Rad, and M. de la Guardia. 2019. Nanomaterials and new biorecognition molecules based surface plasmon resonance biosensors for mycotoxin detection. Biosensors & Bioelectronics 143 (October):111603. doi: 10.1016/j.bios.2019.111603.
  • MarketDataForecast. 2021. Mycotoxin testing market analysis—segmented by type (Aflatoxins, Ochratoxin A, Patulin, Fusarium Toxins), by technology (HPLC-Based, LC-MS/MS-based, immunoassay-based), by food and feed, tested & region—Global Forecast to 2027. https://www.marketdataforecast.com/market-reports/mycotoxin-testing-market.
  • Martínez-Periñán, E., C. Gutiérrez-Sánchez, T. García-Mendiola, and E. Lorenzo. 2020. Electrochemiluminescence biosensors using screen-printed electrodes. Biosensors 10 (9):118. doi: 10.3390/bios10090118.
  • Mateo, R., Á. Medina, E. M. Mateo, F. Mateo, and M. Jiménez. 2007. An overview of Ochratoxin A in beer and wine. International Journal of Food Microbiology 119 (1–2):79–83. doi: 10.1016/j.ijfoodmicro.2007.07.029.
  • Mauriz, E. 2020. Clinical applications of visual plasmonic colorimetric sensing. Sensors 20 (21):6214–31. doi: 10.3390/s20216214.
  • Mehri, F., M. Esfahani, A. Heshmati, E. Jenabi, and S. Khazaei. 2020. The prevalence of Ochratoxin A in dried grapes and grape-derived products: a systematic review and meta-analysis. Toxin Reviews 41 (1):347–56. doi: 10.1080/15569543.2020.1845739.
  • Mishra, G., A. Barfidokht, F. Tehrani, and R. Mishra. 2018. Food safety analysis using electrochemical biosensors. Foods 7 (9):141. doi: 10.3390/foods7090141.
  • Mitchell, N. J., E. Bowers, C. Hurburgh, and F. Wu. 2016. Potential economic losses to the US corn industry from aflatoxin contamination. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 33 (3):540–50. doi: 10.1080/19440049.2016.1138545.
  • Morales, M. A., and J. M. Halpern. 2018. Guide to selecting a biorecognition element for biosensors. Bioconjugate Chemistry 29 (10):3231–9. doi: 10.1021/acs.bioconjchem.8b00592.
  • Mousavi Khaneghah, A., Y. Fakhri, S. Raeisi, B. Armoon, and A. S. Sant’Ana. 2018. Prevalence and concentration of Ochratoxin A, zearalenone, deoxynivalenol and total aflatoxin in cereal-based products: a systematic review and meta-analysis. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association 118 (August):830–48. doi: 10.1016/j.fct.2018.06.037.
  • Mukherjee, M., C. Nandhini, and P. Bhatt. 2021. Colorimetric and chemiluminescence based enzyme linked Apta-sorbent assay (ELASA) for Ochratoxin A detection. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 244 (January):118875. doi: 10.1016/j.saa.2020.118875.
  • Naresh, V., and N. Lee. 2021. A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors 21 (4):1109–35. doi: 10.3390/s21041109.
  • Nayl, A. A., A. I. Abd-Elhamid, A. Y. El-Moghazy, M. Hussin, M. A. Abu-Saied, A. A. El-Shanshory, and H. M. Soliman. 2020. The nanomaterials and recent progress in biosensing systems: a review. Trends in Environmental Analytical Chemistry 26 (June):e00087. doi: 10.1016/j.teac.2020.e00087.
  • Neethirajan, S., V. Ragavan, X. Weng, and R. Chand. 2018. Biosensors for sustainable food engineering: challenges and perspectives. Biosensors 8 (1):23. doi: 10.3390/bios8010023.
  • Niaz, K., S. Z. A. Shah, F. Khan, and M. Bule. 2020. Ochratoxin A–induced genotoxic and epigenetic mechanisms lead to Alzheimer disease: its modulation with strategies. Environmental Science and Pollution Research International 27 (36):44673–700. doi: 10.1007/s11356-020-08991-y.
  • Nolan, P., S. Auer, A. Spehar, C. T. Elliott, and K. Campbell. 2019. Current trends in rapid tests for mycotoxins. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 36 (5):800–14. doi: 10.1080/19440049.2019.1595171.
  • Official Journal of the European Union. 2005. Commission Regulation (EC) No 123/2005.
  • Parra, A., M. Jesús, and S. S. Paradinas. 2014. Spectroscopic techniques basedon the use of gold nanoparticles. Comprehensive Analytical Chemistry 66:477–527. doi: 10.1016/B978-0-444-63285-2.00012-2.
  • Peixoto de Almeida, M., E. Pereira, P. Baptista, I. Gomes, S. Figueiredo, L. Soares, and R. Franco. 2014. Gold nanoparticles as (bio)chemical sensors. Comprehensive Analytical Chemistry 66:529–67. doi: 10.1016/B978-0-444-63285-2.00013-4.
  • Pereira, R. H. A., W. J. Keijok, A. R. Prado, J. Pinto de Oliveira, and M. C. C. Guimarães. 2021. Rapid and sensitive detection of Ochratoxin A using antibody-conjugated gold nanoparticles based on localized surface plasmon resonance. Toxicon: Official Journal of the International Society on Toxinology 199 (August):139–44. doi: 10.1016/j.toxicon.2021.06.012.
  • Pfohl-Leszkowicz, A. 2009. Ochratoxin A and aristolochic acid involvement in nephropathies and associated urothelial tract tumours. Arhiv za Higijenu Rada i Toksikologiju 60 (4):465–83. doi: 10.2478/10004-1254-60-2009-2000.
  • Pires, P. N., E. A. Vargas, M. B. Gomes, C. B. M. Vieira, E. A. D. Santos, A. A. C. Bicalho, S. d C. Silva, R. P. Rezende, I. S. D. Oliveira, E. D. M. N. Luz, et al. 2019. Aflatoxins and Ochratoxin A: occurrence and contamination levels in cocoa beans from Brazil. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 36 (5):815–24. doi: 10.1080/19440049.2019.1600749.
  • Pitt, J. I., and J. D. Miller. 2017. A concise history of mycotoxin research. Journal of Agricultural and Food Chemistry 65 (33):7021–33. doi: 10.1021/acs.jafc.6b04494.
  • Pohland, A. E., S. Nesheim, and L. Friedman. 1992. Ochratoxin A: a review (technical report). Pure and Applied Chemistry 64 (7):1029–46. doi: 10.1351/pac199264071029.
  • Pohland, A. E., P. L. Schuller, P. S. Steyn, and H. P. Van Egmond. 1982. Physicochemical data for some selected mycotoxins. Pure and Applied Chemistry 54 (11):2219–84. doi: 10.1351/pac198254112219.
  • Popescu, R., Gabriela, C. Bulgaru, A. Untea, M. Vlassa, M. Filip, A. Hermenean, D. Marin, I. Țăranu, Sergiu, E. Georgescu, A, et al. 2021. The effectiveness of dietary byproduct antioxidants on induced CYP genes expression and histological alteration in piglets liver and kidney fed with Aflatoxin B1 and Ochratoxin A. Toxins 13 (2):148. doi: 10.3390/toxins13020148.
  • Posthuma-Trumpie, G. A., J. Korf, and A. van Amerongen. 2009. Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. a literature survey. Analytical and Bioanalytical Chemistry 393 (2):569–82. doi: 10.1007/s00216-008-2287-2.
  • Prieto-Simón, B., M. Campàs, J. L. Marty, and T. Noguer. 2008. Novel highly-performing immunosensor-based strategy for Ochratoxin A detection in wine samples. Biosensors & Bioelectronics 23 (7):995–1002. doi: 10.1016/j.bios.2007.10.002.
  • Qian, J., H. Cui, X. Lu, C. Wang, K. An, N. Hao, and K. Wang. 2020. Bi-Color FRET from two nano-donors to a single nano-acceptor: a universal aptasensing platform for simultaneous determination of dual targets. Chemical Engineering Journal 401 (December):126017. doi: 10.1016/j.cej.2020.126017.
  • Ratola, N., E. Abade, T. Simões, A. Venâncio, and A. Alves. 2005. Evolution of Ochratoxin A content from must to wine in port wine microvinification. Analytical and Bioanalytical Chemistry 382 (2):405–11. doi: 10.1007/s00216-005-3176-6.
  • Ravindran, N., S. Kumar, M. Yashini, S. Rajeshwari, C. A. Mamathi, S. N. Thirunavookarasu, and C. K. Sunil. 2021. Recent advances in surface plasmon resonance (SPR) biosensors for food analysis: a review. Critical Reviews in Food Science and Nutrition 1–23. doi: 10.1080/10408398.2021.1958745.
  • Rhouati, A., G. Bulbul, U. Latif, A. Hayat, Z. H. Li, and J. L. Marty. 2017. Nano-aptasensing in mycotoxin analysis: recent updates and progress. Toxins 9 (11):349. doi: 10.3390/toxins9110349.
  • Righetti, L., G. Paglia, G. Galaverna, and C. Dall’Asta. 2016. Recent advances and future challenges in modified mycotoxin analysis: why HRMS has become a key instrument in food contaminant research. Toxins 8 (12):361. doi: 10.3390/toxins8120361.
  • Ringot, D., A. Chango, Y. J. Schneider, and Y. Larondelle. 2006. Toxicokinetics and toxicodynamics of Ochratoxin A, an update. Chemico-Biological Interactions 159 (1):18–46. doi: 10.1016/j.cbi.2005.10.106.
  • Rodriguez, R. S., V. M. Szlag, T. M. Reineke, and C. L. Haynes. 2020. Multiplex surface-enhanced Raman scattering detection of deoxynivalenol and Ochratoxin A with a linear polymer affinity agent. Materials Advances 1 (9):3256–66. doi: 10.1039/d0ma00608d.
  • Rotariu, L., F. Lagarde, N. Jaffrezic-Renault, and C. Bala. 2016. Electrochemical biosensors for fast detection of food contaminants—trends and perspective. TrAC Trends in Analytical Chemistry 79:80–7. doi: 10.1016/j.trac.2015.12.017.
  • Rycenga, M., P. H. Camargo, W. Li, C. H. Moran, and Y. Xia. 2010. Understanding the SERS effects of single silver nanoparticles and their dimers, one at a time. The Journal of Physical Chemistry Letters 1 (4):696–703. doi: 10.1021/jz900286a.
  • Sang, S., Y. Wang, Q. Feng, Y. Wei, J. Ji, and W. Zhang. 2016. Progress of new label-free techniques for biosensors: a review. Critical Reviews in Biotechnology 36 (3):465–81. doi: 10.3109/07388551.2014.991270.
  • Santos, A., A. Vaz, P. Rodrigues, A. Veloso, A. Venâncio, and A. Peres. 2019. Thin films sensor devices for mycotoxins detection in foods: applications and challenges. Chemosensors 7 (1):3. doi: 10.3390/chemosensors7010003.
  • Sawant, S. N. 2017. Development of biosensors from biopolymer composites. Biopolymer composites in electronics, 353–83. Elsevier. doi: 10.1016/B978-0-12-809261-3.00013-9.
  • Schrenk, D., L. Bodin, J. K. Chipman, J. del Mazo, B. Grasl-Kraupp, C. Hogstrand, and L. Hoogenboom. 2020. Risk assessment of Ochratoxin A in food. EFSA Journal 18 (5):e06113. doi: 10.2903/j.efsa.2020.6113.
  • Schwerdt, G., R. Freudinger, S. Silbernagl, and M. Gekle. 1999. Ochratoxin A-binding proteins in rat organs and plasma and in different cell lines of the kidney. Toxicology 135 (1):1–10. doi: 10.1016/S0300-483X(99)00028-1.
  • Shan, H., X. Li, L. Liu, D. Song, and Z. Wang. 2020. Recent advances in nanocomposite-based electrochemical aptasensors for the detection of toxins. Journal of Materials Chemistry. B 8 (27):5808–25. doi: 10.1039/d0tb00705f.
  • Soleas, G. J., J. Yan, and D. M. Goldberg. 2001. Assay of Ochratoxin A in wine and beer by high-pressure liquid chromatography photodiode array and gas chromatography mass selective detection. Journal of Agricultural and Food Chemistry 49 (6):2733–40. doi: 10.1021/jf0100651.
  • Sorrenti, V., C. Di Giacomo, R. Acquaviva, I. Barbagallo, M. Bognanno, and F. Galvano. 2013. Toxicity of Ochratoxin A and its modulation by antioxidants: a review. Toxins 5 (10):1742–66. doi: 10.3390/toxins5101742.
  • Streit, E., G. Schatzmayr, P. Tassis, E. Tzika, D. Marin, I. Taranu, C. Tabuc, A. Nicolau, I. Aprodu, O. Puel, et al. 2012. Current situation of mycotoxin contamination and co-occurrence in animal feed—focus on Europe. Toxins 4 (10):788–809. doi: 10.3390/toxins4100788.
  • Studer-Rohr, I., J. Schlatter, and D. R. Dietrich. 2000. Kinetic parameters and intraindividual fluctuations of Ochratoxin A plasma levels in humans. Archives of Toxicology 74 (9):499–510. doi: 10.1007/s002040000157.
  • Suea-Ngam, A., L. T. Deck, P. D. Howes, and A. J. deMello. 2020. An ultrasensitive non-noble metal colorimetric assay using starch-iodide complexation for Ochratoxin A detection. Analytica Chimica Acta 1135 (October):29–37. doi: 10.1016/j.aca.2020.08.028.
  • Tang, Z., X. Liu, B. Su, Q. Chen, H. Cao, Y. Yun, Y. Xu, and B. D. Hammock. 2020. Ultrasensitive and rapid detection of Ochratoxin A in agro-products by a nanobody-mediated FRET-based immunosensor. Journal of Hazardous Materials 387:121678. doi: 10.1016/j.jhazmat.2019.121678.
  • Teixeira, T. R., M. Hoeltz, T. C. Einloft, H. A. Dottori, V. Manfroi, and I. B. Noll. 2011. Determination of Ochratoxin A in wine from the southern region of Brazil by thin layer chromatography with a charge-coupled detector. Food Additives & Contaminants. Part B, Surveillance 4 (4):289–93. doi: 10.1080/19393210.2011.638088.
  • Thakur, M. S., and K. V. Ragavan. 2013. Biosensors in food processing. Journal of Food Science and Technology 50 (4):625–41. doi: 10.1007/s13197-012-0783-z.
  • Tian, F., J. Zhou, R. Fu, Y. Cui, Q. Zhao, B. Jiao, and Y. He. 2020. Multicolor colorimetric detection of Ochratoxin A via structure-switching aptamer and enzyme-induced metallization of gold nanorods. Food Chemistry 320 (August):126607. doi: 10.1016/j.foodchem.2020.126607.
  • Tsia, K. K. 2016. Understanding biophotonics—fundamentals, advances, and applications. ed. Kevin Tsia, 1st ed. New York, NY: Jenny Stanford Publishing. doi: 10.1201/b15596.
  • Turner, N. W., S. Subrahmanyam, and S. A. Piletsky. 2009. Analytical methods for determination of mycotoxins: a review. Analytica Chimica Acta 632 (2):168–80. doi: 10.1016/j.aca.2008.11.010.
  • Uskoković-Marković, S., V. Kuntić, D. Bajuk-Bogdanović, and I. D. Holclajtner-Antunović. 2016. Surface-enhanced Raman scattering (SERS) biochemical applications. Encyclopedia of spectroscopy and spectrometry, 383–8. Academic Press. Elsevier. doi: 10.1016/B978-0-12-409547-2.12163-8.
  • Van Dorst, B., J. Mehta, K. Bekaert, E. Rouah-Martin, W. De Coen, P. Dubruel, R. Blust, and J. Robbens. 2010. Recent advances in recognition elements of food and environmental biosensors: a review. Biosensors & Bioelectronics 26 (4):1178–94. doi: 10.1016/j.bios.2010.07.033.
  • Var, I., and B. Kabak. 2007. Occurrence of Ochratoxin A in Turkish wines. Microchemical Journal 86 (2):241–7. doi: 10.1016/j.microc.2007.04.002.
  • Vashist, S. K., and J. H. Luong. 2018. Bioanalytical requirements and regulatory guidelines for immunoassays. Handbook of immunoassay technologies: approaches, performances, and applications, 81–95. Academic Press. Elsevier. doi: 10.1016/B978-0-12-811762-0.00004-9.
  • Visconti, A., M. Pascale, and G. Centonze. 2001. Determination of Ochratoxin A in wine and beer by immunoaffinity column cleanup and liquid chromatographic analysis with fluorometric detection: collaborative study. Journal of AOAC International 84 (6):1818–27. doi: 10.1093/jaoac/84.6.1818.
  • Vitali Čepo, D., M. Pelajić, I. Vinković Vrček, A. Krivohlavek, I. Žuntar, and M. Karoglan. 2018. Differences in the levels of pesticides, metals, sulphites and Ochratoxin A between organically and conventionally produced wines. Food Chemistry 246 (April):394–403. doi: 10.1016/j.foodchem.2017.10.133.
  • Wang, H., H. Rao, M. Luo, X. Xue, Z. Xue, and X. Lu. 2019. Noble metal nanoparticles growth-based colorimetric strategies: from monocolorimetric to multicolorimetric sensors. Coordination Chemistry Reviews 398:113003. doi: 10.1016/j.ccr.2019.06.020.
  • Wang, Q., Q. Yang, and W. Wu. 2020. Graphene-based steganographic aptasensor for information computing and monitoring toxins of biofilm in food. Frontiers in Microbiology 10 (February) doi: 10.3389/fmicb.2019.03139.
  • Wei, J., H. Chen, H. Chen, Y. Cui, A. Qileng, W. Qin, W. Liu, and Y. Liu. 2019. Multifunctional peroxidase-encapsulated nanoliposomes: bioetching-induced photoelectrometric and colorimetric immunoassay for broad-spectrum detection of Ochratoxins. ACS Applied Materials & Interfaces 11 (27):23832–9. doi: 10.1021/acsami.9b04136.
  • Wu, Y., Y. Zhou, H. Huang, X. Chen, Y. Leng, W. Lai, X. Huang, and Y. Xiong. 2020. Engineered gold nanoparticles as multicolor labels for simultaneous multi-mycotoxin detection on the immunochromatographic test strip nanosensor. Sensors and Actuators B: Chemical 316 (August):128107. doi: 10.1016/j.snb.2020.128107.
  • Xiong, Y., W. Li, Q. Wen, D. Xu, J. Ren, and Q. Lin. 2022. Aptamer-engineered nanomaterials to aid in mycotoxin determination. Food Control 135 (May):108661. doi: 10.1016/j.foodcont.2021.108661.
  • Xiong, Z., Q. Wang, Y. Xie, N. Li, W. Yun, and L. Yang. 2021. Simultaneous detection of Aflatoxin B1 and Ochratoxin A in food samples by Dual DNA tweezers nanomachine. Food Chemistry 338 (February):128122. doi: 10.1016/j.foodchem.2020.128122.
  • Xu, L., Z. Zhang, Q. Zhang, and P. Li. 2016. Mycotoxin determination in foods using advanced sensors based on antibodies or aptamers. Toxins 8 (8):239. doi: 10.3390/toxins8080239.
  • Yasmin, J., M. R. Ahmed, and B.-K. Cho. 2016. Biosensors and their applications in food safety: a review. Journal of Biosystems Engineering 41 (3):240–54. doi: 10.5307/JBE.2016.41.3.240.
  • Yingju, L., L. Ying, W. Jie, S. Haoran, and C. Huaming. 2021. Dual-mode separation type immunosensor based on enzyme-induced biological etching and preparation method thereof. China.
  • Zalevsky, Z., and I. Abdulhalim. 2014. Plasmonics. Integrated nanophotonic devices, 2nd ed., eds. W. Andrew, 179–245. Elsevier. doi: 10.1016/B978-0-323-22862-6.00006-2.
  • Zangheri, M., F. Di Nardo, D. Calabria, E. Marchegiani, L. Anfossi, M. Guardigli, M. Mirasoli, C. Baggiani, and A. Roda. 2021. Smartphone biosensor for point-of-need chemiluminescence detection of Ochratoxin A in wine and coffee. Analytica Chimica Acta 1163 (June):338515. doi: 10.1016/j.aca.2021.338515.
  • Zareshahrabadi, Z., R. Bahmyari, H. Nouraei, H. Khodadadi, P. Mehryar, F. Asadian, and K. Zomorodian. 2020. Detection of aflatoxin and Ochratoxin A in spices by high-performance liquid chromatography. Journal of Food Quality 2020:1–8. doi: 10.1155/2020/8858889.
  • Zhang, L., X. W. Dou, C. Zhang, A. F. Logrieco, and M. H. Yang. 2018. A review of current methods for analysis of mycotoxins in herbal medicines. Toxins 10 (2):65. doi: 10.3390/toxins10020065.
  • Zhang, C., C. Jiang, L. Lan, J. Ping, Z. Ye, and Y. Ying. 2021a. Nanomaterial-based biosensors for agro-product safety. TrAC Trends in Analytical Chemistry 143 (October):116369. doi: 10.1016/j.trac.2021.116369.
  • Zhang, W., S. Tang, Y. Jin, C. Yang, L. He, J. Wang, and Y. Chen. 2020. Multiplex SERS-based lateral flow immunosensor for the detection of major mycotoxins in maize utilizing dual Raman labels and triple test lines. Journal of Hazardous Materials 393 (July):122348. doi: 10.1016/j.jhazmat.2020.122348.
  • Zhang, L., Z. Zhang, Y. Tian, M. Cui, B. Huang, T. Luo, S. Zhang, and H. Wang. 2021b. Rapid, simultaneous detection of mycotoxins with smartphone recognition-based immune microspheres. Analytical and Bioanalytical Chemistry 413 (14):3683–93. doi: 10.1007/s00216-021-03316-5.
  • Zhang, X., H. Zhi, M. Zhu, F. Wang, H. Meng, and L. Feng. 2021c. Electrochemical/visual dual-readout aptasensor for Ochratoxin A detection integrated into a miniaturized paper-based analytical device. Biosensors & Bioelectronics 180 (May):113146. doi: 10.1016/j.bios.2021.113146.
  • Zhou, J., Q. Yang, C. Liang, Y. Chen, X. Zhang, Z. Liu, and A. Wang. 2021. Detection of Ochratoxin A by quantum dots–based fluorescent immunochromatographic assay. Analytical and Bioanalytical Chemistry 413 (1):183–92. doi: 10.1007/s00216-020-02990-1.
  • Zhu, H., Y. Cai, A. Qileng, Z. Quan, W. Zeng, K. He, and Y. Liu. 2021a. Template-assisted Cu2O@Fe(OH)3 yolk-shell nanocages as biomimetic peroxidase: a multi-colorimetry and ratiometric fluorescence separated-type immunosensor for the detection of Ochratoxin A. Journal of Hazardous Materials 411 (June):125090. doi: 10.1016/j.jhazmat.2021.125090.
  • Zhu, H., C. Liu, X. Liu, Z. Quan, W. Liu, and Y. Liu. 2021b. A multi-colorimetric immunosensor for visual detection of Ochratoxin A by mimetic enzyme etching of gold nanobipyramids. Mikrochimica Acta 188 (3):62. doi: 10.1007/s00604-020-04699-5.
  • Zimmerli, B., and R. Dick. 1996. Ochratoxin A in table wine and grape-juice: occurrence and risk assessment. Food Additives and Contaminants 13 (6):655–68. doi: 10.1080/02652039609374451.