1,089
Views
3
CrossRef citations to date
0
Altmetric
Review

Hydrogel-integrated sensors for food safety and quality monitoring: Fabrication strategies and emerging applications

, , , , &

References

  • Ahmed, E. M. 2015. Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research 6 (2):105–21. doi: 10.1016/j.jare.2013.07.006.
  • Ali, M. M., F. Li, Z. Zhang, K. Zhang, D. K. Kang, J. A. Ankrum, X. C. Le, and W. Zhao. 2014. Rolling circle amplification: A versatile tool for chemical biology, materials science and medicine. Chemical Society Reviews 43 (10):3324–41. doi: 10.1039/c3cs60439j.
  • Barik, B., and S. Mohapatra. 2022. Selective visual detection of histamine and ascorbic acid through the rapid gel-sol transition of luminescent alginate hydrogel. Sensors and Actuators B: Chemical 367:132128. doi: 10.1016/j.snb.2022.132128.
  • Castro-Puyana, M., R. Pérez-Míguez, L. Montero, and M. Herrero. 2017. Application of mass spectrometry-based metabolomics approaches for food safety, quality and traceability. TrAC Trends in Analytical Chemistry 93:102–18. doi: 10.1016/j.trac.2017.05.004.
  • Chang, R., T. Wang, Q. Liu, J. Tang, and D. Wu. 2022. Ag nanoparticles@agar gel as a 3D flexible and stable SERS substrate with ultrahigh sensitivity. Langmuir : The ACS Journal of Surfaces and Colloids 38 (45):13822–32. doi: 10.1021/acs.langmuir.2c01966.
  • Chen, F., Y. Zhang, Y. Qin, W. Zhang, W. Wu, X. Li, and M. Zhang. 2023. Specifically functionalized MTT-Ag NP/SA film sensor for the ultrasensitive detection of Hg2+ in lettuce samples. Food Chemistry 404 (Pt B):134705. doi: 10.1016/j.foodchem.2022.134705.
  • Chen, M., Y. Wang, J. Zhang, Y. Peng, S. Li, D. Han, S. Ren, K. Qin, S. Li, and Z. Gao. 2022. Stimuli-responsive DNA-based hydrogels for biosensing applications. Journal of Nanobiotechnology 20 (1):40. doi: 10.1186/s12951-022-01242-x.
  • Chen, Q., R. Tian, G. Liu, Y. Wen, X. Bian, D. Luan, H. Wang, K. Lai, and J. Yan. 2022. Fishing unfunctionalized SERS tags with DNA hydrogel network generated by ligation-rolling circle amplification for simple and ultrasensitive detection of kanamycin. Biosensors & Bioelectronics 207:114187. doi: 10.1016/j.bios.2022.114187.
  • Cheng, W., X. Wu, Y. Zhang, D. Wu, L. Meng, Y. Chen, and X. Tang. 2022. Recent applications of hydrogels in food safety sensing: Role of hydrogels. Trends in Food Science & Technology 129:244–57. doi: 10.1016/j.tifs.2022.10.004.
  • Chu, J., C. Chen, X. Li, L. Yu, W. Li, M. Cheng, W. Tang, and Z. Xiong. 2021. A responsive pure DNA hydrogel for label-free detection of lead ion. Analytica Chimica Acta 1157:338400. doi: 10.1016/j.aca.2021.338400.
  • Deng, R., K. Zhang, L. Wang, X. Ren, Y. Sun, and J. Li. 2018. DNA-sequence-encoded rolling circle amplicon for single-cell RNA imaging. Chem 4 (6):1373–86. doi: 10.1016/j.chempr.2018.03.003.
  • Dhanjai, A., Sinha, P. K. Kalambate, S. M. Mugo, P. Kamau, J. Chen, and R. Jain. 2019. Polymer hydrogel interfaces in electrochemical sensing strategies: A review. TrAC Trends in Analytical Chemistry 118:488–501. doi: 10.1016/j.trac.2019.06.014.
  • Ding, N., S. Dong, Y. Zhang, D. Lu, J. Lin, Q. Zhao, and X. Shi. 2022. Portable silver-doped Prussian blue nanoparticle hydrogels for colorimetric and photothermal monitoring of shrimp and fish freshness. Sensors and Actuators B: Chemical 363:131811. doi: 10.1016/j.snb.2022.131811.
  • Doeun, D., M. Davaatseren, and M. S. Chung. 2017. Biogenic amines in foods. Food Science and Biotechnology 26 (6):1463–74. doi: 10.1007/s10068-017-0239-3.
  • Dong, Y., Y. Xu, W. Yong, X. Chu, and D. Wang. 2014. Aptamer and its potential applications for food safety. Critical Reviews in Food Science and Nutrition 54 (12):1548–61. doi: 10.1080/10408398.2011.642905.
  • Du, X., J. Zhai, X. Li, Y. Zhang, N. Li, and X. Xie. 2021. Hydrogel-based optical ion sensors: Principles and challenges for point-of-care testing and environmental monitoring. ACS Sensors 6 (6):1990–2001. doi: 10.1021/acssensors.1c00756.
  • Du, Y., Y. Zhou, Y. Wen, X. Bian, Y. Xie, W. Zhang, G. Liu, and J. Yan. 2019. Multiplexed aptasensing of food contaminants by using terminal deoxynucleotidyl transferase-produced primer-triggered rolling circle amplification: Application to the colorimetric determination of enrofloxacin, lead (II), Escherichia coli O157:H7 and tropomyosin. Mikrochimica Acta 186 (12):840. doi: 10.1007/s00604-019-3935-2.
  • Fu, L., Y. Qian, J. Zhou, L. Zheng, and Y. Wang. 2020. Fluorescence-based quantitative platform for ultrasensitive food allergen detection: From immunoassays to DNA sensors. Comprehensive Reviews in Food Science and Food Safety 19 (6):3343–64. doi: 10.1111/1541-4337.12641.
  • Gao, P., N. Q. I. Mohd Noor, and S. M. Shaarani. 2022. Current status of food safety hazards and health risks connected with aquatic food products from southeast Asian region. Critical Reviews in Food Science and Nutrition 62 (13):3471–89. doi: 10.1080/10408398.2020.1866490.
  • Gong, Z. J., C. C. Wang, S. Pu, C. Wang, F. S. Cheng, Y. H. Wang, and M. K. Fan. 2016. Rapid and direct detection of illicit dyes on tainted fruit peel using a PVA hydrogel surface enhanced Raman scattering substrate. Analytical Methods 8 (24):4816–20. doi: 10.1039/c6ay00233a.
  • Guo, Y., M. Girmatsion, H. W. Li, Y. Xie, W. Yao, H. Qian, B. Abraha, and A. Mahmud. 2021. Rapid and ultrasensitive detection of food contaminants using surface-enhanced Raman spectroscopy-based methods. Critical Reviews in Food Science and Nutrition 61 (21):3555–68. doi: 10.1080/10408398.2020.1803197.
  • Han, Y., W. Yang, X. Luo, X. He, H. Zhao, W. Tang, T. Yue, and Z. Li. 2022. Carbon dots based ratiometric fluorescent sensing platform for food safety. Critical Reviews in Food Science and Nutrition 62 (1):244–60. doi: 10.1080/10408398.2020.1814197.
  • Hao, L., X. Liu, S. Xu, F. An, H. Gu, and F. Xu. 2021. A novel aptasensor based on DNA hydrogel for sensitive visual detection of ochratoxin A. Mikrochimica Acta 188 (11):395. doi: 10.1007/s00604-021-05000-y.
  • Hao, L. L., W. Wang, X. Q. Shen, S. L. Wang, Q. Li, F. L. An, and S. J. Wu. 2020. A fluorescent DNA hydrogel aptasensor based on the self-assembly of rolling circle amplification products for sensitive detection of ochratoxin A. Journal of Agricultural and Food Chemistry 68 (1):369–75. doi: 10.1021/acs.jafc.9b06021.
  • Hao, N., Z. Dai, X. Meng, R. Hua, J. Lu, and K. Wang. 2020. A portable solar-driven ratiometric photo-electrochromic visualization biosensor for detection of ochratoxin A. Sensors and Actuators B: Chemical 306:127594. doi: 10.1016/j.snb.2019.127594.
  • Hao, N., X. Zhang, Z. Zhou, R. Hua, Y. Zhang, Q. Liu, J. Qian, H. Li, and K. Wang. 2017. AgBr nanoparticles/3D nitrogen-doped graphene hydrogel for fabricating all-solid-state luminol-electrochemiluminescence Escherichia coli aptasensors. Biosensors & Bioelectronics 97:377–83. doi: 10.1016/j.bios.2017.06.025.
  • He, X., X. Zhou, W. Liu, Y. Liu, and X. Wang. 2020. Flexible DNA hydrogel SERS active biofilms for conformal ultrasensitive detection of uranyl ions from aquatic products. Langmuir : The ACS Journal of Surfaces and Colloids 36 (11):2930–6. doi: 10.1021/acs.langmuir.9b03845.
  • Ho, T. C., C. C. Chang, H. P. Chan, T. W. Chung, C. W. Shu, K. P. Chuang, T. H. Duh, M. H. Yang, and Y. C. Tyan. 2022. Hydrogels: Properties and applications in biomedicine. Molecules 27 (9):2902. doi: 10.3390/molecules27092902.
  • Hu, B., D. W. Sun, H. Pu, and Q. Wei. 2020. A dynamically optical and highly stable pNIPAM @ Au NRs nanohybrid substrate for sensitive SERS detection of malachite green in fish fillet. Talanta 218:121188. doi: 10.1016/j.talanta.2020.121188.
  • Huang, C., Y. Cheng, Z. W. Gao, H. B. Zhang, and J. Wei. 2018. Portable label-free inverse opal photonic hydrogel particles serve as facile pesticides colorimetric monitoring. Sensors and Actuators B: Chemical 273:1705–12. doi: 10.1016/j.snb.2018.07.050.
  • Huang, X., Q. Guo, R. Zhang, Z. Zhao, Y. Leng, J. W. Y. Lam, Y. Xiong, and B. Z. Tang. 2020. AIEgens: An emerging fluorescent sensing tool to aid food safety and quality control. Comprehensive Reviews in Food Science and Food Safety 19 (4):2297–329. doi: 10.1111/1541-4337.12591.
  • Iqbal, S., F. Ahmed, and H. Xiong. 2021. Responsive-DNA hydrogel based intelligent materials: Preparation and applications. Chemical Engineering Journal 420:130384. doi: 10.1016/j.cej.2021.130384.
  • Jia, P., X. He, J. Yang, X. Sun, T. Bu, Y. Zhuang, and L. Wang. 2023. Dual–emission MOF–based ratiometric platform and sensory hydrogel for visible detection of biogenic amines in food spoilage. Sensors and Actuators B: Chemical 374:132803. doi: 10.1016/j.snb.2022.132803.
  • Jia, W., R. Fan, J. Zhang, K. Zhu, S. Gai, Y. Yin, and Y. Yang. 2022. Smart MOF-on-MOF hydrogel as a simple rod-shaped core for visual detection and effective removal of pesticides. Small (Weinheim an Der Bergstrasse, Germany) 18 (19):e2201510. doi: 10.1002/smll.202201510.
  • Jiang, C., Y. Li, H. Wang, D. Chen, and Y. Wen. 2020. A portable visual capillary sensor based on functional DNA crosslinked hydrogel for point-of-care detection of lead ion. Sensors and Actuators B: Chemical 307:127625. doi: 10.1016/j.snb.2019.127625.
  • Jiang, D., X. Du, Q. Liu, N. Hao, and K. Wang. 2019. MoS2/nitrogen doped graphene hydrogels p-n heterojunction: Efficient charge transfer property for highly sensitive and selective photoelectrochemical analysis of chloramphenicol. Biosensors & Bioelectronics 126:463–9. doi: 10.1016/j.bios.2018.11.018.
  • Jiang, D., P. Ge, L. Wang, H. Jiang, M. Yang, L. Yuan, Q. Ge, W. Fang, and X. Ju. 2019. A novel electrochemical mast cell-based paper biosensor for the rapid detection of milk allergen casein. Biosensors & Bioelectronics 130:299–306. doi: 10.1016/j.bios.2019.01.050.
  • Jiang, D., H. Jiang, and L. Wang. 2020. A novel paper-based capacitance mast cell sensor for evaluating peanut allergen protein Ara h 2. Food Analytical Methods 13 (10):1993–2001. doi: 10.1007/s12161-020-01769-5.
  • Jiang, D., K. Sheng, H. Jiang, and L. Wang. 2021. A biomimetic "intestinal microvillus" cell sensor based on 3D bioprinting for the detection of wheat allergen gliadin. Bioelectrochemistry (Amsterdam, Netherlands) 142:107919. doi: 10.1016/j.bioelechem.2021.107919.
  • Jiang, D. L., D. D. Feng, H. Jiang, L. M. Yuan, Y. Q. Yin, X. Xu, and W. M. Fang. 2017. Preliminary study on an innovative, simple mast cell-based electrochemical method for detecting foodborne pathogenic bacterial quorum signaling molecules (N-acyl-homoserine-lactones). Biosensors & Bioelectronics 90:436–42. doi: 10.1016/j.bios.2016.09.096.
  • Jiang, H., J. Yang, K. Wan, D. L. Jiang, and C. H. Jin. 2020. Miniaturized paper-supported 3D cell-based electrochemical sensor for bacterial lipopolysaccharide detection. ACS Sensors 5 (5):1325–35. doi: 10.1021/acssensors.9b02508.
  • Jung, I. Y., J. S. Kim, B. R. Choi, K. Lee, and H. Lee. 2017. Hydrogel based biosensors for in vitro diagnostics of biochemicals, proteins, and genes. Advanced Healthcare Materials 6 (12):1601475. doi: 10.1002/adhm.201601475.
  • Kahn, J. S., Y. Hu, and I. Willner. 2017. Stimuli-responsive DNA-based hydrogels: From basic principles to applications. Accounts of Chemical Research 50 (4):680–90. doi: 10.1021/acs.accounts.6b00542.
  • Khan, M. S., S. K. Misra, K. Dighe, Z. Wang, A. S. Schwartz-Duval, D. Sar, and D. Pan. 2018. Electrically-receptive and thermally-responsive paper-based sensor chip for rapid detection of bacterial cells. Biosensors & Bioelectronics 110:132–40. doi: 10.1016/j.bios.2018.03.044.
  • Kim, Y. H., D. J. Kim, S. Lee, D. H. Kim, S. G. Park, and S. H. Kim. 2019. Microfluidic designing microgels containing highly concentrated gold nanoparticles for SERS analysis of complex fluids. Small (Weinheim an Der Bergstrasse, Germany) 15 (52):e1905076. doi: 10.1002/smll.201905076.
  • Li, J., L. Mo, C. H. Lu, T. Fu, H. H. Yang, and W. Tan. 2016. Functional nucleic acid-based hydrogels for bioanalytical and biomedical applications. Chemical Society Reviews 45 (5):1410–31. doi: 10.1039/c5cs00586h.
  • Li, L., M. Zhang, and W. Chen. 2020. Gold nanoparticle-based colorimetric and electrochemical sensors for the detection of illegal food additives. Journal of Food and Drug Analysis 28 (4):641–53. doi: 10.38212/2224-6614.3114.
  • Li, T., J. Wang, L. Zhu, C. Li, Q. Chang, and W. Xu. 2022. Advanced screening and tailoring strategies of pesticide aptamer for constructing biosensor. Critical Reviews in Food Science and Nutrition. Advance online publication. doi: 10.1080/10408398.2022.2086210.
  • Lin, H., Y. Zou, Y. Huang, J. Chen, W. Y. Zhang, Z. Zhuang, G. Jenkins, and C. J. Yang. 2011. DNAzyme crosslinked hydrogel: A new platform for visual detection of metal ions. Chemical Communications (Cambridge, England) 47 (33):9312–4. doi: 10.1039/c1cc12290h.
  • Lin, X., M. Fang, C. Yi, Y. Jiang, C. Zhang, X. Pan, and Z. Luo. 2022. Functional hydrogel for fast, precise and inhibition-free point-of-care bacteria analysis in crude food samples. Biomaterials 280:121278. doi: 10.1016/j.biomaterials.2021.121278.
  • Lin, X., W. Yu, X. Tong, C. Li, N. Duan, Z. Wang, and S. Wu. 2022. Application of nanomaterials for coping with mycotoxin contamination in food safety: From detection to control. Critical Reviews in Analytical Chemistry. Advance online publication. doi: 10.1080/10408347.2022.2076063.
  • Liu, D., S. Jia, H. Zhang, Y. Ma, Z. Guan, J. Li, Z. Zhu, T. Ji, and C. J. Yang. 2017. Integrating target-responsive hydrogel with pressuremeter readout enables simple, sensitive, user-friendly, quantitative point-of-care testing. ACS Applied Materials & Interfaces 9 (27):22252–8. doi: 10.1021/acsami.7b05531.
  • Liu, J.-M., Y. Hu, Y.-K. Yang, H. Liu, G.-Z. Fang, X. Lu, and S. Wang. 2018. Emerging functional nanomaterials for the detection of food contaminants. Trends in Food Science & Technology 71:94–106. doi: 10.1016/j.tifs.2017.11.005.
  • Liu, J., D. Wu, J. Chen, S. Jia, J. Chen, Y. Wu, and G. Li. 2022. CRISPR-Cas systems mediated biosensing and applications in food safety detection. Critical Reviews in Food Science and Nutrition . Advance online publication. doi: 10.1080/10408398.2022.2128300.
  • Liu, M., J. Zhang, S. Liu, and B. Li. 2022. A label-free visual aptasensor for zearalenone detection based on target-responsive aptamer-cross-linked hydrogel and color change of gold nanoparticles. Food Chemistry 389:133078. doi: 10.1016/j.foodchem.2022.133078.
  • Liu, R. D., Y. S. Huang, Y. L. Ma, S. S. Jia, M. X. Gao, J. X. Li, H. M. Zhang, D. M. Xu, M. Wu, Y. Chen, et al. 2015. Design and synthesis of target-responsive aptamer-cross-linked hydrogel for visual quantitative detection of ochratoxin A. ACS Applied Materials & Interfaces 7 (12):6982–90. doi: 10.1021/acsami.5b01120.
  • Liu, X., X. Chen, X. Chi, Z. Feng, C. Yang, R. Gao, S. Li, C. Zhang, X. Chen, P. Huang, et al. 2022. Biomimetic integration of tough polymer elastomer with conductive hydrogel for highly stretchable, flexible electronic. Nano Energy. 92:106735. doi: 10.1016/j.nanoen.2021.106735.
  • Liu, Y., Y. Deng, S. Li, F. W.-N. Chow, M. Liu, and N. He. 2022. Monitoring and detection of antibiotic residues in animal derived foods: Solutions using aptamers. Trends in Food Science & Technology 125:200–35. doi: 10.1016/j.tifs.2022.04.008.
  • Lü, H., L. Yang, Y. Zhou, R. Qu, Y. Xu, S. Shang, and N. Hui. 2021. Non-enzymatic electrochemical sensors based on conducting polymer hydrogels for ultrasensitive carbaryl pesticide detection. Journal of the Electrochemical Society 168 (4):047506. doi: 10.1149/1945-7111/abf410.
  • Lu, P., Y. Yang, R. Liu, X. Liu, J. Ma, M. Wu, and S. Wang. 2020. Preparation of sugarcane bagasse nanocellulose hydrogel as a colourimetric freshness indicator for intelligent food packaging. Carbohydrate Polymers 249:116831. doi: 10.1016/j.carbpol.2020.116831.
  • Luo, Q., S. He, Y. Huang, Z. Lei, J. Qiao, Q. Li, D. Xu, X. Guo, and Y. Wu. 2022. Non-toxic fluorescent molecularly imprinted hydrogel based on wood-derived cellulose nanocrystals and carbon dots for efficient sorption and sensitive detection of tetracycline. Industrial Crops and Products 177:114528. doi: 10.1016/j.indcrop.2022.114528.
  • Luo, Q., Y. Zhang, Y. Zhou, S. G. Liu, W. Gao, and X. Shi. 2021. Portable functional hydrogels based on silver metallization for visual monitoring of fish freshness. Food Control. 123:107824. doi: 10.1016/j.foodcont.2020.107824.
  • Madduma‐Bandarage, U., and S. K. S. V. Madihally. 2020. Synthetic hydrogels: Synthesis, novel trends, and applications. Journal of Applied Polymer Science 138 (19):50376. doi: 10.1002/app.50376.
  • Mangal, M., S. Bansal, S. K. Sharma, and R. K. Gupta. 2016. Molecular detection of foodborne pathogens: A rapid and accurate answer to food safety. Critical Reviews in Food Science and Nutrition 56 (9):1568–84. doi: 10.1080/10408398.2013.782483.
  • McGhee, C. E., K. Y. Loh, and Y. Lu. 2017. DNAzyme sensors for detection of metal ions in the environment and imaging them in living cells. Current Opinion in Biotechnology 45:191–201. doi: 10.1016/j.copbio.2017.03.002.
  • McGrath, T. F., K. Andersson, K. Campbell, T. L. Fodey, and C. T. Elliott. 2013. Development of a rapid low cost fluorescent biosensor for the detection of food contaminants. Biosensors & Bioelectronics 41:96–102. doi: 10.1016/j.bios.2012.07.081.
  • Mo, F., K. Jiang, D. Zhao, Y. Wang, J. Song, and W. Tan. 2021. DNA hydrogel-based gene editing and drug delivery systems. Advanced Drug Delivery Reviews 168:79–98. doi: 10.1016/j.addr.2020.07.018.
  • Mohsen, M. G., and E. T. Kool. 2016. The discovery of rolling circle amplification and rolling circle transcription. Accounts of Chemical Research 49 (11):2540–50. doi: 10.1021/acs.accounts.6b00417.
  • Nagahara, S., and T. Matsuda. 1996. Hydrogel formation via hybridization of oligonucleotides derivatized in water-soluble vinyl polymers. Polymer Gels and Networks 4 (2):111–27. doi: 10.1016/0966-7822(96)00001-9.
  • Nolvachai, Y., C. Kulsing, and P. J. Marriott. 2017. Multidimensional gas chromatography in food analysis. TrAC Trends in Analytical Chemistry 96:124–37. doi: 10.1016/j.trac.2017.05.001.
  • Palomino, K., K. A. Suarez-Meraz, A. Serrano-Medina, A. Olivas, E. C. Samano, and J. M. Cornejo-Bravo. 2015. Microstructured poly(n-isopropylacrylamide) hydrogels with fast temperature response for pulsatile drug delivery. Journal of Polymer Research 22 (10):199. doi: 10.1007/s10965-015-0841-0.
  • Peng, Z., H. R. Yu, J. Y. Wen, Y. L. Wang, T. Liang, and C. J. Cheng. 2022. A novel ion-responsive photonic hydrogel sensor for portable visual detection and timely removal of lead ions in water. Materials Advances 3 (13):5393–405. doi: 10.1039/d2ma00232a.
  • Petrucci, S., C. Costa, D. Broyles, E. Dikici, S. Daunert, and S. Deo. 2021. On-site detection of food and waterborne bacteria - current technologies, challenges, and future directions. Trends in Food Science & Technology 115:409–21. doi: 10.1016/j.tifs.2021.06.054.
  • Qureshi, D., S. K. Nayak, S. Maji, A. Anis, D. Kim, and K. Pal. 2019. Environment sensitive hydrogels for drug delivery applications. European Polymer Journal 120:109220. doi: 10.1016/j.eurpolymj.2019.109220.
  • Rana, M. S., S. Y. Lee, H. J. Kang, and S. J. Hur. 2019. Reducing veterinary drug residues in animal products: A review. Food Science of Animal Resources 39 (5):687–703. doi: 10.5851/kosfa.2019.e65.
  • Rong, Y., M. M. Hassan, Q. Ouyang, and Q. Chen. 2021. Lanthanide ion (Ln3+)-based upconversion sensor for quantification of food contaminants: A review. Comprehensive Reviews in Food Science and Food Safety 20 (4):3531–78. doi: 10.1111/1541-4337.12765.
  • Rotariu, L., F. Lagarde, N. Jaffrezic-Renault, and C. Bala. 2016. Electrochemical biosensors for fast detection of food contaminants – trends and perspective. TrAC Trends in Analytical Chemistry 79:80–7. doi: 10.1016/j.trac.2015.12.017.
  • Shaibani, P. M., H. Etayash, K. Jiang, A. Sohrabi, M. Hassanpourfard, S. Naicker, M. Sadrzadeh, and T. Thundat. 2018. Portable nanofiber-light addressable potentiometric sensor for rapid Escherichia coli detection in orange juice. ACS Sensors 3 (4):815–22. doi: 10.1021/acssensors.8b00063.
  • Su, D., X. Zhao, X. Yan, X. Han, Z. Zhu, C. Wang, X. Jia, F. Liu, P. Sun, X. Liu, et al. 2021. Background-free sensing platform for on-site detection of carbamate pesticide through upconversion nanoparticles-based hydrogel suit. Biosensors & Bioelectronics 194:113598. doi: 10.1016/j.bios.2021.113598.
  • Su, X., C. Ge, L. Chen, and Y. Xu. 2020. Hydrogel-based sensing detection of bacteria. Progress in Chemistry 32 (12):1908–16. doi: 10.7536/Pc200303.
  • Sun, D., F. Cao, H. Wang, S. Guan, A. Su, W. Xu, and S. Xu. 2021. SERS hydrogel pellets for highly repeatable and reliable detections of significant small biomolecules in complex samples without pretreatment. Sensors and Actuators B: Chemical 327:128943. doi: 10.1016/j.snb.2020.128943.
  • Sun, X., S. Agate, K. S. Salem, L. Lucia, and L. Pal. 2021. Hydrogel-based sensor networks: Compositions, properties, and applications-A review. ACS Applied Bio Materials 4 (1):140–62. doi: 10.1021/acsabm.0c01011.
  • Sun, Y., S. Li, R. Chen, P. Wu, and J. Liang. 2020. Ultrasensitive and rapid detection of T-2 toxin using a target-responsive DNA hydrogel. Sensors and Actuators B: Chemical 311:127912. doi: 10.1016/j.snb.2020.127912.
  • Sun, Y., Y. Lv, Y. Zhang, and Z. Wang. 2023. A stimuli-responsive colorimetric aptasensor based on the DNA hydrogel-coated MOF for fumonisin B1 determination in food samples. Food Chemistry 403:134242. doi: 10.1016/j.foodchem.2022.134242.
  • Sun, Y., S. Qi, X. Dong, M. Qin, Y. Zhang, and Z. Wang. 2022. Colorimetric aptasensor targeting zearalenone developed based on the hyaluronic acid-DNA hydrogel and bimetallic MOFzyme. Biosensors & Bioelectronics 212:114366. doi: 10.1016/j.bios.2022.114366.
  • Sutthasupa, S., C. Padungkit, and S. Suriyong. 2021. Colorimetric ammonia (NH3) sensor based on an alginate-methylcellulose blend hydrogel and the potential opportunity for the development of a minced pork spoilage indicator. Food Chemistry 362:130151. doi: 10.1016/j.foodchem.2021.130151.
  • Tang, J., L. Liu, S. Gao, J. Qin, X. Liu, and D. Tang. 2021. A portable thermal detection method based on the target responsive hydrogel mediated self-heating of a warming pad. Chemical Communications (Cambridge, England) 57 (77):9862–5. doi: 10.1039/d1cc03733a.
  • van Asselt, E. D., A. Arrizabalaga-Larranaga, M. Focker, B. J. A. Berendsen, M. G. M. van de Schans, H. J, and van der, F.-K. 2022. Chemical food safety hazards in circular food systems: A review. Critical Reviews in Food Science and Nutrition. Advance online publication. doi: 10.1080/10408398.2022.2078784.
  • Varghese, S. A., S. M. Rangappa, S. Siengchin, and J. Parameswaranpillai. 2020. Natural polymers and the hydrogels prepared from them. In Hydrogels Based on Natural Polymers, ed. Y. Chen, 17–47. Amsterdam: Elsevier.
  • Wang, P. L., L. H. Xie, E. A. Joseph, J. R. Li, X. O. Su, and H. C. Zhou. 2019. Metal-organic frameworks for food safety. Chemical Reviews 119 (18):10638–90. doi: 10.1021/acs.chemrev.9b00257.
  • Wang, X., C. Chen, G. I. N. Waterhouse, X. Qiao, and Z. Xu. 2022. Ultra-sensitive detection of streptomycin in foods using a novel SERS switch sensor fabricated by AuNRs array and DNA hydrogel embedded with DNAzyme. Food Chemistry 393:133413. doi: 10.1016/j.foodchem.2022.133413.
  • Wang, Y. F., T. S. Xie, J. Yang, M. Lei, J. Fan, Z. H. Meng, M. Xue, L. L. Qiu, F. L. Qi, and Z. Wang. 2019. Fast screening of antibiotics in milk using a molecularly imprinted two-dimensional photonic crystal hydrogel sensor. Analytica Chimica Acta 1070:97–103. doi: 10.1016/j.aca.2019.04.031.
  • Wang, Z., R. Chen, S. Yang, S. Li, and Z. Gao. 2022. Design and application of stimuli-responsive DNA hydrogels: A review. Materials Today Bio 16:100430. doi: 10.1016/j.mtbio.2022.100430.
  • Weng, R., S. Lou, X. Pang, Y. Song, X. Su, Z. Xiao, and J. Qiu. 2020. Multi-residue analysis of 126 pesticides in chicken muscle by ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Food Chemistry 309:125503. doi: 10.1016/j.foodchem.2019.125503.
  • WHO 2022. Food safety https://www.who.int/news-room/fact-sheets/detail/food-safety.
  • Xiao, D., Y. Jiang, and Y. Bi. 2018. Molecularly imprinted polymers for the detection of illegal drugs and additives: A review. Mikrochimica Acta 185 (4):247. doi: 10.1007/s00604-018-2735-4.
  • Yan, Y., J. Li, W. Li, Y. Wang, W. Song, and S. Bi. 2018. DNA flower-encapsulated horseradish peroxidase with enhanced biocatalytic activity synthesized by an isothermal one-pot method based on rolling circle amplification. Nanoscale 10 (47):22456–65. doi: 10.1039/c8nr07294a.
  • Yang, H., J. Chen, S. Yang, T. Zhang, X. Xia, K. Zhang, S. Deng, G. He, H. Gao, Q. He, et al. 2021. CRISPR/Cas14a-based isothermal amplification for profiling plant microRNAs. Analytical Chemistry 93 (37):12602–8. doi: 10.1021/acs.analchem.1c02137.
  • Yang, Z., R. Huang, B. Zheng, W. Guo, C. Li, W. He, Y. Wei, Y. Du, H. Wang, D. Wu, et al. 2021. Highly stretchable, adhesive, biocompatible, and antibacterial hydrogel dressings for wound healing. Advanced Science (Weinheim, Baden-Wurttemberg, Germany) 8 (8):2003627. doi: 10.1002/advs.202003627.
  • Yao, C., R. Zhang, J. Tang, and D. Yang. 2021. Rolling circle amplification (RCA)-based DNA hydrogel. Nature Protocols 16 (12):5460–83. doi: 10.1038/s41596-021-00621-2.
  • Ye, B. F., Y. J. Zhao, Y. Cheng, T. T. Li, Z. Y. Xie, X. W. Zhao, and Z. Z. Gu. 2012. Colorimetric photonic hydrogel aptasensor for the screening of heavy metal ions. Nanoscale 4 (19):5998–6003. doi: 10.1039/c2nr31601c.
  • Yi, C., Z. Luo, Y. Lu, T. Belwal, X. Pan, and X. Lin. 2021. Nanoporous hydrogel for direct digital nucleic acid amplification in untreated complex matrices for single bacteria counting. Biosensors & Bioelectronics 184:113199. doi: 10.1016/j.bios.2021.113199.
  • Yu, J., S. Xiao, Z. Yu, Y. Hui, T. Li, D. Wu, W. Bi, N. Gan, and Z. Jia. 2022. On-site and dual-mode detection of live Vibrio parahaemolyticus in waters: A universal pathogen sensing platform based on a smart hydrogel aptasensor imbedded with gold nanoclusters. Sensors and Actuators B: Chemical 366:131947. doi: 10.1016/j.snb.2022.131947.
  • Yucel, G., Z. Zhao, I. El-Battrawy, H. Lan, S. Lang, X. Li, F. Buljubasic, W. H. Zimmermann, L. Cyganek, J. Utikal, et al. 2017. Lipopolysaccharides induced inflammatory responses and electrophysiological dysfunctions in human-induced pluripotent stem cell derived cardiomyocytes. Scientific Reports 7 (1):2935. doi: 10.1038/s41598-017-03147-4.
  • Zhan, Y. J., Y. B. Zeng, L. Li, F. Luo, B. Qiu, Z. Y. Lin, and L. H. Guo. 2019. Ratiometric fluorescent hydrogel test kit for on-spot visual detection of nitrite. ACS Sensors 4 (5):1252–60. doi: 10.1021/acssensors.9b00125.
  • Zhang, D., Y. Zhang, W. Lu, X. Le, P. Li, L. Huang, J. Zhang, J. Yang, M. J. Serpe, D. Chen, et al. 2019. Fluorescent hydrogel-coated paper/textile as flexible chemosensor for visual and wearable mercury(II) detection. Advanced Materials Technologies 4 (1):1800201. doi: 10.1002/admt.201800201.
  • Zhang, J., L. Lu, Z. Zhang, and L. Zang. 2021. Electrochemical cell-based sensor for detection of food hazards. Micromachines (Basel ) 12 (7):837. doi: 10.3390/mi12070837.
  • Zhang, T., Q. Tao, X.-J. Bian, Q. Chen, and J. Yan. 2021. Rapid visualized detection of Escherichia coli O157:H7 by DNA hydrogel based on rolling circle amplification. Chinese Journal of Analytical Chemistry 49 (3):377–86. doi: 10.1016/S1872-2040(21)60085-3.
  • Zhang, Y., Q. Luo, K. Ding, S. G. Liu, and X. Shi. 2021. A smartphone-integrated colorimetric sensor of total volatile basic nitrogen (TVB-N) based on Au@MnO2 core-shell nanocomposites incorporated into hydrogel and its application in fish spoilage monitoring. Sensors and Actuators B: Chemical 335:129708. doi: 10.1016/j.snb.2021.129708.
  • Zhao, L., L. Li, G. Yang, B. Wei, Y. Ma, and F. Qu. 2021. Aptamer functionalized DNA hydrogels: Design, applications and kinetics. Biosensors & Bioelectronics 194:113597. doi: 10.1016/j.bios.2021.113597.
  • Zhao, M. M., P. L. Wang, Y. J. Guo, L. X. Wang, F. Luo, B. Qiu, L. H. Guo, X. O. Su, Z. Y. Lin, and G. N. Chen. 2018. Detection of aflatoxin B1 in food samples based on target-responsive aptamer-cross-linked hydrogel using a handheld pH meter as readout. Talanta 176:34–9. doi: 10.1016/j.talanta.2017.08.006.
  • Zhong, J., H. Zhao, Y. Cheng, T. Feng, M. Lan, and S. Zuo. 2021. A high-performance electrochemical sensor for the determination of Pb(II) based on conductive dopamine polymer doped polypyrrole hydrogel. Journal of Electroanalytical Chemistry 902:115815. doi: 10.1016/j.jelechem.2021.115815.
  • Zhou, L., N. Sun, L. Xu, X. Chen, H. Cheng, J. Wang, and R. Pei. 2016. Dual signal amplification by an “on-command” pure DNA hydrogel encapsulating HRP for colorimetric detection of ochratoxin A. RSC Advances 6 (115):114500–4. doi: 10.1039/C6RA23462C.
  • Zhu, H., L. Xu, P. Hu, B. Liu, M. Wang, X. Yin, J. Pan, and X. Niu. 2022. Smartphone-assisted bioenzyme-nanozyme-chromogen all-in-one test strip with enhanced cascade signal amplification for convenient paraoxon sensing. Biosensors & Bioelectronics 215:114583. doi: 10.1016/j.bios.2022.114583.
  • Zhu, H. J., P. Liu, L. Z. Xu, M. Z. Wang, J. M. Pan, and X. H. Niu. 2022. Emulsion-templated construction of enzyme-nanozyme integrated hierarchically porous hydrogels for smartphone-assisted pesticide biosensing. Chemical Engineering Journal 433:133669. doi: 10.1016/j.cej.2021.133669.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.