1,396
Views
3
CrossRef citations to date
0
Altmetric
Review

Protein, lipid, and chitin fractions from insects: Method of extraction, functional properties, and potential applications

, &

References

  • Alles, M. C., S. Smetana, O. Parniakov, I. Shorstkii, S. Toepfl, K. Aganovic, and V. Heinz. 2020. Bio-refinery of insects with Pulsed electric field pre-treatment. Innovative Food Science and Emerging Technologies 64:102403. doi: 10.1016/j.ifset.2020.102403.
  • Amelia Tzompa Sosa, D., and V. Fogliano. 2016. Insect physiology and ecology potential of insect-derived ingredients for food applications. doi: 10.5772/67318.(June 3, 2020).
  • Arancibia, M. Y., A. Alemán, M. M. Calvo, M. E. López-Caballero, P. Montero, and M. C. Gómez-Guillén. 2014. Antimicrobial and antioxidant chitosan solutions enriched with active shrimp (Litopenaeus vannamei) waste materials. Food Hydrocolloids 35:710–7. doi: 10.1016/j.foodhyd.2013.08.026.
  • Assatory, A., M. Vitelli, A. R. Rajabzadeh, and R. L. Legge. 2019. Dry fractionation methods for plant protein, starch and fiber enrichment: A review. Trends in Food Science and Technology 8: 340–351. doi: 10.1016/j.tifs.2019.02.006.
  • Azzollini, D., A. Derossi, and C. Severini. 2016. Understanding the drying kinetic and hygroscopic behaviour of larvae of yellow mealworm (Tenebrio molitor) and the effects on their quality. Journal of Insects as Food and Feed 2 (4):233–43. doi: 10.3920/JIFF2016.0001.
  • Beenakkers, A. M. Th., D. J. Van der Horst, and W. J. A. Van Marrewijk. 1985. Insect lipids and lipoproteins, and their role in physiological processes. Progress in Lipid Research. Pergamon 24 (1): 19–67. doi: 10.1016/0163-7827(85)90007-4.
  • Benzertiha, A., B. Kierończyk, M. Rawski, P. Kołodziejski, M. Bryszak, and D. Józefiak. 2019. Insect oil as an alternative to palm oil and poultry fat in broiler chicken nutrition. Animals 9 (3):116. doi: 10.3390/ani9030116.
  • Berezina, N. 2017. Insects: Novel source of lipids for a fan of applications. OCL - Oilseeds and Fats, Crops and Lipids 24 (4):1–9. doi: 10.1051/ocl/2017032.
  • Boye, J., F. Zare, and A. Pletch. 2010. Pulse proteins: Processing, characterization, functional properties and applications in food and feed. Food Research International 43 (2):414–431. doi: 10.1016/j.foodres.2009.09.003.
  • Bußler, S., B. A. Rumpold, E. Jander, H. M. Rawel, and O. K. Schlüter. 2016. Recovery and techno-functionality off flours and proteins from two edible insect species: Meal worm (Tenebrio molitor) and black soldier fly (Hermetia illucens) larvae. Heliyon 2 (12):e00218. doi: 10.1016/j.heliyon.2016.e00218.
  • Caligiani, A., A. Marseglia, G. Leni, S. Baldassarre, L. Maistrello, A. Dossena, and S. Sforza. 2018. Composition of black soldier fly prepupae and systematic approaches for extraction and fractionation of proteins, lipids and chitin. Food research International (Ottawa, ON) 105:812–20. doi: 10.1016/j.foodres.2017.12.012.
  • Campbell, A. M., and P. R. Turkki. 1967. Lipids of raw and cooked ground beef and pork. Journal of Food Science 32:143–6.
  • Chatsuwan, N., S. Nalinanon, Y. Puechkamut, B. P. Lamsal, and P. Pinsirodom. 2018. Characteristics, functional properties, and antioxidant activities of water-soluble proteins extracted from grasshoppers, Patanga succincta and Chondracris roseapbrunner, 1–11. doi: 10.1155/2018/6528312.
  • Choi, B. D., N. A. K. Wong, and J.-H. Auh. 2017. Defatting and sonication enhances protein extraction from edible insects. Korean Journal for Food Science of Animal Resources 37 (6):955–61. doi: 10.5851/kosfa.2017.37.6.955.
  • Contreras, M., M. del, A. Lama-Muñoz, J. Manuel Gutiérrez-Pérez, F. Espínola, M. Moya, and E. Castro. 2019. Protein extraction from agri-food residues for integration in biorefinery: Potential techniques and current status. Bioresource Technology 280:459–477. doi: 10.1016/j.biortech.2019.02.040.
  • Delicato, C., J. J. Schouteten, K. Dewettinck, X. Gellynck, and D. A. Tzompa-Sosa. 2020. Consumers’ perception of bakery products with insect fat as partial butter replacement. Food Quality and Preference 79:103755. doi: 10.1016/j.foodqual.2019.103755.
  • Dev, V. R. G., J. Venugopal, S. Sudha, G. Deepika, and S. Ramakrishna. 2009. Dyeing and antimicrobial characteristics of chitosan treated wool fabrics with henna dye. Carbohydrate Polymers 75 (4):646–50. doi: 10.1016/j.carbpol.2008.09.003.
  • Dossey, A. T., J. T. Tatum, and W. L. McGill. 2016. Modern insect-based food industry: Current status, insect processing technology, and recommendations moving forward. In Insects as sustainable food ingredients, 113–52. Cambridge: Academic Press. doi: 10.1016/B978-0-12-802856-8.00005-3.
  • Del Valle, F. R., M. H. Mena, and H. Bourges. 1982. An investigation into insect protein. Journal of food processing and preservation 6 (2):99–110.
  • Ekpo, K. E., A. O. Onigbinde, and I. O. Asia. 2009. Pharmaceutical potentials of the oils of some popular insects consumed in southern Nigeria. African Journal of Pharmacy and Pharmacology 3 (2):051–7.
  • El Knidri, H., R. Belaabed, A. Addaou, A. Laajeb, and A. Lahsini. 2018. Extraction, chemical modification and characterization of chitin and chitosan. International journal of Biological Macromolecules 120 (Pt A):1181–9. doi: 10.1016/j.ijbiomac.2018.08.139.
  • Fang, L., B. Wolmarans, M. Kang, K. C. Jeong, and A. C. Wright. 2015. Application of chitosan microparticles for reduction of Vibrio species in seawater and live oysters (Crassostrea virginica). Applied and Environmental Microbiology 81 (2):640–7. doi: 10.1128/aem.02856-14.
  • Finke, M. D. 2007. Estimate of chitin in raw whole insects. Zoo biology 26 (2):105–15. doi: 10.1002/zoo.20123.
  • Foegeding, A., and J. P. Davis. 2011. Food protein functionality: A comprehensive approach. Food Hydrocolloids 25 (8):1853–64. doi: 10.1016/j.foodhyd.2011.05.008.
  • Hackman, R. H. 1953. Chemistry of insect cuticle. I. The water-soluble proteins. The Biochemical Journal 54 (3):362–7. doi: 10.1042/bj0540362.
  • Harkin, C., N. Mehlmer, D. V. Woortman, T. B. Brück, W. M. Brück, C. Harkin, N. Mehlmer, D. V. Woortman, T. B. Brück, and W. M. Brück. 2019. Nutritional and additive uses of chitin and chitosan in the food industry. In Sustainable agriculture reviews, 1–43. Cham: Springer. doi: 10.1007/978-3-030-16581-9_1. (November 27, 2022).
  • Hojilla-Evangelista, M. P., D. J. Sessa, and A. Mohamed. 2004. Functional properties of soybean and lupin protein concentrates produced by ultrafiltration-diafiltration. Journal of the American Oil Chemists’ Society 81 (12):1153–7. doi: 10.1007/s11746-004-1033-1.
  • Hrynets, Y., D. A. Omana, Y. Xu, and M. Betti. 2010. Effect of acid- and alkaline-aided extractions on functional and rheological properties of proteins recovered from mechanically separated turkey meat (MSTM). Journal of Food Science 75 (7):E477–E486. doi: 10.1111/j.1750-3841.2010.01736.x.
  • Ibitoye, E. B., I. H. Lokman, M. N. M. Hezmee, Y. M. Goh, A. B. Z. Zuki, and A. A. Jimoh. 2018. Extraction and physicochemical characterization of chitin and chitosan isolated from house cricket. Biomedical Materials 13:25009. doi: 10.1088/1748-605X/aa9dde.
  • Janssen, R. H., C. M. M. Lakemond, V. Fogliano, G. Renzone, A. Scaloni, and J.-P. Vincken. 2017. Involvement of phenoloxidase in browning during grinding of Tenebrio molitor larvae. PloS one 12 (12):e0189685. doi: 10.1371/journal.pone.0189685.
  • Jayanegara, A., M. M. Sholikin, D. A. N. Sabila, S. Suharti, and D. A. Astuti. 2017. Lowering chitin content of cricket (Gryllus assimilis) through exoskeleton removal and chemical extraction and its utilization as a ruminant feed in vitro. Pakistan journal of Biological Sciences: PJBS 20 (10):523–9. doi: 10.3923/pjbs.2017.523.529.
  • Jiang, Y., Y. Zhu, Y. Zheng, Z. Liu, Y. Zhong, Y. Deng, and Y. Zhao. 2021. Effects of salting-in/out-assisted extractions on structural, physicochemical and functional properties of Tenebrio molitor larvae protein isolates. Food Chemistry 338 (128158):1–9. doi: 10.1016/J.FOODCHEM.2020.128158.
  • Jung, S., B. P. Lamsal, V. Stepien, L. A. Johnson, and P. A. Murphy. 2006. Functionality of soy protein produced by enzyme-assisted extraction. JAOCS, Journal of the American Oil Chemists’ Society 83 (1):71–8. doi: 10.1007/s11746-006-1178-y.
  • Kaya, M., E. Lelešius, R. Nagrockaitė, I. Sargin, G. Arslan, A. Mol, T. Baran, E. Can, and B. Bitim. 2015a. Differentiations of chitin content and surface morphologies of chitins extracted from male and female grasshopper species. PloS one 10 (1):e0115531. doi: 10.1371/journal.pone.0115531.
  • Kaya, M., T. Baran, M. Asan-Ozusaglam, Y. S. Cakmak, K. O. Tozak, A. Mol, A. Mentes, and G. Sezen. 2015. Extraction and characterization of chitin and chitosan with antimicrobial and antioxidant activities from cosmopolitan Orthoptera species (Insecta). Biotechnology and Bioprocess Engineering 20 (1):168–79. doi: 10.1007/s12257-014-0391-z.
  • Kaya, M., S. Erdogan, A. Mol, and T. Baran. 2015. Comparison of chitin structures isolated from seven Orthoptera species. International journal of Biological Macromolecules 72:797–805. doi: 10.1016/j.ijbiomac.2014.09.034.
  • Kim, S. W., T. S. Jung, Y. J. Ha, S. W. Gal, C. W. Noh, I. S. Kim, J. H. Lee, and J. H. Yoo. 2019. Removal of fat from crushed black soldier fly larvae by carbon dioxide supercritical extraction. Journal of Animal and Feed Sciences 28:83–8. doi: 10.22358/jafs/105132/2019.
  • Kim, T.-K., H. I. Yong, C. H. Jeong, S. G. Han, Y.-B. Kim, H.-D. Paik, and Y.-S. Choi. 2019. Technical functional properties of water- and salt-soluble proteins extracted from edible insects. Food science of Animal Resources 39 (4):643–54. doi: 10.5851/kosfa.2019.e56.
  • Kono, M., C. Shimizu, and T. Matsui. 1987. Effect of chitin, chitosan, and cellulose as diet supplements on the growth of cultured fish. Nippon Suisan Gakkaishi 53 (1):125–9.
  • Kouřimská, L., and A. Adámková. 2016. Nutritional and sensory quality of edible insects. NFS Journal 4:22–26. doi: 10.1016/j.nfs.2016.07.001.
  • Kröncke, N., V. Böschen, J. Woyzichovski, S. Demtröder, and R. Benning. 2018. Comparison of suitable drying processes for mealworms (Tenebrio molitor). Innovative Food Science and Emerging Technologies 50:20–5. doi: 10.1016/j.ifset.2018.10.009.
  • Kumar, M., V. Vivekanand, and N. Pareek. 2020. Insect chitin and chitosan: Structure, properties, production, and implementation prospective. In Natural materials and products from insects: Chemistry and applications, 51–66. UK: Springer International Publishing. doi: 10.1007/978-3-030-36610-0_4.
  • Kwiri, R., F. M. Mujuru, and W. Gwala. 2020. Nutrient composition and bioactive components of mopane worm (Gonimbrasia belina). In African edible insects as alternative source of food, oil, protein and bioactive components, A. Adam Mariod, 241–56. Cham: Springer International Publishing. doi: 10.1007/978-3-030-32952-5_17.
  • Lamsal, B., H. Wang, P. Pinsirodom, and A. T. Dossey. 2019. Applications of insect-derived protein ingredients in food and feed industry. JAOCS, Journal of the American Oil Chemists’ Society 96 (2):105–23. doi: 10.1002/aocs.12180.
  • Laroche, M., V. Perreault, A. Marciniak, A. Gravel, J. Chamberland, and A. Doyen. 2019. Comparison of conventional and sustainable lipid extraction methods for the production of oil and protein isolate from edible insect meal. Foods 8 (11):1–11. doi: 10.3390/foods8110572.
  • Lease, H. M., and B. O. Wolf. 2011. Lipid content of terrestrial arthropods in relation to body size, phylogeny, ontogeny and sex. Physiological Entomology 36:29–38. doi: 10.1111/j.1365-3032.2010.00767.x.
  • Leni, G., L. Soetemans, J. Jacobs, S. Depraetere, N. Gianotten, L. Bastiaens, A. Caligiani, and S. Sforza. 2020. Protein hydrolysates from Alphitobius diaperinus and Hermetia illucens larvae treated with commercial proteases. Journal of Insects as Food and Feed 6 (4):393–404. doi: 10.3920/JIFF2019.0037.
  • Leke-Aladekoba, A. A. 2018. Comparison of extraction methods and characterisation of chitin and chitosan with antimicrobial and antioxidant properties from black soldier fly (hermetia illucens) meal. Dalhousie University.
  • Liu, S., J. Sun, L. Yu, C. Zhang, J. Bi, F. Zhu, M. Qu, C. Jiang, and Q. Yang. 2012. Extraction and characterization of chitin from the beetle Holotrichia parallela motschulsky. Molecules (Basel, Switzerland) 17 (4):4604–11. doi: 10.3390/molecules17044604.
  • Luo, Q., Y. Wang, Q. Han, L. Ji, H. Zhang, Z. Fei, and Y. Wang. 2019. Comparison of the physicochemical, rheological, and morphologic properties of chitosan from four insects. Carbohydrate Polymers 209:266–75. doi: 10.1016/J.CARBPOL.2019.01.030.
  • Majtán, J., K. Bíliková, O. Markovič, J. Gróf, G. Kogan, and J. Šimúth. 2007. Isolation and characterization of chitin from bumblebee (Bombus terrestris). International Journal of Biological Macromolecules 40 (3):237–41. doi: 10.1016/j.ijbiomac.2006.07.010.
  • Marei, N. H., E. A. El-Samie, T. Salah, G. R. Saad, and A. H. M. Elwahy. 2016. Isolation and characterization of chitosan from different local insects in Egypt. International journal of Biological Macromolecules 82:871–7. doi: 10.1016/j.ijbiomac.2015.10.024.
  • Mariod, A. A. 2020. African edible insects as alternative source of food, oil, protein and bioactive components. Switzerland: Springer Nature Switzerland AG. doi: 10.1007/978-3-030-32952-5.
  • Mariod, A. A., S. I. Abdelwahab, M. A. Gedi, and Z. Solati. 2010. Supercritical carbon dioxide extraction of sorghum bug (Agonoscelis pubescens) oil using Response surface methodology. JAOCS, Journal of the American Oil Chemists’ Society 87 (8):849–56. doi: 10.1007/s11746-010-1565-2.
  • Mariod, A., B. Matthaus, K. Eichner, and I. H. Hussein. 2005. Improving the oxidative stability of sunflower oil by blending with sclerocarya birrea and aspongopus viduatus oils. Journal of Food Lipids 12 (2):150–8. doi: 10.1111/j.1745-4522.2005.00013.x.
  • Mariod, A., B. Matthaus, and K. Eichner. 2004. Fatty acid, tocopherol and sterol composition as well as oxidative stability of three unusual Sudanese oils. Journal of Food Lipids 11 (3):179–89. doi: 10.1111/j.1745-4522.2004.01131.x.
  • Matthäus, B., T. Piofczyk, H. Katz, and F. Pudel. 2018. Renewable resources from insects: Exploitation, properties, and refining of fat obtained by cold-pressing from hermetia illucens (black soldier fly) larvae. European Journal of Lipid Science and Technology 121:1–11. doi: 10.1002/ejlt.201800376.
  • Melgar-Lalanne, G., A. J. Hernández-Álvarez, and A. Salinas-Castro. 2019. Edible insects processing: Traditional and innovative technologies. Comprehensive Reviews in Food Science and Food Safety 18 (4):1166–1191. doi: 10.1111/1541-4337.12463.
  • Merzendorfer, H., and L. Zimoch. 2003. Chitin metabolism in insects: Structure, function and regulation of chitin synthases and chitinases. Journal of Experimental Biology. The Company of Biologists Ltd 206 (24):4393–4412. doi: 10.1242/jeb.00709.
  • Mishyna, M., J. J. I. Martinez, J. Chen, and O. Benjamin. 2019. Extraction, characterization and functional properties of soluble proteins from edible grasshopper (Schistocerca gregaria) and honey bee (Apis mellifera). Food Research International (Ottawa, ON) 116:697–706. doi: 10.1016/j.foodres.2018.08.098.
  • Mohamed, E. H. A. 2015. Fatty acids contents of the edible migratory locust Locusta migratoria, Linnaeus, 1758 (Orthoptera: Acrididae). International Journal of Advances in Pharmacy, Biology and Chemistry 4 (July):746–50.
  • Mohan, K., A. R. Ganesan, T. Muralisankar, R. Jayakumar, P. Sathishkumar, V. Uthayakumar, R. Chandirasekar, and N. Revathi. 2020. Recent insights into the extraction, characterization, and bioactivities of chitin and chitosan from insects. Trends in Food Science & Technology 105:17–42. doi: 10.1016/j.tifs.2020.08.016.
  • Moussian, B. 2019. Chitin: Structure, chemistry and biology. In Advances in experimental medicine and biology, Vol. 1142, 5–18. Singapore: Springer New York LLC. doi: 10.1007/978-981-13-7318-3_2.
  • Mustafa, N. E., A. Mariod, and B. Matthäus. 2008. Antibacterial activity of aspongopus viduatus (melon bug) oil. Journal of Food Safety 28:577–86.
  • Ndiritu, A. K., J. N. Kinyuru, G. M. Kenji, and P. N. Gichuhi. 2017. Extraction technique influences the physico-chemical characteristics and functional properties of edible crickets (Acheta domesticus) protein concentrate. Journal of Food Measurement and Characterization 11 (4):2013–21. doi: 10.1007/s11694-017-9584-4.
  • Purschke, B., H. Brüggen, R. Scheibelberger, and H. Jäger. 2018. Effect of pre-treatment and drying method on physico-chemical properties and dry fractionation behaviour of mealworm larvae (Tenebrio molitor L.). European Food Research and Technology 244 (2):269–80. doi: 10.1007/s00217-017-2953-8.
  • Purschke, B., T. Stegmann, M. Schreiner, and H. Jäger. 2017. Pilot-scale supercritical CO2 extraction of edible insect oil from Tenebrio molitor L. larvae – Influence of extraction conditions on kinetics, defatting performance and compositional properties. European Journal of Lipid Science and Technology 119 (2):1–12. doi: 10.1002/ejlt.201600134.
  • Purschke, B., H. Tanzmeister, P. Meinlschmidt, S. Baumgartner, K. Lauter, and H. Jäger. 2018. Recovery of soluble proteins from migratory locust (Locusta migratoria) and characterisation of their compositional and techno-functional properties. Food Research International (Ottawa, ON) 106:271–9. doi: 10.1016/j.foodres.2017.12.067.
  • Rahman, M. M., B. Byanju, D. Grewell, and B. P. Lamsal. 2020. High-power sonication of soy proteins: Hydroxyl radicals and their effects on protein structure. Ultrasonics Sonochemistry 64:105019. doi: 10.1016/j.ultsonch.2020.105019.
  • Raksakantong, P., N. Meeso, J. Kubola, and S. Siriamornpun. 2010. Fatty acids and proximate composition of eight Thai edible terricolous insects. Food Research International 43 (1):350–3.
  • Ravi, H. K., A. Degrou, J. Costil, C. Trespeuch, F. Chemat, and M. A. Vian. 2020. Larvae mediated valorization of industrial, agriculture and food wastes: Biorefinery concept through bioconversion, processes, procedures, and products. Processes 8:857. doi: 10.3390/PR8070857.
  • Rumpold, B. A., and O. K. Schlüter. 2013. Nutritional composition and safety aspects of edible insects. Molecular nutrition & Food Research 57 (5):802–23. doi: 10.1002/mnfr.201200735.
  • Sari, Y. W., W. J. Mulder, J. P. M. Sanders, and M. E. Bruins. 2015. Towards plant protein refinery: Review on protein extraction using alkali and potential enzymatic assistance. Biotechnology Journal 10 (8):1138–57. doi: 10.1002/biot.201400569.
  • Saviane, A., L. Tassoni, D. Naviglio, D. Lupi, S. Savoldelli, G. Bianchi, G. Cortellino, P. Bondioli, L. Folegatti, M. Casartelli, et al. 2021. Mechanical processing of hermetia illucens larvae and bombyx mori pupae produces oils with antimicrobial activity. Animals : An Open Access Journal from MDPI 11 (3):1–17. /pmc/articles/PMC8001418/(November 242022).
  • Sedaghat, F., M. Yousefzadi, H. Toiserkani, and S. Najafipour. 2017. Bioconversion of shrimp waste Penaeus merguiensis using lactic acid fermentation: An alternative procedure for chemical extraction of chitin and chitosan. International Journal of Biological Macromolecules 104 (Pt A):883–8. doi: 10.1016/j.ijbiomac.2017.06.099.
  • Sete da Cruz, R. M., C. da Silva, E. A. da Silva, P. Hegel, C. E. Barão, and L. Cardozo-Filho. 2022. Composition and oxidative stability of oils extracted from Zophobas morio and Tenebrio molitor using pressurized n-propane. The Journal of Supercritical Fluids 181:105504. doi: 10.1016/J.SUPFLU.2021.105504.
  • Smetana, S., L. Leonhardt, S. M. Kauppi, A. Pajic, and V. Heinz. 2020. Insect margarine: Processing, sustainability and design. Journal of Cleaner Production 264:121670. doi: 10.1016/j.jclepro.2020.121670.
  • Stone, A. K., T. Tanaka, and M. T. Nickerson. 2019. Protein quality and physicochemical properties of commercial cricket and mealworm powders. Journal of Food Science and Technology 56 (7):3355–63. doi: 10.1007/s13197-019-03818-2.
  • Sosa, D. A. T., and V. Fogliano. 2017. Potential of Insect-Derived Ingredients for Food Applications. In Insect Physiology and Ecology, ed. V. D. Shields. London: IntechOpen. Available from: https://www.intechopen.com/chapters/54100.
  • Sweers, L. J. H., R. G. A. Politiek, C. M. M. Lakemond, M. E. Bruins, R. M. Boom, V. Fogliano, M. Mishyna, J. K. Keppler, and M. A. I. Schutyser. 2022. Dry fractionation for protein enrichment of animal by-products and insects: A review. Journal of Food Engineering 313 (110759):1–13. doi: 10.1016/j.jfoodeng.2021.110759.
  • Tzompa-Sosa, D. A., L. Yi, H. J. F. van Valenberg, M. A. J. S. van Boekel, and C. M. M. Lakemond. 2014. Insect lipid profile: Aqueous versus organic solvent-based extraction methods. Food Research International 62:1087–94. doi: 10.1016/j.foodres.2014.05.052.
  • Tzompa-Sosa, D. A., and V. Fogliano. 2017. Potential of insect-derived ingredients for food applications. Insect physiology and ecology, Vonnie D.C. Shields, IntechOpen, doi: 10.5772/67318. https://www.intechopen.com/books/insect-physiology-and-ecology/potential-of-insect-derived-ingredients-for-food-applications
  • Tzompa-Sosa, D. A., K. Dewettinck, P. Provijn, J. F. Brouwers, B. de Meulenaer, and D. G. A. B. Oonincx. 2021. Lipidome of cricket species used as food. Food Chemistry 349:129077. doi: 10.1016/j.foodchem.2021.129077.
  • Vandeweyer, D., S. Lenaerts, A. Callens, and L. Van Campenhout. 2017. Effect of blanching followed by refrigerated storage or industrial microwave drying on the microbial load of yellow mealworm larvae (Tenebrio molitor). Food Control 71:311–4. doi: 10.1016/j.foodcont.2016.07.011.
  • Vojdani, F. 1996. Solubility. In Methods of testing protein functionality, ed. G. M. Hall, 11–57. London: St. Edmundsbury Press. doi: 10.1007/978-1-4613-1219-2_2.
  • Yang, L. F., S. Siriamornpun, and D. Li. 2006. Polyunsaturated fatty acid content of edible insects in Thailand. Journal of Food Lipids 13 (3):277–85. doi: 10.1111/j.1745-4522.2006.00051.x.
  • Yi, L., C. M. M. Lakemond, L. M. C. Sagis, V. Eisner-Schadler, A. V. Huis, and M. A. J. S. V. Boekel. 2013. Extraction and characterisation of protein fractions from five insect species. Food Chemistry 141 (4):3341–8. doi: 10.1016/j.foodchem.2013.05.115.
  • Yi, L., M. A. Van Boekel, J. S. Lakemond, and C. M. M. 2017. Extracting Tenebrio molitor protein while preventing browning: Effect of pH and NaCl on protein yield. Journal of Insects as Food and Feed 3 (1):21–31. doi: 10.3920/JIFF2016.0015.
  • Zhang, M., A. Haga, H. Sekiguchi, and S. Hirano. 2000. Structure of insect chitin isolated from beetle larva cuticle and silkworm (Bombyx mori) pupa exuvia. International journal of Biological Macromolecules 27 (1):99–105. doi: 10.1016/S0141-8130(99)00123-3.
  • Zhao, X., J. Luis Vázquez-Gutiérrez, D. P. Johansson, R. Landberg, and M. Langton. 2016. Yellow mealworm protein for food purposes-extraction and functional properties. PLoS ONE 11 (2):1–17. doi: 10.1371/journal.pone.0147791.
  • Zheng, L., Y. Hou, W. Li, S. Yang, Q. Li, and Z. Yu. 2013. Exploring the potential of grease from yellow mealworm beetle (Tenebrio molitor) as a novel biodiesel feedstock. Applied Energy 101:618–21. doi: 10.1016/j.apenergy.2012.06.067.
  • Zielińska, E., M. Karaś, and B. Baraniak. 2018. Comparison of functional properties of edible insects and protein preparations thereof. LWT - Food Science and Technology 91:168–74. doi: 10.1016/j.lwt.2018.01.058.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.