401
Views
5
CrossRef citations to date
0
Altmetric
Reviews

Nanoliposomal delivery systems of natural antibacterial compounds; properties, applications, and recent advances

, , , , & ORCID Icon

References

  • Ajeeshkumar, K. K., P. A. Aneesh, N. Raju, M. Suseela, C. N. Ravishankar, and S. Benjakul. 2021. Advancements in liposome technology: Preparation techniques and applications in food, functional foods, and bioactive delivery: A review. Comprehensive Reviews in Food Science and Food Safety 20 (2):1280–306.
  • Alibi, S., D. Crespo, and J. Navas. 2021. Plant-derivatives small molecules with antibacterial activity. Antibiotics 10 (3):231.
  • Andishmand, H., H. Hamishehkar, A. Babazadeh, A. Taghvimi, M. A. Mohammadifar, and M. Tabibiazar. 2017a. A colon targeted delivery system for resveratrol enriching in ph responsive-model. Pharmaceutical Sciences 23 (1):42–9.
  • Andishmand, H., L. Roufegari-Nejad, and M. Tabibiazar. 2017b. Nanostructure characterization of bovine serum albumin-resveratrol complex. Research and Innovation in Food Science and Technology 6 (3):291–300.
  • Andishmand, H., M. Tabibiazar, M. A. Mohammadifar, and H. Hamishehkar. 2017c. Pectin-zinc-chitosan-polyethylene glycol colloidal nano-suspension as a food grade carrier for colon targeted delivery of resveratrol. International Journal of Biological Macromolecules 97:16–22.
  • Auwal, S. M., M. Zarei, C. P. Tan, and N. Saari. 2018. Comparative physicochemical stability and efficacy study of lipoid s75-biopeptides nanoliposome composite produced by conventional and direct heating methods. International Journal of Food Properties 21 (1):1646–60.
  • Aytekin, A. A., S. T. Tanrıverdi, F. A. Köse, D. Kart, I. Eroğlu, and Ö. Özer. 2019. Propolis loaded liposomes: Evaluation of antimicrobial and antioxidant activities. Journal of Liposome Research 30 (2):107–116. doi: 10.1080/08982104.2019.1599012.
  • Aziz, S. G.-G., and H. Almasi. 2018. Physical characteristics, release properties, and antioxidant and antimicrobial activities of whey protein isolate films incorporated with thyme (thymus vulgaris l.) extract-loaded nanoliposomes. Food and Bioprocess Technology 11 (8):1552–65.
  • Bagheri Darvish, H., A. Bahrami, S. M. Jafari, and L. Williams. 2021. Micro/nanoencapsulation strategy to improve the efficiency of natural antimicrobials against listeria monocytogenes in food products. Critical reviews in Food Science and Nutrition 61 (8):1241–59.
  • Bahrami, A., R. Delshadi, E. Assadpour, S. M. Jafari, and L. Williams. 2020. Antimicrobial-loaded nanocarriers for food packaging applications. Advances in Colloid and Interface Science 278:102140.
  • Batiha, G. E.-S., D. E. Hussein, A. M. Algammal, T. T. George, P. Jeandet, A. E. Al-Snafi, A. Tiwari, J. P. Pagnossa, C. M. Lima, and N. D. Thorat. 2021. Application of natural antimicrobials in food preservation: Recent views. Food Control 126:108066.
  • Ben-Fadhel, Y., B. Maherani, S. Salmieri, and M. Lacroix. 2022. Preparation and characterization of natural extracts-loaded food grade nanoliposomes. LWT 154:112781.
  • Beya, M. M., M. E. Netzel, Y. Sultanbawa, H. Smyth, and L. C. Hoffman. 2021. Plant-based phenolic molecules as natural preservatives in comminuted meats: A review. Antioxidants 10 (2):263.
  • Caddeo, C., L. Pucci, M. Gabriele, C. Carbone, X. Fernàndez-Busquets, D. Valenti, R. Pons, A. Vassallo, A. M. Fadda, and M. Manconi. 2018. Stability, biocompatibility and antioxidant activity of peg-modified liposomes containing resveratrol. International Journal of Pharmaceutics 538 (1–2):40–7.
  • Canaparo, R., F. Foglietta, F. Giuntini, C. Della Pepa, F. Dosio, and L. Serpe. 2019. Recent developments in antibacterial therapy: Focus on stimuli-responsive drug-delivery systems and therapeutic nanoparticles. Molecules 24 (10):1991.
  • Cantor, S., L. Vargas, O. E. Rojas, A. C. J. Yarce, C. H. Salamanca, and J. Oñate-Garzón. 2019. Evaluation of the antimicrobial activity of cationic peptides loaded in surface-modified nanoliposomes against foodborne bacteria. International Journal of Molecular Sciences 20 (3):680.
  • Cao, Y., W. Zhou, J. Li, X. Huang, Y. Yuan, and L. Lin. 2016. Preparation and stability evaluation of pectin coated galanga essential oil liposomes. In 2016 2nd International Conference on Architectural, Civil and Hydraulics Engineering (ICACHE 2016). Atlantis Press.
  • Chawla, R., S. Sivakumar, and H. Kaur. 2021. Antimicrobial edible films in food packaging: Current scenario and recent nanotechnological advancements-a review. Carbohydrate Polymer Technologies and Applications 2:100024.
  • Chen, M., R. Li, Y. Gao, Y. Zheng, L. Liao, Y. Cao, J. Li, and W. Zhou. 2021. Encapsulation of hydrophobic and low-soluble polyphenols into nanoliposomes by ph-driven method: Naringenin and naringin as model compounds. Foods 10 (5):963.
  • Cui, H., J. Wu, and L. Lin. 2016c. Inhibitory effect of liposome-entrapped lemongrass oil on the growth of listeria monocytogenes in cheese. Journal of Dairy Science 99 (8):6097–104.
  • Cui, H., J. Wu, C. Li, and L. Lin. 2016b. Anti-listeria effects of chitosan-coated nisin-silica liposome on cheddar cheese. Journal of Dairy Science 99 (11):8598–606.
  • Cui, H., L. Yuan, W. Li, and L. Lin. 2017. Edible film incorporated with chitosan and artemisia annua oil nanoliposomes for inactivation of escherichia coli o157: H7 on cherry tomato. International Journal of Food Science & Technology 52 (3):687–98.
  • Cui, H., M. Bai, C. Li, R. Liu, and L. Lin. 2018. Fabrication of chitosan nanofibers containing tea tree oil liposomes against Salmonella spp. In chicken. Lwt 96:671–8.
  • Cui, H., W. Li, C. Li, S. Vittayapadung, and L. Lin. 2016a. Liposome containing cinnamon oil with antibacterial activity against methicillin-resistant staphylococcus aureus biofilm. Biofouling 32 (2):215–25.
  • Detoni, C., E. Cabral-Albuquerque, S. Hohlemweger, C. Sampaio, T. Barros, and E. Velozo. 2009. Essential oil from zanthoxylum tingoassuiba loaded into multilamellar liposomes useful as antimicrobial agents. Journal of Microencapsulation 26 (8):684–91.
  • Ding, Y., L. Zou, C. Lu, H. Tong, and B. Chen. 2018. In situ enzymatic synthesis and purification of theaflavin‐3, 3′‐digallate monomer and incorporation into nanoliposome. International Journal of Food Science & Technology 53 (11):2552–9.
  • Efenberger-Szmechtyk, M., A. Nowak, and A. Czyzowska. 2021. Plant extracts rich in polyphenols: Antibacterial agents and natural preservatives for meat and meat products. Critical reviews in Food Science and Nutrition 61 (1):149–78.
  • Ehsani, A., M. Paktarmani, and M. Yousefi. 2017. Efficiency of dietary sodium alginate coating incorporated with lycopene in preserving rainbow trout. Food Science and Biotechnology 26 (3):557–62.
  • Engel, J. B., C. Heckler, E. C. Tondo, D. J. Daroit, and P. Da Silva Malheiros. 2017. Antimicrobial activity of free and liposome-encapsulated thymol and carvacrol against salmonella and staphylococcus aureus adhered to stainless steel. International Journal of Food Microbiology 252:18–23.
  • Farshidi, M., M. Yousefi, and A. Ehsani. 2018. The combined effects of lactoperoxidase system and whey protein coating on microbial, chemical, textural, and sensory quality of shrimp (penaeus merguiensis) during cold storage (4 ± 1° c). Food Science & Nutrition 6 (6):1378–86.
  • Fu, Y., P. Sarkar, A. K. Bhunia, and Y. Yao. 2016. Delivery systems of antimicrobial compounds to food. Trends in Food Science & Technology 57:165–77.
  • Fukui, Y., S. Kameyama, and K. Fujimoto. 2017. Preparation of free-standing hybrid colloidal membranes via assembly of liponanocapsules. Journal of Biomaterials Science. Polymer Edition 28 (10–12):1010–24.
  • Ge, Y., and M. Ge. 2016. Distribution of melaleuca alternifolia essential oil in liposomes with tween 80 addition and enhancement of in vitro antimicrobial effect. Journal of Experimental Nanoscience 11 (5):345–58.
  • Gharsallaoui, A., N. Oulahal, C. Joly, and P. Degraeve. 2016. Nisin as a food preservative: Part 1: Physicochemical properties, antimicrobial activity, and main uses. Critical Reviews in Food Science and Nutrition 56 (8):1262–74.
  • Ghosal, A., and N. Bandara. 2022. Lipid-based nanostructures in food applications. In Food, medical, and environmental applications of nanomaterials, 113–28. Amsterdam, Netherlands: Elsevier.
  • Gibis, M., C. Ruedt, and J. Weiss. 2016. In vitro release of grape-seed polyphenols encapsulated from uncoated and chitosan-coated liposomes. Food research International (Ottawa, ON) 88 (Pt A):105–13.
  • Haghighi, M., M. S. Yarmand, Z. Emam-Djomeh, D. J. Mcclements, A. A. Saboury, and M. Rafiee-Tehrani. 2018. Design and fabrication of pectin-coated nanoliposomal delivery systems for a bioactive polyphenolic: Phloridzin. International Journal of Biological Macromolecules 112:626–37.
  • Haghju, S., S. Beigzadeh, H. Almasi, and H. Hamishehkar. 2016. Chitosan films incorporated with nettle (urtica dioica l.) extract-loaded nanoliposomes: I. Journal of Microencapsulation 33 (5):438–48.
  • Han, C., C. Yang, X. Li, E. Liu, X. Meng, and B. Liu. 2022. Dha loaded nanoliposomes stabilized by β-sitosterol: Preparation, characterization and release in vitro and vivo. Food chemistry 368:130859.
  • Hasan, M., K. Elkhoury, C. J. Kahn, E. Arab-Tehrany, and M. Linder. 2019. Preparation, characterization, and release kinetics of chitosan-coated nanoliposomes encapsulating curcumin in simulated environments. Molecules 24 (10):2023.
  • Heckler, C., C. M. M. Silva, F. A. Cacciatore, D. J. Daroit, and P. Da Silva Malheiros. 2020. Thymol and carvacrol in nanoliposomes: Characterization and a comparison with free counterparts against planktonic and glass-adhered salmonella. Lwt 127:109382.
  • Hong, I., J. Ha, S. Han, H. Kang, and S. Park. 2018. The effect of alkyl chain number in sucrose surfactant on the physical properties of quercetin-loaded deformable nanoliposome and its effect on in vitro human skin penetration. Nanomaterials 8 (8):622.
  • Hosseini, S. F., M. Soofi, and M. Rezaei. 2021. Enhanced physicochemical stability of ω-3 pufas concentrates-loaded nanoliposomes decorated by chitosan/gelatin blend coatings. Food chemistry 345:128865.
  • Jabraeili, S., H. Mirzaei, N. Anarjan, A. Javadi, and M. A. Behnajady. 2021. Nanoliposomal thyme (thymus vulgaris) essential oil: Effects of formulation parameters. Food Science and Technology International. 28 (3):257–272.
  • Jafari, S., and D. Mcclements. 2017. Nanotechnology approaches for increasing nutrient bioavailability. In Advances in food and nutrition research, 1–30. Amsterdam, Netherlands: Elsevier.
  • Jin, H.-H., Q. Lu, and J.-G. Jiang. 2016. Curcumin liposomes prepared with milk fat globule membrane phospholipids and soybean lecithin. Journal of Dairy Science 99 (3):1780–90.
  • Kang, J., W. Jin, J. Wang, Y. Sun, X. Wu, and L. Liu. 2019. Antibacterial and anti-biofilm activities of peppermint essential oil against staphylococcus aureus. Lwt 101:639–45.
  • Karim, N., M. R. I. Shishir, and W. Chen. 2020. Surface decoration of neohesperidin-loaded nanoliposome using chitosan and pectin for improving stability and controlled release. International Journal of Biological Macromolecules 164:2903–14.
  • Karimi, N., B. Ghanbarzadeh, F. Hajibonabi, Z. Hojabri, K. Ganbarov, H. S. Kafil, H. Hamishehkar, M. Yousefi, R. R. Mokarram, and F. S. Kamounah. 2019. Turmeric extract loaded nanoliposome as a potential antioxidant and antimicrobial nanocarrier for food applications. Food Bioscience 29:110–17.
  • Kassem, A., G. M. Ayoub, and L. Malaeb. 2019. Antibacterial activity of chitosan nano-composites and carbon nanotubes: A review. The Science of the Total Environment 668:566–76.
  • Katouzian, I., and R. A. Taheri. 2021. Preparation, characterization and release behavior of chitosan-coated nanoliposomes (chitosomes) containing olive leaf extract optimized by response surface methodology. Journal of Food Science and Technology 58 (9):3430–43.
  • Kharat, M., and D. J. Mcclements. 2019. Recent advances in colloidal delivery systems for nutraceuticals: A case study–delivery by design of curcumin. Journal of Colloid and Interface Science 557:506–18.
  • Khatibi, S. A., A. Misaghi, M. H. Moosavy, A. A. Basti, M. K. Koohi, P. Khosravi, and F. Haghirosadat. 2017. Encapsulation of zataria multiflora bioss. Essential oil into nanoliposomes and in vitro antibacterial activity against escherichia coli o157: H7. Journal of Food Processing and Preservation 41 (3):e12955.
  • Khorshidian, N., M. Yousefi, E. Khanniri, and A. M. Mortazavian. 2018. Potential application of essential oils as antimicrobial preservatives in cheese. Innovative Food Science & Emerging Technologies 45:62–72.
  • Khosravi‐Darani, K., M. E. Khoosfi, and H. Hosseini. 2016. Encapsulation of zataria multiflora boiss. Essential oil in liposome: Antibacterial activity against e. Coli o157: H7 in broth media and minced beef. Journal of Food Safety 36 (4):515–23.
  • Kianvash, N., A. Bahador, M. Pourhajibagher, H. Ghafari, V. Nikoui, S. M. Rezayat, A. R. Dehpour, and A. Partoazar. 2017. Evaluation of propylene glycol nanoliposomes containing curcumin on burn wound model in rat: Biocompatibility, wound healing, and anti-bacterial effects. Drug Delivery and Translational Research 7 (5):654–63.
  • Large, D. E., R. G. Abdelmessih, E. A. Fink, and D. T. Auguste. 2021. Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Advanced Drug Delivery Reviews 176:113851.
  • Li, J., and S. Zhuang. 2020. Antibacterial activity of chitosan and its derivatives and their interaction mechanism with bacteria: Current state and perspectives. European Polymer Journal 138:109984.
  • Li, W., M. Chountoulesi, L. Antoniadi, A. Angelis, J. Lei, M. Halabalaki, C. Demetzos, S. Mitakou, L. A. Skaltsounis, and C. Wang. 2022. Development and physicochemical characterization of nanoliposomes with incorporated oleocanthal, oleacein, oleuropein and hydroxytyrosol. Food Chemistry 384:132470.
  • Lin, L., Y. Gu, Y. Sun, and H. Cui. 2019. Characterization of chrysanthemum essential oil triple-layer liposomes and its application against campylobacter jejuni on chicken. LWT 107:16–24.
  • Liu, W., M. Tian, Y. Kong, J. Lu, N. Li, and J. Han. 2017. Multilayered vitamin c nanoliposomes by self-assembly of alginate and chitosan: Long-term stability and feasibility application in mandarin juice. Lwt 75:608–15.
  • Lopes, N. A., C. M. B. Pinilla, and A. Brandelli. 2017. Pectin and polygalacturonic acid-coated liposomes as novel delivery system for nisin: Preparation, characterization and release behavior. Food Hydrocolloids. 70:1–7.
  • Lopes, N. A., C. M. B. Pinilla, and A. Brandelli. 2019. Antimicrobial activity of lysozyme-nisin co-encapsulated in liposomes coated with polysaccharides. Food Hydrocolloids 93:1–9.
  • Lopez-Polo, J., A. Monasterio, P. Cantero-López, and F. A. Osorio. 2021. Combining edible coatings technology and nanoencapsulation for food application: A brief review with an emphasis on nanoliposomes. Food Research International (Ottawa, ON) 145:110402.
  • Malaekeh-Nikouei, B., B. S. F. Bazzaz, E. Mirhadi, A. S. Tajani, and B. Khameneh. 2020. The role of nanotechnology in combating biofilm-based antibiotic resistance. Journal of Drug Delivery Science and Technology 60:101880.
  • Mallakpour, S., C. M. Hussain, S. Gulati, S. Kumar, K. Goyal, and A. Singh. 2021. Plant-based nanomaterials: Novel and highly effectual preservatives for food, 1–28. New York City, USA: Handbook of Consumer Nanoproducts.
  • Marchese, A., I. E. Orhan, M. Daglia, R. Barbieri, A. Di Lorenzo, S. F. Nabavi, O. Gortzi, M. Izadi, and S. M. Nabavi. 2016. Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chemistry 210:402–14.
  • Mashal, M., N. Attia, G. Puras, G. Martínez-Navarrete, E. Fernández, and J. L. Pedraz. 2017. Retinal gene delivery enhancement by lycopene incorporation into cationic niosomes based on dotma and polysorbate 60. Journal of Controlled Release: Official Journal of the Controlled Release Society 254:55–64.
  • Matouskova, P., I. Marova, J. Bokrova, and P. Benesova. 2016. Effect of encapsulation on antimicrobial activity of herbal extracts with lysozyme. Food Technology and Biotechnology 54 (3):304.
  • Mishra, S., and K. Bhargava. 2017. Delivery systems for introduction of natural antimicrobials into foods. In Microbial control and food preservation, 153–71. New York City, USA: Springer.
  • Mohammadi, M. A., M. Rostami, S. Beikzadeh, M. Raeisi, M. Tabibiazar, and M. Yousefi. 2019. Electrospun nanofibers as advanced antibacterial platforms: A review of recent studies. International Journal of Pharmaceutical Sciences and Research 10 (2):463–73.
  • Mohammadi, M., B. Ghanbarzadeh, and H. Hamishehkar. 2014. Formulation of nanoliposomal vitamin d3 for potential application in beverage fortification. Advanced Pharmaceutical Bulletin 4 (Suppl 2):569–75. doi: 10.5681/apb.2014.084.
  • Molaveisi, M., M. Shahidi‐Noghabi, and S. Naji‐Tabasi. 2021. Controlled release and improved stability of vitamin d3 within nanoliposomes stabilized by palmitic acid. Journal of Food Safety 41 (5):e12924.
  • Montero, P., M. Mosquera, D. Marín-Peñalver, A. Alemán, Ó. Martínez-Álvarez, and M. C. Gómez-Guillén. 2019. Changes in structural integrity of sodium caseinate films by the addition of nanoliposomes encapsulating an active shrimp peptide fraction. Journal of Food Engineering 244:47–54.
  • Mostafa, A. A., A. A. Al-Askar, K. S. Almaary, T. M. Dawoud, E. N. Sholkamy, and M. M. Bakri. 2018. Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Saudi Journal of Biological Sciences 25 (2):361–6.
  • Mozafari, M., S. Torkaman, F. M. Karamouzian, B. Rasti, and B. Baral. 2021. Antimicrobial applications of nanoliposome encapsulated silver nanoparticles: A potential strategy to overcome bacterial resistance. Current Nanoscience 17 (1):26–40.
  • Nahr, F. K., B. Ghanbarzadeh, H. Hamishehkar, H. S. Kafil, M. Hoseini, and B. E. Moghadam. 2019. Investigation of physicochemical properties of essential oil loaded nanoliposome for enrichment purposes. Lwt 105:282–89.
  • Najaf Najafi, M., A. Arianmehr, and A. M. Sani. 2020. Preparation of barije (ferula gummosa) essential oil–loaded liposomes and evaluation of physical and antibacterial effect on escherichia coli o157: H7. Journal of Food Protection 83 (3):511–7.
  • Neves, A. R., S. Martins, M. A. Segundo, and S. Reis. 2016. Nanoscale delivery of resveratrol towards enhancement of supplements and nutraceuticals. Nutrients 8 (3):131.
  • Niaz, T., S. Shabbir, T. Noor, A. Rahman, H. Bokhari, and M. Imran. 2018. Potential of polymer stabilized nano-liposomes to enhance antimicrobial activity of nisin z against foodborne pathogens. Lwt 96:98–110.
  • Nouri, M., and M. Shafaghi Rad. 2021. Encapsulation of tribulus terrestris and valeriana officinalis extracts in nanoliposomes and evaluation of its antibacterial and antioxidant properties. Journal of Food Biosciences and Technology 11 (2):59–68.
  • Pabast, M., N. Shariatifar, S. Beikzadeh, and G. Jahed. 2018. Effects of chitosan coatings incorporating with free or nano-encapsulated satureja plant essential oil on quality characteristics of lamb meat. Food Control 91:185–92.
  • Paliwal, S., A. Tilak, J. Sharma, V. Dave, S. Sharma, K. Verma, K. Tak, K. R. Reddy, and V. Sadhu. 2019. Flurbiprofen-loaded ethanolic liposome particles for biomedical applications. Journal of Microbiological Methods 161:18–27.
  • Pan, L., H. Wang, and K. Gu. 2018. Nanoliposomes as vehicles for astaxanthin: Characterization, in vitro release evaluation and structure. Molecules 23 (11):2822.
  • Pinilla, C. M. B., and A. Brandelli. 2016. Antimicrobial activity of nanoliposomes co-encapsulating nisin and garlic extract against gram-positive and gram-negative bacteria in milk. Innovative Food Science & Emerging Technologies 36:287–93.
  • Pu, C., and W. Tang. 2016. A chitosan-coated liposome encapsulating antibacterial peptide, apep10: Characterisation, triggered-release effects and antilisterial activity in thaw water of frozen chicken. Food & Function 7 (10):4310–22.
  • Pushparaj Selvadoss, P., J. Nellore, M. B. Ravindrran, U. Sekar, and J. Tippabathani. 2018. Enhancement of antimicrobial activity by liposomal oleic acid-loaded antibiotics for the treatment of multidrug-resistant pseudomonas aeruginosa. Artificial Cells, Nanomedicine, and Biotechnology 46 (2):268–73.
  • Quinto, E. J., I. Caro, L. H. Villalobos-Delgado, J. Mateo, B. De-Mateo-Silleras, and M. P. Redondo-Del-Río. 2019. Food safety through natural antimicrobials. Antibiotics 8 (4):208.
  • Rajak, B. L., R. Kumar, M. Gogoi, and S. Patra. 2020. Antimicrobial activity of nanomaterials. In Nanoscience in medicine, vol. 1, 147–85. New York City, USA: Springer.
  • Ribeiro-Santos, R., M. Andrade, and A. Sanches-Silva. 2017. Application of encapsulated essential oils as antimicrobial agents in food packaging. Current Opinion in Food Science 14:78–84.
  • Righeschi, C., M. C. Bergonzi, B. Isacchi, C. Bazzicalupi, P. Gratteri, and A. R. Bilia. 2016. Enhanced curcumin permeability by sln formulation: The pampa approach. LWT-Food Science and Technology 66:475–83.
  • Risaliti, L., A. Kehagia, E. Daoultzi, D. Lazari, M. C. Bergonzi, S. Vergkizi-Nikolakaki, D. Hadjipavlou-Litina, and A. R. Bilia. 2019. Liposomes loaded with salvia triloba and rosmarinus officinalis essential oils: In vitro assessment of antioxidant, antiinflammatory and antibacterial activities. Journal of Drug Delivery Science and Technology 51:493–498.
  • Sahani, S., and Y. C. Sharma. 2021. Advancements in applications of nanotechnology in global food industry. Food Chemistry 342:128318.
  • Sapper, M., P. Wilcaso, M. P. Santamarina, J. Roselló, and A. Chiralt. 2018. Antifungal and functional properties of starch-gellan films containing thyme (thymus zygis) essential oil. Food Control 92:505–15.
  • Sebaaly, C., A. Trifan, E. Sieniawska, and H. Greige-Gerges. 2021. Chitosan-coating effect on the characteristics of liposomes: A focus on bioactive compounds and essential oils: A review. Processes 9 (3):445.
  • Seyedabadi, M. M., H. Rostami, S. M. Jafari, and M. Fathi. 2021. Development and characterization of chitosan-coated nanoliposomes for encapsulation of caffeine. Food Bioscience 40:100857. doi: 10.1016/j.fbio.2020.100857.
  • Sogut, O., U. A. Sezer, and S. Sezer. 2021. Liposomal delivery systems for herbal extracts. Journal of Drug Delivery Science and Technology 61:102147. doi: 10.1016/j.jddst.2020.102147.
  • Sun, Y., J. Chi, X. Ye, S. Wang, J. Liang, P. Yue, H. Xiao, and X. Gao. 2021. Nanoliposomes as delivery system for anthocyanins: Physicochemical characterization, cellular uptake, and antioxidant properties. Lwt 139:110554.
  • Tack, D. M., E. P. Marder, P. M. Griffin, P. R. Cieslak, J. Dunn, S. Hurd, E. Scallan, S. Lathrop, A. Muse, P. Ryan, et al. 2019. Preliminary incidence and trends of infections with pathogens transmitted commonly through food—foodborne diseases active surveillance network, 10 us sites, 2015–2018. MMWR. Morbidity and Mortality Weekly Report 68 (16):369–73. doi: 10.15585/mmwr.mm6816a2.
  • Tahara, K., M. Kobayashi, S. Yoshida, R. Onodera, N. Inoue, and H. Takeuchi. 2018. Effects of cationic liposomes with stearylamine against virus infection. International Journal of Pharmaceutics 543 (1–2):311–7. doi: 10.1016/j.ijpharm.2018.04.001.
  • Tan, C., J. Wang, and B. Sun. 2021. Biopolymer-liposome hybrid systems for controlled delivery of bioactive compounds: Recent advances. Biotechnology Advances 48:107727. doi: 10.1016/j.biotechadv.2021.107727.
  • Tayel, A. A., N. A. Almabady, N. M. Sorour, and A. M. Diab. 2018. Application of natural plant extracts as colorants, preservatives, and anti‐listerial agents in processed fish products. Journal of Food Safety 38 (2):e12435.
  • Tereshkina, Y. A., T. Torkhovskaya, E. Tikhonova, L. Kostryukova, M. Sanzhakov, E. Korotkevich, Y. Y. Khudoklinova, N. Orlova, and E. Kolesanova. 2022. Nanoliposomes as drug delivery systems: Safety concerns. Journal of Drug Targeting 30 (3):313–25. doi: 10.1080/1061186X.2021.1992630.
  • Tometri, S. S., M. Ahmady, P. Ariaii, and M. S. Soltani. 2020. Extraction and encapsulation of laurus nobilis leaf extract with nano-liposome and its effect on oxidative, microbial, bacterial and sensory properties of minced beef. Journal of Food Measurement and Characterization 14 (6):3333–44. doi: 10.1007/s11694-020-00578-y.
  • Umbarkar, M., S. Thakare, T. Surushe, A. Giri, and V. Chopade. 2021. Formulation and evaluation of liposome by thin film hydration method. Journal of Drug Delivery and Therapeutics 11 (1):72–6. doi: 10.22270/jddt.v11i1.4677.
  • Valencia‐Sullca, C., M. Jiménez, A. Jiménez, L. Atarés, M. Vargas, and A. Chiralt. 2016. Influence of liposome encapsulated essential oils on properties of chitosan films. Polymer International 65 (8):979–87. doi: 10.1002/pi.5143.
  • Vélez, M. A., M. C. Perotti, E. R. Hynes, and A. M. Gennaro. 2019. Effect of lyophilization on food grade liposomes loaded with conjugated linoleic acid. Journal of Food Engineering 240:199–206. doi: 10.1016/j.jfoodeng.2018.07.033.
  • Wang, Y. 2021. Liposome as a delivery system for the treatment of biofilm‐mediated infections. Journal of Applied Microbiology 131 (6):2626–39. doi: 10.1111/jam.15053.
  • Wang, Q., M.-H. Pan, Y.-S. Chiou, Z. Li, and B. Ding. 2022a. Surface characteristics and emulsifying properties of whey protein/nanoliposome complexes. Food Chemistry 384:132510. doi: 10.1016/j.foodchem.2022.132510.
  • Wang, Y., S. Lv, F. Cao, Z. Ding, J. Liu, Q. Chen, J. Gao, and X. Huang. 2022b. Investigations on the influence of the structural flexibility of nanoliposomes on their properties. Journal of Liposome Research 32 (1):92–103. doi: 10.1080/08982104.2021.1998106.
  • Wu, J., R. Guan, G. Cao, Z. Liu, Z. Wang, H. Shen, and Q. Xia. 2018. Antioxidant and antimicrobial effects of catechin liposomes on chinese dried pork. Journal of Food Protection 81 (5):827–34. doi: 10.4315/0362-028X.JFP-17-452.
  • Yousefi, M., M. Azizi, and A. Ehsani. 2018. Antimicrobial coatings and films on meats: A perspective on the application of antimicrobial edible films or coatings on meats from the past to future. Bali Medical Journal 7 (1):87–96. doi: 10.15562/bmj.v7i1.759.
  • Yousefi, M., A. Ehsani, and S. M. Jafari. 2019. Lipid-based nano delivery of antimicrobials to control food-borne bacteria. Advances in Colloid and Interface Science 270:263–77. doi: 10.1016/j.cis.2019.07.005.
  • Yousefi, M., S. M. Jafari, H. Ahangari, and A. Ehsani. 2023. Application of nanoliposomes containing nisin and crocin in milk. Advanced Pharmaceutical Bulletin 13 (1):134–142. doi: 10.34172/apb.2023.014.
  • Zabihi, A., A. A. Basti, G. Amoabediny, A. Khanjari, J. T. Bazzaz, F. Mohammadkhan, A. H. Bargh, and E. Vanaki. 2017. Physicochemical characteristics of nanoliposome garlic (allium sativum l.) essential oil and its antibacterial effect on escherichia coli o157: H7. Journal of Food Quality and Hazards Control 4 (1):24–8.
  • Zhang, W., Y. Liu, X. Zhang, Z. Wu, and P. Weng. 2022. Tea polyphenols-loaded nanocarriers: Preparation technology and biological function. Biotechnology Letters: 44:387–398. doi: 10.1007/s10529-022-03234-1.
  • Zhao, G., C. Hu, and Y. Xue. 2018. In vitro evaluation of chitosan‐coated liposome containing both coenzyme q10 and alpha‐lipoic acid: Cytotoxicity, antioxidant activity, and antimicrobial activity. Journal of Cosmetic Dermatology 17 (2):258–62. doi: 10.1111/jocd.12369.
  • Zhong, J., R. Yang, X. Cao, X. Liu, and X. Qin. 2018. Improved physicochemical properties of yogurt fortified with fish oil/γ-oryzanol by nanoemulsion technology. Molecules 23 (1):56. doi: 10.3390/molecules23010056.
  • Zhou, F., T. Xu, Y. Zhao, H. Song, L. Zhang, X. Wu, and B. Lu. 2018. Chitosan-coated liposomes as delivery systems for improving the stability and oral bioavailability of acteoside. Food Hydrocolloids 83:17–24. doi: 10.1016/j.foodhyd.2018.04.040.
  • Zoghi, A., K. Khosravi-Darani, and A. Omri. 2018. Process variables and design of experiments in liposome and nanoliposome research. Mini Reviews in Medicinal Chemistry 18 (4):324–44.
  • Zou, L.-Q., W. Liu, W.-L. Liu, R.-H. Liang, T. Li, C.-M. Liu, Y.-L. Cao, J. Niu, and Z. Liu. 2014. Characterization and bioavailability of tea polyphenol nanoliposome prepared by combining an ethanol injection method with dynamic high-pressure microfluidization. Journal of Agricultural and Food Chemistry 62 (4):934–41. doi: 10.1021/jf402886s.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.