914
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Low-calorie bulk sweeteners: Recent advances in physical benefits, applications, and bioproduction

, , , , ORCID Icon, & ORCID Icon show all

References

  • Aoki, M. A. Y., G. M. Pastore, and Y. K. Park. 1993. Microbial transformation of sucrose and glucose to erythritol. Biotechnology Letters 15 (4):383–8. doi: 10.1007/BF00128281.
  • Ayers, B. J., J. Hollinshead, A. W. Saville, S. Nakagawa, I. Adachi, A. Kato, K. Izumori, B. Bartholomew, G. W. J. Fleet, and R. J. Nash. 2014. Iteamine, the first alkaloid isolated from Itea virginica L. inflorescence. Phytochemistry 100:126–31. doi: 10.1016/j.phytochem.2014.01.012.
  • Bernt, W. O., J. F. Borzelleca, G. Flamm, and I. C. Munro. 1996. Erythritol: A review of biological and toxicological studies. Regulatory toxicology and Pharmacology : RTP 24 (2 Pt 2):S191–S197. doi: 10.1006/rtph.1996.0098.
  • Boupan, M., K. Prompang, A. Chompunuch, P. Boonma, A. Neramittagapong, S. Theerakulpisut, and S. Neramittagapong. 2023. Role of calcination temperature on isosorbide production from sorbitol dehydration over the catalyst derived from Ce(IV) sulfate. Journal of Renewable Materials 0 (0):1–16. doi: 10.32604/jrm.2023.026397.
  • Brown, A. D. 1978. Compatible solutes and extreme water stress in eukaryotic micro-organisms. In A. H. Rose & J. G. Morris (Eds.), Advances in Microbial Physiology Vol. 17, 181–242. Wollongong: Academic Press. doi: 10.1016/S0065-2911(08)60058-2.
  • Buemann, B., S. Toubro, J. J. Holst, J. F. Rehfeld, B. M. Bibby, and A. Astrup. 2000. D-Tagatose, a stereoisomer of D-fructose, increases blood uric acid concentration. Metabolism: Clinical and Experimental 49 (8):969–76. doi: 10.1053/meta.2000.7724.
  • Busatto, N., B. Farneti, M. Commisso, M. Bianconi, B. Iadarola, E. Zago, B. Ruperti, F. Spinelli, A. Zanella, R. Velasco, et al. 2018. Apple fruit superficial scald resistance mediated by ethylene inhibition is associated with diverse metabolic processes. The Plant Journal: For Cell and Molecular Biology 93 (2):270–85. doi: 10.1111/tpj.13774.
  • Carly, F., M. Vandermies, S. Telek, S. Steels, S. Thomas, J. M. Nicaud, and P. Fickers. 2017. Enhancing erythritol productivity in Yarrowia lipolytica using metabolic engineering. Metabolic Engineering 42:19–24. doi: 10.1016/j.ymben.2017.05.002.
  • Cazetta, M. L. 2005. Optimization study for sorbitol production by Zymomonas mobilis in sugar cane molasses. Process Biochemistry 40 (2):747–51. doi: 10.1016/j.procbio.2004.01.041.
  • Chen, D., J. Chen, X. Liu, C. Guang, W. Zhang, and W. Mu. 2021. Biochemical identification of a hyperthermostable L-ribulose 3-epimerase from Labedella endophytica and its application for d-allulose bioconversion. International journal of Biological Macromolecules 189:214–22. doi: 10.1016/j.ijbiomac.2021.08.131.
  • Chen, M., W. Zhang, H. Wu, C. Guang, and W. Mu. 2020. Mannitol: Physiological functionalities, determination methods, biotechnological production, and applications. Applied Microbiology and Biotechnology 104 (16):6941–51. doi: 10.1007/s00253-020-10757-y.
  • Chouayekh, H., W. Bejar, M. Rhimi, K. Jelleli, M. Mseddi, and S. Bejar. 2007. Characterization of an L-arabinose isomerase from the Lactobacillus plantarum NC8 strain showing pronounced stability at acidic pH. FEMS Microbiology Letters 277 (2):260–7. doi: 10.1111/j.1574-6968.2007.00961.x.
  • Chung, Y.-M., J. Hyun Lee, D. Youl Kim, S. H. Hwang, Y. H. Hong, S. B. Kim, S. Jin Lee, and C. Hye Park. 2012. Dietary D-psicose reduced visceral fat mass in high-fat diet-induced obese rats. Journal of Food Science 77 (2):H53–H58. doi: 10.1111/j.1750-3841.2011.02571.x.
  • Dai, Y., M. Li, B. Jiang, T. Zhang, and J. Chen. 2021. Whole-cell biosynthesis of D-tagatose from maltodextrin by engineered Escherichia coli with multi-enzyme co-expression system. Enzyme and Microbial Technology 145:109747. doi: 10.1016/j.enzmictec.2021.109747.
  • Dai, Y., Q. Meng, W. Mu, and T. Zhang. 2017. Recent advances in the applications and biotechnological production of mannitol. Journal of Functional Foods 36:404–9. doi: 10.1016/j.jff.2017.07.022.
  • Daza-Serna, L., S. Serna-Loaiza, A. Masi, R. L. Mach, A. R. Mach-Aigner, and A. Friedl. 2021. From the culture broth to the erythritol crystals: An opportunity for circular economy. Applied Microbiology and Biotechnology 105 (11):4467–86. doi: 10.1007/s00253-021-11355-2.
  • De Boeck, R., L. A. Sarmiento-Rubiano, I. Nadal, V. Monedero, G. Pérez-Martínez, and M. J. Yebra. 2010. Sorbitol production from lactose by engineered Lactobacillus casei deficient in sorbitol transport system and mannitol-1-phosphate dehydrogenase. Applied Microbiology and Biotechnology 85 (6):1915–22. doi: 10.1007/s00253-009-2260-9.
  • De Muynck, C., Beauprez, J. Soetaert, W. Vandamme, and E. J. 2006. Boric acid as a mobile phase additive for high performance liquid chromatography separation of ribose, arabinose and ribulose. Journal of Chromatography. A 1101 (1-2):115–21. doi: 10.1016/j.chroma.2005.09.068.
  • Deshpande, M. S., P. P. Kulkarni, P. S. Kumbhar, and A. R. Ghosalkar. 2022. Erythritol production from sugar based feedstocks by Moniliella pollinis using lysate of recycled cells as nutrients source. Process Biochemistry 112:45–52. doi: 10.1016/j.procbio.2021.11.020.
  • Donner, T. W., L. S. Magder, and K. Zarbalian. 2010. Dietary supplementation with D-tagatose in subjects with type 2 diabetes leads to weight loss and raises high-density lipoprotein cholesterol. Nutrition Research (New York, N.Y.) 30 (12):801–6. doi: 10.1016/j.nutres.2010.09.007.
  • Donner, T. W., J. F. Wilber, and D. Ostrowski. 1999. D-Tagatose, a novel hexose: Acute effects on carbohydrate tolerance in subjects with and without type 2 diabetes. Diabetes, Obesity & Metabolism 1 (5):285–91. doi: 10.1046/j.1463-1326.1999.00039.x.
  • Duan, R., H. Li, H. Li, L. Tang, H. Zhou, X. Yang, Y. Yang, and Z. Ding. 2018. Enhancing the production of D-mannitol by an artificial mutant of Penicillium sp. T2-M10. Applied Biochemistry and Biotechnology 186 (4):990–8. doi: 10.1007/s12010-018-2791-6.
  • Escobar Gutiérrez, A. J., and J. P. Gaudillère. 1996. Distribution, métabolisme et rôle du sorbitol chez les plantes supérieures. Synthèse. Agronomie 16 (5):281–96. doi: 10.1051/agro:19960502.
  • Falony, G., S. Honkala, R. Runnel, J. Olak, R. Nõmmela, S. Russak, M. Saag, P. L. Mäkinen, K. Mäkinen, T. Vahlberg, et al. 2016. Long-term effect of erythritol on dental caries development during childhood: A posttreatment survival analysis. Caries Research 50 (6):579–88. doi: 10.1159/000450762.
  • Fan, C., K. Liu, T. Zhang, L. Zhou, D. Xue, B. Jiang, and W. Mu. 2014. Biochemical characterization of a thermostable L-arabinose isomerase from a thermoacidophilic bacterium, Alicyclobacillus hesperidum URH17-3-68. Journal of Molecular Catalysis B: Enzymatic 102:120–6. doi: 10.1016/j.molcatb.2014.02.001.
  • Flint, N., Hamburg, N. M. Holbrook, M. G. Dorsey, P. LeLeiko, R. M. Berger, A. de Cock, P. Bosscher, D, and Vita, J. A. 2014. Effects of erythritol on endothelial function in patients with type 2 diabetes mellitus: A pilot study. Acta Diabetologica 51 (3):513–6. doi: 10.1007/s00592-013-0534-2.
  • Gholam, R. G., N. Iraj, and R. Mohammad. 2012. Comparative inhibitory effect of xylitol and erythritol on the growth and biofilm formation of oral Streptococci. African Journal of Microbiology Research 6 (20):4404–8. doi: 10.5897/AJMR11.1122.
  • Godswill, A. C. 2017. Sugar alcohols: Chemistry, production, health concerns and nutritional importance of mannitol, sorbitol, xylitol, and erythritol. International Journal of Advanced Academic Research 3 (2):31–66.
  • Guo, J., J. Li, Y. Chen, X. Guo, and D. Xiao. 2016. Improving erythritol production of Aureobasidium pullulans from xylose by mutagenesis and medium optimization. Applied Biochemistry and Biotechnology 180 (4):717–27. doi: 10.1007/s12010-016-2127-3.
  • Hadipernata, M., M. Ogawa, and S. Hayakawa. 2016. Effect of D-allulose on rheological properties of chicken breast sausage. Poultry Science 95 (9):2120–8. doi: 10.3382/ps/pew143.
  • Harada, M., E. Kondo, H. Hayashi, C. Suezawa, S. Suguri, and M. Arai. 2012. D-Allose and D-psicose reinforce the action of metronidazole on trichomonad. Parasitology Research 110 (4):1565–7. doi: 10.1007/s00436-011-2660-5.
  • He, X., H. Meng, H. Wang, P. He, Y. Chang, S. Wang, C. Wang, L. Li, and C. Wang. 2022. Quantitative proteomic sequencing of F1 hybrid populations reveals the function of sorbitol in apple resistance to Botryosphaeria dothidea. Horticulture Research 9:uhac115. doi: 10.1093/hr/uhac115.
  • Hijosa-Valsero, M., J. Garita-Cambronero, A. I. Paniagua-García, and R. Díez-Antolínez. 2021. By-products of sugar factories and wineries as feedstocks for erythritol generation. Food and Bioproducts Processing 126:345–55. doi: 10.1016/j.fbp.2021.02.001.
  • Hootman, K. C., J. P. Trezzi, L. Kraemer, L. S. Burwell, X. Dong, K. A. Guertin, C. Jaeger, P. J. Stover, K. Hiller, and P. A. Cassano. 2017. Erythritol is a pentose-phosphate pathway metabolite and associated with adiposity gain in young adults. Proceedings of the National Academy of Sciences of the United States of America 114 (21):E4233–E4240. doi: 10.1073/pnas.1620079114.
  • Hossain, A., I. Tsukamoto, F. Yamaguchi, Y. Hirata, Y. Dong, K. Kamitori, L. Sui, N. Machiko, U. Masaki, N. Kazuyuki, et al. 2014. Intestinal absorption, organ distribution, and urinary excretion of the rare sugar D-psicose. Drug Design, Development and Therapy 8:1955–64. doi: 10.2147/DDDT.S60247.
  • Hossain, A., F. Yamaguchi, T. Matsuo, I. Tsukamoto, Y. Toyoda, M. Ogawa, Y. Nagata, and M. Tokuda. 2015. Rare sugar D-allulose: Potential role and therapeutic monitoring in maintaining obesity and type 2 diabetes mellitus. Pharmacology & Therapeutics 155:49–59. doi: 10.1016/j.pharmthera.2015.08.004.
  • Iida, T., T. Yamada, N. Hayashi, K. Okuma, K. Izumori, R. Ishii, and T. Matsuo. 2013. Reduction of abdominal fat accumulation in rats by 8-week ingestion of a newly developed sweetener made from high fructose corn syrup. Food Chemistry 138 (2-3):781–5. doi: 10.1016/j.foodchem.2012.11.017.
  • Izumori, K. 2006. Izumoring: A strategy for bioproduction of all hexoses. Journal of Biotechnology 124 (4):717–22. doi: 10.1016/j.jbiotec.2006.04.016.
  • Jacobsen, J. H., and N. U. Frigaard. 2014. Engineering of photosynthetic mannitol biosynthesis from CO2 in a cyanobacterium. Metabolic Engineering 21:60–70. doi: 10.1016/j.ymben.2013.11.004.
  • Jagtap, S. S., R. Singh, Y. C. Kang, H. Zhao, and J. K. Lee. 2014. Cloning and characterization of a galactitol 2-dehydrogenase from Rhizobium legumenosarum and its application in D-tagatose production. Enzyme and Microbial Technology 58-59:44–51. doi: 10.1016/j.enzmictec.2014.02.012.
  • Janek, T., A. Dobrowolski, A. Biegalska, and A. M. Mirończuk. 2017. Characterization of erythrose reductase from Yarrowia lipolytica and its influence on erythritol synthesis. Microbial Cell Factories 16 (1):118. doi: 10.1186/s12934-017-0733-6.
  • Jayamuthunagai, J., P. Gautam, G. Srisowmeya, and M. Chakravarthy. 2017. Biocatalytic production of D-tagatose: A potential rare sugar with versatile applications. Critical Reviews in Food Science and Nutrition 57 (16):3430–7. doi: 10.1080/10408398.2015.1126550.
  • Jayamuthunagai, J., G. Srisowmeya, M. Chakravarthy, and P. Gautam. 2017. D-Tagatose production by permeabilized and immobilized Lactobacillus plantarum using whey permeate. Bioresource technology 235:250–5. doi: 10.1016/j.biortech.2017.03.123.
  • Jeya, M., K. M. Lee, M. K. Tiwari, J. S. Kim, P. Gunasekaran, S. Y. Kim, I. W. Kim, and J. K. Lee. 2009. Isolation of a novel high erythritol-producing Pseudozyma tsukubaensis and scale-up of erythritol fermentation to industrial level. Applied Microbiology and Biotechnology 83 (2):225–31. doi: 10.1007/s00253-009-1871-5.
  • Jiang, S., W. Xiao, X. Zhu, P. Yang, Z. Zheng, S. Lu, S. Jiang, G. Zhang, and J. Liu. 2020. Review on D-allulose: In vivo metabolism, catalytic mechanism, engineering strain construction, bio-production technology. Frontiers in Bioengineering and Biotechnology 8:26. doi: 10.3389/fbioe.2020.00026.
  • Kim, B. C., Y. H. Lee, H. S. Lee, D. W. Lee, E. A. Choe, and Y. R. Pyun. 2002. Cloning, expression and characterization of L-arabinose isomerase from Thermotoga neapolitana: Bioconversion of D-galactose to D-tagatose using the enzyme. FEMS Microbiology Letters 212 (1):121–6. doi: 10.1016/S0378-1097(02)00715-2.
  • Kim, B. J., S. H. Hong, K. C. Shin, Y. S. Jo, and D. K. Oh. 2014. Characterization of a F280N variant of L-arabinose isomerase from Geobacillus thermodenitrificans identified as a D-galactose isomerase. Applied Microbiology and Biotechnology 98 (22):9271–81. doi: 10.1007/s00253-014-5827-z.
  • Kim, H. M., Y. Song, S. G. Wi, and H. J. Bae. 2017. Production of D-tagatose and bioethanol from onion waste by an integrating bioprocess. Journal of Biotechnology 260:84–90. doi: 10.1016/j.jbiotec.2017.09.013.
  • Kim, H. J., E. K. Hyun, Y. S. Kim, Y. J. Lee, and D. K. Oh. 2006. Characterization of an Agrobacterium tumefaciens D-psicose 3-epimerase that converts D-fructose to D-psicose. Applied and Environmental Microbiology 72 (2):981–5. doi: 10.1128/AEM.72.2.981-985.2006.
  • Kim, S.-Y., B.-S. Koo, and J.-K. Lee. 2002. Fumarate-mediated inhibition of erythrose reductase, a key enzyme for erythritol production by Torula corallina. Applied and Environmental Microbiology 68 (9):4534–8. doi: 10.1128/AEM.68.9.4534-4538.2002.
  • Kishida, K., G. Martinez, T. Iida, T. Yamada, R. P. Ferraris, and Y. Toyoda. 2019. D-Allulose is a substrate of glucose transporter type 5 (GLUT5) in the small intestine. Food Chemistry 277:604–8. doi: 10.1016/j.foodchem.2018.11.003.
  • Kobayashi, Y., H. Iwata, D. Mizushima, J. Ogihara, and T. Kasumi. 2015. Erythritol production by Moniliella megachiliensis using nonrefined glycerol waste as carbon source. Letters in Applied Microbiology 60 (5):475–80. doi: 10.1111/lam.12391.
  • Ladero, V., A. Ramos, A. Wiersma, P. Goffin, A. Schanck, M. Kleerebezem, J. Hugenholtz, E. J. Smid, and P. Hols. 2007. High-level production of the low-calorie sugar sorbitol by Lactobacillus plantarum through metabolic engineering. Applied and Environmental Microbiology 73 (6):1864–72. doi: 10.1128/AEM.02304-06.
  • Lee, D. H., Y. J. Lee, Y. W. Ryu, and J. H. Seo. 2010. Molecular cloning and biochemical characterization of a novel erythrose reductase from Candida magnoliae JH110. Microbial Cell Factories, 9: 43. doi: 10.1186/1475-2859-9-43.
  • Lee, D. W., h j Jang, E. A. Choe, B. C. Kim, S. J. Lee, S. B. Kim, Y. H. Hong, and Y. R. Pyun. 2004. Characterization of a thermostable L-arabinose (D-galactose) isomerase from the hyperthermophilic eubacterium Thermotoga maritima. Applied and Environmental Microbiology 70 (3):1397–404. doi: 10.1128/AEM.70.3.1397-1404.2004.
  • Lee, J. K., J. Y. Song, and S. Y. Kim. 2003. Controlling substrate concentration in fed-batch Candida magnoliae culture increases mannitol production. Biotechnology Progress 19 (3):768–75. doi: 10.1021/bp034025o.
  • Lee, S. H., S. H. Hong, K. R. Kim, and D. K. Oh. 2017. High-yield production of pure tagatose from fructose by a three-step enzymatic cascade reaction. Biotechnology Letters 39 (8):1141–8. doi: 10.1007/s10529-017-2340-3.
  • Lee, S. J., D. W. Lee, E. A. Choe, Y. H. Hong, S. B. Kim, B. C. Kim, and Y. R. Pyun. 2005. Characterization of a thermoacidophilic L-arabinose isomerase from Alicyclobacillus acidocaldarius: Role of Lys-269 in pH optimum. Applied and Environmental Microbiology 71 (12):7888–96. doi: 10.1128/AEM.71.12.7888-7896.2005.
  • Levin, G. V., L. R. Zehner, J. P. Saunders, and J. R. Beadle. 1995. Sugar substitutes: Their energy values, bulk characteristics, and potential health benefits. The American Journal of Clinical Nutrition 62 (5 Suppl):1161S–8S. doi: 10.1093/ajcn/62.5.1161S.
  • Li, C., C. Zhang, J. Lin, L. Gao, H. Lin, and J. Lin. 2018. Enzymatic fructose removal from D-psicose bioproduction model solution and the system modeling and simulation: Enzymatic fructose removal and system modeling. Journal of Chemical Technology & Biotechnology 93 (5):1249–60. doi: 10.1002/jctb.5483.
  • Li, J., J. Chen, W. Xu, W. Zhang, Y. Chen, and W. Mu. 2022. Efficient utilization of fruit peels for the bioproduction of D-allulose and D-mannitol. Foods 11 (22):3613. doi: 10.3390/foods11223613.
  • Li, Y., T. Shi, P. Han, and C. You. 2021. Thermodynamics-driven production of value-added d-allulose from inexpensive starch by an In Vitro enzymatic synthetic biosystem. ACS Catalysis 11 (9):5088–99. doi: 10.1021/acscatal.0c05718.
  • Li, Y., Y. Zhu, A. Liu, and Y. Sun. 2011. Identification and characterization of a novel L-arabinose isomerase from Anoxybacillus flavithermus useful in D-tagatose production. Extremophiles: Life Under Extreme Conditions 15 (3):441–50. doi: 10.1007/s00792-011-0375-2.
  • Li, Z., F. Li, L. Cai, Z. Chen, L. Qin, and X. D. Gao. 2020. One-pot multienzyme synthesis of rare ketoses from glycerol. Journal of Agricultural and Food Chemistry 68 (5):1347–53. doi: 10.1021/acs.jafc.9b06748.
  • Lim, B. C., H. J. Kim, and D. K. Oh. 2009. A stable immobilized D-psicose 3-epimerase for the production of D-psicose in the presence of borate. Process Biochemistry 44 (8):822–8. doi: 10.1016/j.procbio.2009.03.017.
  • Lin, S. J., C. Y. Wen, P. M. Wang, J. C. Huang, C. L. Wei, J. W. Chang, and W. S. Chu. 2010. High-level production of erythritol by mutants of osmophilic Moniliella sp. Process Biochemistry 45 (6):973–9. doi: 10.1016/j.procbio.2010.03.003.
  • Liu, C., H. Dong, J. Zhong, D. D. Y. Ryu, and J. Bao. 2010. Sorbitol production using recombinant Zymomonas mobilis strain. Journal of Biotechnology 148 (2-3):105–12. doi: 10.1016/j.jbiotec.2010.04.008.
  • Liu, X., X. Yu, T. Zhang, Z. Wang, J. Xu, J. Xia, A. He, Y. Yan, and J. Xu. 2018. Novel two-stage solid-state fermentation for erythritol production on okara-buckwheat husk medium. Bioresource technology 266:439–46. doi: 10.1016/j.biortech.2018.07.009.
  • Lu, Y., G. V. Levin, and T. W. Donner. 2008. Tagatose, a new antidiabetic and obesity control drug. Diabetes, Obesity & Metabolism 10 (2):109–34. doi: 10.1111/j.1463-1326.2007.00799.x.
  • Maeng, H.-J., J.-H. Yoon, K.-H. Chun, S. T. Kim, D.-J. Jang, J.-E. Park, Y. H. Kim, S.-B. Kim, and Y. C. Kim. 2019. Metabolic stability of D-allulose in biorelevant media and hepatocytes: Comparison with fructose and erythritol. Foods 8 (10):448. doi: 10.3390/foods8100448.
  • Mäkinen, K. K., M. Saag, K. P. Isotupa, J. Olak, R. Nõmmela, E. Söderling, and P. L. Mäkinen. 2005. Similarity of the effects of erythritol and xylitol on some risk factors of dental caries. Caries research 39 (3):207–15. doi: 10.1159/000084800.
  • Mayumi, S., M. Kuboniwa, A. Sakanaka, E. Hashino, A. Ishikawa, Y. Ijima, and A. Amano. 2021. Potential of prebiotic D-tagatose for prevention of oral disease. Frontiers in Cellular and Infection Microbiology 11:767944. doi: 10.3389/fcimb.2021.767944.
  • Men, Y., Y. Zhu, L. Zhang, Z. Kang, K. Izumori, Y. Sun, and Y. Ma. 2014. Enzymatic conversion of D-galactose to D-tagatose: Cloning, overexpression and characterization of L-arabinose isomerase from Pediococcus pentosaceus PC-5. Microbiological research 169 (2-3):171–8. doi: 10.1016/j.micres.2013.07.001.
  • Meng, Q., T. Zhang, W. Wei, W. Mu, and M. Miao. 2017. Production of mannitol from a high concentration of glucose by Candida parapsilosis SK26.001. Applied biochemistry and Biotechnology 181 (1):391–406. doi: 10.1007/s12010-016-2219-0.
  • Mirończuk, A. M., M. Rakicka, A. Biegalska, W. Rymowicz, and A. Dobrowolski. 2015. A two-stage fermentation process of erythritol production by yeast Y. lipolytica from molasses and glycerol. Bioresource technology 198 (12):445–55. doi: 10.1016/j.biortech.2015.09.008.
  • Montes-Cortés, D. H., J. L. N.-D. Valle, I. M. Olivares-Corichi, J. V. Rosas-Barrientos, L. J. Jara, and M. P. Cruz-Domínguez. 2018. Impact of intestinal mannitol on hyperammonemia, oxidative stress and severity of hepatic encephalopathy in the ED. The American Journal of Emergency Medicine 36 (9):1570–6. doi: 10.1016/j.ajem.2018.01.032.
  • Moon, H. J., M. Jeya, I. W. Kim, and J. K. Lee. 2010. Biotechnological production of erythritol and its applications. Applied microbiology and Biotechnology 86 (4):1017–25. doi: 10.1007/s00253-010-2496-4.
  • Nezzal, A., L. Aerts, M. Verspaille, G. Henderickx, and A. Redl. 2009. Polymorphism of sorbitol. Journal of Crystal Growth 311 (15):3863–70. doi: 10.1016/j.jcrysgro.2009.06.003.
  • Nissen, L., G. Perez-Martinez, and M. J. Yebra. 2005. Sorbitol synthesis by an engineered Lactobacillus casei strain expressing a sorbitol-6-phosphate dehydrogenase gene within the lactose operon. FEMS microbiology Letters 249 (1):177–83. doi: 10.1016/j.femsle.2005.06.010.
  • O’Charoen, S., S. Hayakawa, and M. Ogawa. 2015. Food properties of egg white protein modified by rare ketohexoses through Maillard reaction. International Journal of Food Science & Technology 50 (1):194–202. doi: 10.1111/ijfs.12607.
  • O’Donnell, K., & Kearsley, M. W. (Eds.). 2012. Sweeteners and sugar alternatives in food technology (2nd ed). Oxford: Wiley-Blackwell.
  • Ortiz, M. E., J. Bleckwedel, R. R. Raya, and F. Mozzi. 2013a. Biotechnological and in situ food production of polyols by lactic acid bacteria. Applied microbiology and Biotechnology 97 (11):4713–26. doi: 10.1007/s00253-013-4884-z.
  • Patel, M., S. Islam, P. Kallem, R. Patel, F. Banat, and A. Patel. 2022. Potato starch-based bioplastics synthesized using glycerol–sorbitol blend as a plasticizer: Characterization and performance analysis. International Journal of Environmental Science and Technology doi: 10.1007/s13762-022-04492-2.
  • Patel, S. N., G. Kaushal, and S. P. Singh. 2019. A novel D-allulose 3-epimerase gene from the metagenome of a thermal aquatic habitat and D-allulose production by Bacillus subtilis whole-cell catalysis. Applied and Environmental Microbiology 86 (5):e02605–19. /aem/86/5/AEM.02605-19.atom. doi: 10.1128/AEM.02605-19.
  • Patra, F., A. Patel, and N. Shah. 2017. Chapter 9 - Microbial production of low-calorie sugars. In A. M. Holban & A. M. Grumezescu (Eds.), Microbial production of food ingredients and additives (259–290). Mehsana: Academic Press.
  • Qiu, X., P. Xu, X. Zhao, G. Du, J. Zhang, and J. Li. 2020. Combining genetically-encoded biosensors with high throughput strain screening to maximize erythritol production in Yarrowia lipolytica. Metabolic engineering 60:66–76. doi: 10.1016/j.ymben.2020.03.006.
  • Rafeek, R., C. V. F. Carrington, A. Gomez, D. Harkins, M. Torralba, C. Kuelbs, J. Addae, A. Moustafa, and K. E. Nelson. 2019. Xylitol and sorbitol effects on the microbiome of saliva and plaque. Journal of Oral Microbiology 11 (1):1536181. doi: 10.1080/20002297.2018.1536181.
  • Rakicka, M., Z. Lazar, A. Rywińska, and W. Rymowicz. 2016. Efficient utilization of inulin and glycerol as fermentation substrates in erythritol and citric acid production using Yarrowia lipolytica expressing inulinase. Chemical Papers 70 (11):1452–9. doi: 10.1515/chempap-2016-0085.
  • Ravikumar, Y., S. P. Nadarajan, T. Hyeon Yoo, C. S. Lee, and H. Yun. 2015. Incorporating unnatural amino acids to engineer biocatalysts for industrial bioprocess applications. Biotechnology journal 10 (12):1862–76. doi: 10.1002/biot.201500153.
  • Ravikumar, Y., L. N. Ponpandian, G. Zhang, J. Yun, and X. Qi. 2021. Harnessing L-arabinose isomerase for biological production of D-tagatose: Recent advances and its applications. Trends in Food Science & Technology 107:16–30. doi: 10.1016/j.tifs.2020.11.020.
  • Rhimi, M., R. Ilhammami, G. Bajic, S. Boudebbouze, E. Maguin, R. Haser, and N. Aghajari. 2010. The acid tolerant L-arabinose isomerase from the food grade Lactobacillus sakei 23K is an attractive D-tagatose producer. Bioresource technology 101 (23):9171–7. doi: 10.1016/j.biortech.2010.07.036.
  • Rice, T., Zannini, E. K. Arendt, E, and Coffey, A. 2020. A review of polyols - biotechnological production, food applications, regulation, labeling and health effects. Critical reviews in Food Science and Nutrition 60 (12):2034–51. doi: 10.1080/10408398.2019.1625859.
  • Ro, H. S., and H. S. Kim. 1991. Continuous production of gluconic acid and sorbitol from sucrose using invertase and an oxidoreductase of Zymomonas mobilis. Enzyme and Microbial Technology 13 (11):920–4. doi: 10.1016/0141-0229(91)90109-N.
  • Saha, B. C., and F. M. Racine. 2011. Biotechnological production of mannitol and its applications. Applied microbiology and Biotechnology 89 (4):879–91. doi: 10.1007/s00253-010-2979-3.
  • Sahin, A. W., C. Axel, E. Zannini, and E. K. Arendt. 2018. Xylitol, mannitol and maltitol as potential sucrose replacers in burger buns. Food & Function 9 (4):2201–12. doi: 10.1039/C8FO00066B.
  • Salonen, N., A. Nyyssölä, K. Salonen, and O. Turunen. 2012. Bifidobacterium longum L-arabinose isomerase-overexpression in Lactococcus lactis, purification, and characterization. Applied biochemistry and Biotechnology 168 (2):392–405. doi: 10.1007/s12010-012-9783-8.
  • Saran, S., S. Mukherjee, J. Dalal, and R. K. Saxena. 2015. High production of erythritol from Candida sorbosivorans SSE-24 and its inhibitory effect on biofilm formation of Streptococcus mutans. Bioresource technology 198:31–8. doi: 10.1016/j.biortech.2015.08.146.
  • Saunders, J. P., T. W. Donner, J. H. Sadler, G. V. Levin, and N. G. Makris. 1999. Effects of acute and repeated oral doses of D-tagatose on plasma uric acid in normal and diabetic humans. Regulatory toxicology and Pharmacology : RTP 29 (2 Pt 2):S57–S65. doi: 10.1006/rtph.1998.1264.
  • Shatta, A., M. Osman, and S. Ibrahim. 1999. Sweeteners: Uses and health. A comprehensive review. II- Bulk sweeteners. Jounal of Environmental Research 1:58–76.
  • Shin, K. C., T. E. Lee, M. J. Seo, D. W. Kim, L. W. Kang, and D. K. Oh. 2020. Development of tagaturonate 3-epimerase into tagatose 4-epimerase with a biocatalytic route from fructose to tagatose. ACS Catalysis 10 (20):12212–22. doi: 10.1021/acscatal.0c02922.
  • Shin, S. M., T. P. Cao, J. M. Choi, S. B. Kim, S. J. Lee, S. H. Lee, and D. W. Lee. 2017. TM0416, a hyperthermophilic promiscuous nonphosphorylated sugar isomerase, catalyzes various C5 and C6 epimerization reactions. Applied and Environmental Microbiology 83 (10):e03291–16. e03291-16. doi: 10.1128/AEM.03291-16.
  • Song, S. H., and C. Vieille. 2009. Recent advances in the biological production of mannitol. Applied microbiology and Biotechnology 84 (1):55–62. doi: 10.1007/s00253-009-2086-5.
  • Song, Y., Q. A. Nguyen, S. G. Wi, J. Yang, and H.-J. Bae. 2017. Strategy for dual production of bioethanol and d-psicose as value-added products from cruciferous vegetable residue. Bioresource technology 223:34–9. doi: 10.1016/j.biortech.2016.10.021.
  • Staudigl, P., D. Haltrich, and C. K. Peterbauer. 2014. L-Arabinose isomerase and D-xylose isomerase from Lactobacillus reuteri: Characterization, coexpression in the food grade host Lactobacillus plantarum, and application in the conversion of D-galactose and D-glucose. Journal of Agricultural and Food Chemistry 62 (7):1617–24. doi: 10.1021/jf404785m.
  • Sun, Y., S. Hayakawa, M. Chuamanochan, M. Fujimoto, A. Innun, and K. Izumori. 2006. Antioxidant effects of maillard reaction products obtained from ovalbumin and different D-aldohexoses. Bioscience, Biotechnology, and Biochemistry 70 (3):598–605. doi: 10.1271/bbb.70.598.
  • Suzuki, K. 1949. Taste Blindness of Japanese. Nature 163 (4135):177– doi: 10.1038/163177a0.
  • Swithers, S. E. 2013. Artificial sweeteners produce the counterintuitive effect of inducing metabolic derangements. Trends in Endocrinology and Metabolism: TEM 24 (9):431–41. doi: 10.1016/j.tem.2013.05.005.
  • Takeshita, K., A. Suga, G. Takada, and K. Izumori. 2000. Mass production of D-psicose from D-fructose by a continuous bioreactor system using immobilized D-tagatose 3-epimerase. Journal of Bioscience and Bioengineering 90 (4):453–5. doi: 10.1016/S1389-1723(01)80018-9.
  • Torres, P., and F. Batista-Viera. 2019. Production of D-tagatose and D-fructose from whey by co-immobilized enzymatic system. Molecular Catalysis 463:99–109. doi: 10.1016/j.mcat.2018.11.017.
  • Van Laar, A. D. E., C. Grootaert, and J. Van Camp. 2021. Rare mono- and disaccharides as healthy alternative for traditional sugars and sweeteners? Critical reviews in Food Science and Nutrition 61 (5):713–41. doi: 10.1080/10408398.2020.1743966.
  • Veiga-Da-Cunha, M., P. Firme, M. V. S. Romão, and H. Santos. 1992. Application of 13 C nuclear magnetic resonance to elucidate the unexpected biosynthesis of erythritol by Leuconostoc oenos. Applied and Environmental Microbiology 58 (7):2271–9. doi: 10.1128/aem.58.7.2271-2279.1992.
  • von Weymarn, F. N. W., K. J. Kiviharju, S. T. Jaaskelainen, and M. S. A. Leisola. 2003. Scale-up of a new bacterial mannitol production process. Biotechnology progress 19 (3):815–21. doi: 10.1021/bp025718s.
  • Wagner, N., E. Håkansson, S. Wahler, S. Panke, and M. Bechtold. 2015. Multi-objective optimization for the economic production of D-psicose using simulated moving bed chromatography. Journal of Chromatography. A 1398:47–56. doi: 10.1016/j.chroma.2015.04.008.
  • Wang, Y., Y. Ravikumar, G. Zhang, J. Yun, Y. Zhang, A. Parvez, X. Qi, and W. Sun. 2020. Biocatalytic synthesis of D-allulose using novel D-tagatose 3-epimerase from Christensenella minuta. Frontiers in Chemistry 8:622325. doi: 10.3389/fchem.2020.622325.
  • Weckbecker, A., H. Gröger, and W. Hummel. 2010. Regeneration of nicotinamide coenzymes: Principles and applications for the synthesis of chiral compounds. Biosystems Engineering 120:195–242. doi: 10.1007/10-2009-55.
  • Wen, L., K. Huang, M. Wei, J. Meisner, Y. Liu, K. Garner, L. Zang, X. Wang, X. Li, J. Fang, et al. 2015. Facile enzymatic synthesis of ketoses. Angewandte Chemie 127 (43):12845–9. doi: 10.1002/ange.201505714.
  • World Health Organization 2021. World health statistics 2021: monitoring health for the SDGs, sustainable development goals. Geneva, Licence: CC BY-NC-SA 3.0 IGO.
  • World Health Organization. Physical activity. Last modified October 5, 2022. Accessed October 5, 2022. https://www.who.int/news-room/fact-sheets/detail/physical-activity.
  • Wichelecki, D. J., M. W. Vetting, L. Chou, N. Al-Obaidi, J. T. Bouvier, S. C. Almo, and J. A. Gerlt. 2015. ATP-binding cassette (ABC) transport system solute-binding protein-guided identification of novel D-altritol and galactitol catabolic pathways in Agrobacterium tumefaciens C58. The Journal of Biological Chemistry 290 (48):28963–76. doi: 10.1074/jbc.M115.686857.
  • Wisselink, H. W., R. A. Weusthuis, G. Eggink, J. Hugenholtz, and G. J. Grobben. 2002. Mannitol production by lactic acid bacteria: A review. International Dairy Journal 12 (2-3):151–61. doi: 10.1016/S0958-6946(01)00153-4.
  • Xu, W., W. Zhang, T. Zhang, B. Jiang, and W. Mu. 2018. L-arabinose isomerases: Characteristics, modification, and application. Trends in Food Science & Technology 78:25–33. doi: 10.1016/j.tifs.2018.05.016.
  • Xu, Z., S. Li, X. Feng, Y. Zhan, and H. Xu. 2014. Function of aspartic acid residues in optimum pH control of L-arabinose isomerase from Lactobacillus fermentum. Applied microbiology and Biotechnology 98 (9):3987–96. doi: 10.1007/s00253-013-5342-7.
  • Xu, Z., S. Li, F. Fu, G. Li, X. Feng, H. Xu, and P. Ouyang. 2012. Production of D-tagatose, a functional sweetener, utilizing alginate immobilized Lactobacillus fermentum CGMCC2921 Cells. Applied biochemistry and Biotechnology 166 (4):961–73. doi: 10.1007/s12010-011-9484-8.
  • Xu, Z., Y. Qing, S. Li, X. Feng, H. Xu, and P. Ouyang. 2011. A novel L-arabinose isomerase from Lactobacillus fermentum CGMCC2921 for D-tagatose production: Gene cloning, purification and characterization. Journal of Molecular Catalysis B: Enzymatic 70 (1-2):1–7. doi: 10.1016/j.molcatb.2011.01.010.
  • Yamada, H., K. Okamoto, K. Kodama, and S. Tanaka. 1959. Mannitol formation by Piricularia oryzae. Biochimica et Biophysica Acta 33 (1):271–3. doi: 10.1016/0006-3002(59)90534-7.
  • Yang, J., C. Tian, T. Zhang, C. Ren, Y. Zhu, Y. Zeng, Y. Men, Y. Sun, and Y. Ma. 2019. Development of food-grade expression system for D-allulose 3-epimerase preparation with tandem isoenzyme genes in Corynebacterium glutamicum and its application in conversion of cane molasses to D-allulose. Biotechnology and Bioengineering 116 (4):745–56. doi: 10.1002/bit.26909.
  • Yebra-Biurrun, M. C. 2005. SWEETENERS. In P. Worsfold, A. Townshend, & C. Poole (Eds.), Encyclopedia of analytical science (Second Edition) 562–72. Boca Raton: CRC press.
  • Zhang, J., J. Li, S.-B. Wu, and Y. Liu. 2013. Advances in the Catalytic production and utilization of sorbitol. Industrial & Engineering Chemistry Research 52 (34):11799–815. doi: 10.1021/ie4011854.
  • Zhang, L., W. Mu, B. Jiang, and T. Zhang. 2009. Characterization of D-tagatose-3-epimerase from Rhodobacter sphaeroides that converts D-fructose into D-psicose. Biotechnology letters 31 (6):857–62. doi: 10.1007/s10529-009-9942-3.
  • Zhang, M., L. Gu, C. Cheng, J. Ma, F. Xin, J. Liu, H. Wu, and M. Jiang. 2018. Recent advances in microbial production of mannitol: Utilization of low-cost substrates, strain development and regulation strategies. World journal of Microbiology & Biotechnology 34 (3):41. doi: 10.1007/s11274-018-2425-8.
  • Zhang, W., D. Chen, J. Chen, W. Xu, Q. Chen, H. Wu, C. Guang, and W. Mu. 2021. D-Allulose, a versatile rare sugar: Recent biotechnological advances and challenges. Critical Reviews in Food Science and Nutrition1-19 :1–19. doi: 10.1080/10408398.2021.2023091.
  • Zhang, W., J. Chen, Q. Chen, H. Wu, and W. Mu. 2020. Sugar alcohols derived from lactose: Lactitol, galactitol, and sorbitol. Applied microbiology and Biotechnology 104 (22):9487–95. doi: 10.1007/s00253-020-10929-w.
  • Zhang, W., H. Li, T. Zhang, B. Jiang, L. Zhou, and W. Mu. 2015. Characterization of a D-psicose 3-epimerase from Dorea sp. CAG317 with an acidic pH optimum and a high specific activity. Journal of Molecular Catalysis B: Enzymatic 120:68–74. doi: 10.1016/j.molcatb.2015.05.018.
  • Zhang, W., S. Yu, T. Zhang, B. Jiang, and W. Mu. 2016. Recent advances in D-allulose: Physiological functionalities, applications, and biological production. Trends in Food Science & Technology 54:127–37. doi: 10.1016/j.tifs.2016.06.004.
  • Zheng, Z., J. Xie, P. Liu, X. Li, and J. Ouyang. 2019. Elegant and efficient biotransformation for dual production of D-tagatose and bioethanol from cheese whey powder. Journal of Agricultural and Food Chemistry 67 (3):829–35. doi: 10.1021/acs.jafc.8b0515.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.