920
Views
6
CrossRef citations to date
0
Altmetric
Reviews

Yeasts originating from fermented foods, their potential as probiotics and therapeutic implication for human health and disease

, &

References

  • Achi, S. C., R. R. Talahalli, and P. M. Halami. 2019. Prophylactic effects of probiotic Bifidobacterium spp. in the resolution of inflammation in arthritic rats. Applied Microbiology and Biotechnology 103 (15):6287–96. doi: 10.1007/s00253-019-09864-2.
  • Adebo, O. A., P. B. Njobeh, S. Gbashi, O. C. Nwinyi, and V. Mavumengwana. 2017. Review on microbial degradation of aflatoxins. Critical Reviews in Food Science and Nutrition 57 (15):3208–17. doi: 10.1080/10408398.2015.1106440.
  • Aidoo, K. E., M. J. Nout, and P. K. Sarkar. 2006. Occurrence and function of yeasts in Asian indigenous fermented foods. FEMS Yeast Research 6 (1):30–9. doi: 10.1111/j.1567-1364.2005.00015.x.
  • Arastehfar, A., M. Bakhtiari, F. Daneshnia, W. Fang, S. K. Sadati, A. M. Al-Hatmi, M. Groenewald, H. Sharifi-Mehr, W. Liao, W. Pan, et al. 2019. First fungemia case due to environmental yeast Wickerhamomyces myanmarensis: Detection by multiplex qPCR and antifungal susceptibility. Future Microbiology 14 (4):267–74.
  • Arguelles, J. C. 2000. Physiological roles of trehalose in bacteria and yeasts: A comparative analysis. Archives of Microbiology 174 (4):217–24. doi: 10.1007/s002030000192.
  • Arun, A. B., M. M. Hasan, S. Rackimuthu, I. Ullah, T. Mir, and A. Saha. 2021. Antifungal drug shortage in India amid an increase in invasive fungal functions during the coronavirus disease 2019 (COVID-19) pandemic. Infection Control Hospital Epidemiology 43 (12):1965–66. doi: 10.1017/ice.2021.426.
  • Basso, R. F., A. R. Alcarde, and C. B. Portugal. 2016. Could non-Saccharomyces yeasts contribute on innovative brewing fermentations? Food Research International 86:112–20. doi: 10.1016/j.foodres.2016.06.002.
  • Bauer, F., and I. S. Pretorius. 2000. Yeast stress response and fermentation efficiency: How to survive the making of wine. South African Journal of Enology and Viticulture 21:27–51.
  • Biagiotti, C., M. Ciani, L. Canonico, and F. Comitini. 2018. Occurrence and involvement of yeast biota in ripening of Italian Fossa cheese. European Food Research and Technology 244 (11):1921–31. doi: 10.1007/s00217-018-3104-6.
  • Carl, B. A., and T. M. Lou. 2014. Encyclopedia of food microbiology. Ed. M. L. Tortorello, 1014–2007. Bedford Park, IL: US Food and Drug Administration.
  • Chaucheyras-Durand, F., and H. Durand. 2010. Probiotics in animal nutrition and health. Beneficial microbes 1 (1):3–9. doi: 10.3920/BM2008.1002.
  • Chaves-Lopez, C., A. Serio, A. Paparella, M. Martuscelli, A. Corsetti, R. Tofalo, and G. Suzzi. 2014. Impact of microbial cultures on proteolysis and release of bioactive peptides in fermented milk. Food microbiology 42:117–21. doi: 10.1016/j.fm.2014.03.005.
  • Chaves-Lopez, C., R. Tofalo, A. Serio, A. Paparella, G. Sacchetti, and G. Suzzi. 2012. Yeasts from Colombian Kumis as source of peptides with Angiotensin I converting enzyme (ACE) inhibitory activity in milk. International journal of Food Microbiology 159 (1):39–46. doi: 10.1016/j.ijfoodmicro.2012.07.028.
  • Chen, K., Y. Zhu, Y. Zhang, T. Hamza, H. Yu, A. Saint Fleur, J. Galen, Z. Yang, and H. Feng. 2020. A probiotic yeast-based immunotherapy against Clostridioides difficile infection. Science Translational Medicine 12 (567):eaax4905. doi: 10.1126/scitranslmed.aax4905.
  • Chen, Z., J. Shi, X. Yang, Y. Liu, B. Nan, and Z. Wang. 2016. Isolation of exopolysaccharide‐producing bacteria and yeasts from Tibetan kefir and characterisation of the exopolysaccharides. International Journal of Dairy Technology 69 (3):410–7. doi: 10.1111/1471-0307.12276.
  • Cottier, F., A. S. Tan, X. Xu, Y. Wang, and N. Pavelka. 2015. MIG1 regulates resistance of Candida albicans against the fungistatic effect of weak organic acids. Eukaryotic cell 14 (10):1054–61. doi: 10.1128/EC.00129-15.
  • Czerucka, D., I. Roux, and P. Rampal. 1994. Saccharomyces boulardii inhibits secretagogue-mediated adenosine 3’,5’-cyclic monophosphate induction in intestinal cells. Gastroenterology 106 (1):65–72. doi: 10.1016/s0016-5085(94)94403-2.
  • de Araújo, T. V., E. F. Andrade, R. V. Lobato, D. R. Orlando, N. F. Gomes, R. V. de Sousa, M. G. Zangeronimo, and L. J. Pereira. 2017. Effects of beta-glucans ingestion (Saccharomyces cerevisiae) on metabolism of rats receiving high-fat diet. Journal of Animal Physiology and Animal Nutrition 101 (2):349–58. doi: 10.1111/jpn.12452.
  • De Filippis, F., E. Parente, and D. Ercolini. 2017. Metagenomics insights into food fermentations. Microbial Biotechnology 10 (1):91–102.
  • De Roos, J., and L. De Vuyst. 2018. Acetic acid bacteria in fermented foods and beverages. Current Opinion in Biotechnology 49:115–9. doi: 10.1016/j.copbio.2017.08.007.
  • Diaz-Vergara, L., C. M. Pereyra, M. Montenegro, G. A. Pena, C. A. Aminahuel, and L. R. Cavaglieri. 2017. Encapsulated whey-native yeast Kluyveromyces marxianus as a feed additive for animal production. Food additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 34 (5):750–9. doi: 10.1080/19440049.2017.1290830.
  • Durmusoglu, D., I. S. Al’Abri, S. P. Collins, J. Cheng, A. Eroglu, C. L. Beisel, and N. Crook. 2021. In situ biomanufacturing of small molecules in the mammalian gut by probiotic Saccharomyces boulardii. ACS Synthetic Biology 10 (5):1039–52. doi: 10.1021/acssynbio.0c00562.
  • Encinas, J. P., Lopez-Diaz, T. M. Garcia-Lopez, M. L. Otero, A, and Moreno, B. 2000. Yeast populations on Spanish fermented sausages. Meat Science 54 (3):203–8. doi: 10.1016/s0309-1740(99)00080-7.
  • FAO/WHO. 2001. Probiotics in food-health and nutritional properties and guidelines for evaluation report of a joint FAO/WHO working group on drafting guidelines for the evaluation of probiotics in food, London, Otario, Canada, 30 April–1 May2002. Rome: FAO/WHO.
  • Fernandez-Pacheco Rodriguez, P., M. Arevalo-Villena, I. Zaparoli Rosa, and A. Briones Perez. 2018. Selection of potential non-Sacharomyces probiotic yeasts from food origin by a step-by-step approach. Food Research International (Ottawa, Ont.) 112:143–51. doi: 10.1016/j.foodres.2018.06.008.
  • Ferreira, I., D. de Sousa Melo, A. G. T. Menezes, H. C. Fonseca, B. B. T. de Assis, C. L. Ramos, M. Magnani, D. R. Dias, and R. F. Schwan. 2022. Evaluation of potentially probiotic yeasts and Lactiplantibacillus plantarum in co-culture for the elaboration of a functional plant-based fermented beverage. Food Research International (Ottawa, Ont.) 160 (111697):111697.
  • Fuquay, J. W., P. L. McSweeney, and P. F. Fox. 2011. Encyclopedia of dairy sciences. San Diego: Academic Press.
  • Ganguly, N. K., S. K. Bhattacharya, B. Sesikeran, G. B. Nair, B. S. Ramakrishna, H. P. S. Sachdev, V. K. Batish, A. S. Kanagasabapathy, V. Muthuswamy, S. C. Kathuria, et al. 2011. ICMR-DBT guidelines for evaluation of probiotics in food. Indian Journal of Medical Research 134 (1):22–5.
  • Gasch, A. P. 2002. The environmental stress response: A common yeast response to diverse environmental stresses. In Yeast stress responses, ed. S. Hohmann and W. H. Mager, 11–70. Heidelberg: Springer.
  • Gil-Rodríguez, A. M., A. V. Carrascosa, and T. Requena. 2015. Yeasts in foods and beverages: In vitro characterisation of probiotic traits. LWT - Food Science and Technology 64 (2):1156–62. doi: 10.1016/j.lwt.2015.07.042.
  • Gonzalez-Parraga, P., R. Sanchez-Fresneda, M. Martinez-Esparza, and J. C. Arguelles. 2008. Stress responses in yeasts: What rules apply? Archives of Microbiology 189 (4):293–6. doi: 10.1007/s00203-007-0332-8.
  • Gotcheva, V., E. Hristozova, T. Hristozova, M. Guo, Z. Roshkova, and A. Angelov. 2002. Assessment of potential probiotic properties of lactic acid bacteria and yeast strains. Food Biotechnology 16 (3):211–25. doi: 10.1081/FBT-120016668.
  • Greppi, A., F. Saubade, C. Botta, C. Humblot, J. P. Guyot, J. P, and L. Cocolin. 2017. Potential probiotic Pichia kudriavzevii strains and their ability to enhance folate content of traditional cereal-based African fermented food. Food microbiology 62:169–77. doi: 10.1016/j.fm.2016.09.016.
  • Gulati, M., and C. J. Nobile. 2016. Candida albicans biofilms: Development, regulation, and molecular mechanisms. Microbes and Infection 18 (5):310–21. doi: 10.1016/j.micinf.2016.01.002.
  • Gürkan Özlü, B., Y. Terzi, E. Uyar, F. Shatila, and H. T. Yalçın. 2022. Characterization and determination of the potential probiotic yeasts isolated from dairy products. Biologia 77 (5):1471–80. doi: 10.1007/s11756-022-01032-8.
  • Gut, A. M., T. Vasiljevic, T. Yeager, and O. N. Donkor. 2018. Salmonella infection - prevention and treatment by antibiotics and probiotic yeasts: A review. Microbiology (Reading, England) 164 (11):1327–44. doi: 10.1099/mic.0.000709.
  • Hatoum, R., S. Labrie, and I. Fliss. 2012. Antimicrobial and probiotic properties of yeasts: From fundamental to novel applications. Frontier Microbiology 3:421. doi: 10.3389/fmicb.2012.00421.
  • Hjortmo, S. B., A. M. Hellstrom, and T. A. Andlid. 2008. Production of folates by yeasts in Tanzanian fermented togwa. FEMS yeast Research 8 (5):781–7. doi: 10.1111/j.1567-1364.2008.00398.x.
  • Hjortmo, S., J. Patring, J. Jastrebova, and T. Andlid. 2005. Inherent biodiversity of folate content and composition in yeasts. Trends in Food Science & Technology 16 (6–7):311–6. doi: 10.1016/j.tifs.2005.03.014.
  • Hsiung, R. T., W. T. Fang, B. A. LePage, S. A. Hsu, C. H. Hsu, and J. Y. Chou. 2021. In vitro properties of potential probiotic indigenous yeasts originating from fermented food and beverages in Taiwan. Probiotics and Antimicrobial Proteins 13 (1):113–24. doi: 10.1007/s12602-020-09661-8.
  • Huseyin, C. E., P. W. O’Toole, P. D. Cotter, and P. D. Scanlan. 2017. Forgotten fungi-the gut mycobiome in human health and disease. FEMS microbiology Reviews 41 (4):479–511. doi: 10.1093/femsre/fuw047.
  • Jaehrig, S. C., S. Rohn, L. W. Kroh, L. G. Fleischer, and T. Kurz. 2007. In vitro potential antioxidant activity of (1–>3),(1–>6)-beta-D-glucan and protein fractions from Saccharomyces cerevisiae cell walls. Journal of Agricultural and Food Chemistry 55 (12):4710–6. doi: 10.1021/jf063209q.
  • Jawhara, S., and D. Poulain. 2007. Saccharomyces boulardii decreases inflammation and intestinal colonization by Candida albicans in a mouse model of chemically-induced colitis. Medical mycology 45 (8):691–700. doi: 10.1080/13693780701523013.
  • Jespersen, L., D. S. Nielsen, S. Honholt, and M. Jakobsen. 2005. Occurrence and diversity of yeasts involved in fermentation of West African cocoa beans. FEMS yeast Research 5 (4–5):441–53. doi: 10.1016/j.femsyr.2004.11.002.
  • Johnson, E. A. 2013. Biotechnology of non-Saccharomyces yeasts—the ascomycetes. Applied Microbiology and Biotechnology 97 (2):503–17. doi: 10.1007/s00253-012-4497-y.
  • Kasti, A. N., K. D. Synodinou, I. A. Pyrousis, M. D. Nikolaki and, and K. D. Triantafyllou. 2021. Probiotics regulating inflammation via NLRP3 inflammasome modulation: A potential therapeutic approach for COVID-19. Microorganisms 9 (11):2376. doi: 10.3390/microorganisms9112376.
  • Kmet, V., H. J. Flint, and R. J. Wallace. 1993. Probiotics and manipulation of rumen development and function. Archiv fur Tierernahrung 44 (1):1–10. doi: 10.1080/17450399309386053.
  • Koricha, A. D., D. Y. Han, K. Bacha, and F. Y. Bai. 2020. Diversity and distribution of yeasts in indigenous fermented foods and beverages of Ethiopia. Journal of the Science of Food and Agriculture 100 (9):3630–8. doi: 10.1002/jsfa.10391.
  • Kumura, H., Y. Tanoue, M. Tsukahara, T. Tanaka, and K. Shimazaki. 2004. Screening of dairy yeast strains for probiotic applications. Journal of Dairy Science 87 (12):4050–6. doi: 10.3168/jds.S0022-0302(04)73546-8.
  • Kunyeit, L., K. A. Anu-Appaiah, and R. P. Rao. 2020. Application of probiotic yeasts on Candida species associated infection. Journal of Fungi (Basel ) 6 (4):189. doi: 10.3390/jof6040189.
  • Kunyeit, L., N. K. Kurrey, K. A. Anu-Appaiah, and R. P. Rao. 2019. Probiotic yeasts inhibit virulence of non-albicans Candida species. mBio 10 (5):e02307–19. doi: 10.1128/mBio.02307-19.
  • Kunyeit, L., N. K. Kurrey, K. A. Anu-Appaiah, and R. P. Rao. 2021. Secondary metabolites from food-derived yeasts inhibit virulence of Candida albicans. mBio 12 (4):e0189121. doi: 10.1128/mBio.01891-21.
  • Lee, J. E., and E. Lee. 2022. The probiotic effects of the Saccharomyces cerevisiae 28-7 strain isolated from nuruk in a dss-induced colitis mouse model. Journal of Microbiology and Biotechnology 32 (7):877–84. doi: 10.4014/jmb.2206.06035.
  • Li, S., Y. Zhang, P. Yin, K. Zhang, Y. Liu, Y. Gao, Y. Li, T. Wang, S. Lu, and B. Li. 2021. Probiotic potential of gamma-aminobutyric acid (GABA)-producing yeast and its influence on the quality of cheese. Journal of Dairy Science 104 (6):6559–76. doi: 10.3168/jds.2020-19845.
  • Li, W., G. Fan, Z. Fu, W. Wang, Y. Xu, C. Teng, C. Zhang, R. Yang, B. Sun, and X. Li. 2020. Effects of fortification of Daqu with various yeasts on microbial community structure and flavor metabolism. Food research International (Ottawa, Ont.) 129:108837. doi: 10.1016/j.foodres.2019.108837.
  • Liu, Y., Q. Liu, G. Ye, A. Khan, J. Liu, F. Gan, X. Zhang, S. Kumbhar, and K. Huang. 2015. Protective effects of Selenium-enriched probiotics on carbon tetrachloride-induced liver fibrosis in rats. Journal of Agricultural and Food Chemistry 63 (1):242–9. doi: 10.1021/jf5039184.
  • Liu, Y., Q. Wu, X. Wu, S. A. Algharib, F. Gong, J. Hu, W. Luo, M. Zhou, Y. Pan, Y. Yan, et al. 2021. Structure, preparation, modification, and bioactivities of beta-glucan and mannan from yeast cell wall. International journal of Biological Macromolecules 173:445–56. doi: 10.1016/j.ijbiomac.2021.01.125.
  • Lohith, K., and K. A. Anu-Appaiah. 2014. In vitro probiotic characterization of yeasts of food and environmental origin. International journal of Probiotics and Prebiotics 9:1–6.
  • Lohith, K., and K. A. Anu-Appaiah. 2018. Antagonistic effect of Saccharomyces cerevisiae KTP and Issatchenkia occidentalis ApC on hyphal development and adhesion of Candida albicans. Medical mycology 56 (8):1023–32. doi: 10.1093/mmy/myx156.
  • Ma, P., T. Li, F. Ji, H. Wang, and J. Pang. 2015. Effect of GABA on blood pressure and blood dynamics of anesthetic rats. International journal of Clinical and Experimental Medicine 8 (8):14296–302.
  • Macareno-Castro, J., A. Solano-Salazar, L. T. Dong, M. Mohiuddin, and J. L. Espinoza. 2022. Fecal microbiota transplantation for carbapenem-resistant enterobacteriaceae: A systematic review. The Journal of Infection 84 (6):749–59. doi: 10.1016/j.jinf.2022.04.028.
  • Malka, O., D. Kalson, K. Yaniv, R. Shafir, M. Rajendran, O. Ben-David, A. Kushmaro, M. M. Meijler, and R. Jelinek. 2021. Cross-kingdom inhibition of bacterial virulence and communication by probiotic yeast metabolites. Microbiome 9 (1):70. doi: 10.1186/s40168-021-01027-8.
  • Martinez, M. P., A. P. Magnoli, M. L. Gonzalez Pereyra, and L. Cavaglieri. 2019. Probiotic bacteria and yeasts adsorb aflatoxin M1 in milk and degrade it to less toxic AFM1-metabolites. Toxicon : Official Journal of the International Society on Toxinology 172:1–7. doi: 10.1016/j.toxicon.2019.10.001.
  • Martins, F. S., R. M. Nardi, R. M. Arantes, C. A. Rosa, M. J. Neves, and J. R. Nicoli. 2005. Screening of yeasts as probiotic based on capacities to colonize the gastrointestinal tract and to protect against enteropathogen challenge in mice. The Journal of General and Applied Microbiology 51 (2):83–92.
  • Menezes, A. G. T., C. L. Ramos, G. Cenzi, D. S. Melo, D. R. Dias, and R. F. Schwan. 2020. Probiotic potential, antioxidant activity, and phytase production of indigenous yeasts isolated from indigenous fermented foods. Probiotics and Antimicrobial Proteins 12 (1):280–8. doi: 10.1007/s12602-019-9518-z.
  • Mirzaei, M., S. Mirdamadi, M. R. Ehsani, M. Aminlari, and E. Hosseini. 2015. Purification and identification of antioxidant and ACE-inhibitory peptide from Saccharomyces cerevisiae protein hydrolysate. Journal of Functional Foods 19:259–68. doi: 10.1016/j.jff.2015.09.031.
  • Morales-Menchén, A., F. Navarro-García, J. P. Guirao-Abad, E. Román, D. Prieto, I. V. Coman, J. Pla, and R. Alonso-Monge. 2018. Non-canonical activities of Hog1 control sensitivity of Candida albicans to killer toxins from Debaryomyces hansenii. Frontiers in Cellular and Infection Microbiology 8:135. doi: 10.3389/fcimb.2018.00135.
  • Motey, G. A., P. G. Johansen, J. Owusu-Kwarteng, L. A. Ofori, K. Obiri-Danso, H. Siegumfeldt, N. Larsen, and L. Jespersen. 2020. Probiotic potential of Saccharomyces cerevisiae and Kluyveromyces marxianus isolated from West African spontaneously fermented cereal and milk products. Yeast (Chichester, England) 37 (9–10):403–12. doi: 10.1002/yea.3513.
  • Mugula, J. K., S. A. Nnko, J. A. Narvhus, and T. Sorhaug. 2003. Microbiological and fermentation characteristics of togwa, a Tanzanian fermented food. International journal of Food Microbiology 80 (3):187–99. doi: 10.1016/s0168-1605(02)00141-1.
  • Murzyn, A., A. Krasowska, D. Augustyniak, G. Majkowska-Skrobek, M. Łukaszewicz, and D. Dziadkowiec. 2010a. The effect of Saccharomyces boulardii on Candida albicans-infected human intestinal cell lines Caco-2 and Intestin 407. FEMS microbiology Letters 310 (1):17–23. doi: 10.1111/j.1574-6968.2010.02037.x.
  • Murzyn, A., A. Krasowska, P. Stefanowicz, D. Dziadkowiec, and M. Łukaszewicz. 2010b. Capric acid secreted by Saccharomyces boulardii inhibits Candida albicans filamentous growth, adhesion and biofilm formation. PLoS One 5 (8):e12050. DOI:10.1371/journal.pone.0012050
  • Nair, B. M., and J. B. Prajapati. 2003. The history of fermented foods. In Handbook of fermented functional food. 2nd ed., ed. E. R. Farnworth. 1–24. Boca Raton, FL: CRC Press.
  • Nataraj, B. H., and R. H. Mallappa. 2022. Role of probiotics in infections with multidrug-resistant organisms. In Probiotics in the prevention and management of human diseases, eds. M.K. Dwivedi, A. Sankaranarayanan, N. Amaresan, and H. Helen Kemp, 265–279. Academic Press.
  • Noverr, M. C., and G. B. Huffnagle. 2004. Regulation of Candida albicans morphogenesis by fatty acid metabolites. Infection and Immunity 72 (11):6206–10. doi: 10.1128/IAI.72.11.6206-6210.2004.
  • Nuraida, L. 2015. A review: Health promoting lactic acid bacteria in traditional Indonesian fermented foods. Food Science and Human Wellness 4 (2):47–55. doi: 10.1016/j.fshw.2015.06.001.
  • Ogunremi, O. R., A. I. Sanni, and R. Agrawal. 2015. Probiotic potentials of yeasts isolated from some cereal‐based N igerian traditional fermented food products. Journal of Applied Microbiology 119 (3):797–808. doi: 10.1111/jam.12875.
  • Padilla, B., J. V. Gil, and P. Manzanares. 2016. Past and future of non-saccharomyces yeasts: From spoilage microorganisms to biotechnological tools for improving wine aroma complexity. Frontiers in Microbiology 7:411. doi: 10.3389/fmicb.2016.00411.
  • Parapouli, M., A. Vasileiadis, A. S. Afendra, and E. Hatziloukas. 2020. Saccharomyces cerevisiae and its industrial applications. AIMS Microbiology 6 (1):1–31. doi: 10.3934/microbiol.2020001.
  • Pedersen, L. L., J. Owusu-Kwarteng, L. Thorsen, and L. Jespersen. 2012. Biodiversity and probiotic potential of yeasts isolated from Fura, a West African spontaneously fermented cereal. International Journal of Food Microbiology 159 (2):144–51. doi: 10.1016/j.ijfoodmicro.2012.08.016.
  • Pereira, R. P., R. Jadhav, A. Baghela, and D. A. Barretto. 2021. In Vitro Assessment of probiotic potential of Saccharomyces cerevisiae DABRP5 isolated from bollo batter, a traditional Goan fermented food. Probiotics and Antimicrobial Proteins 13 (3):796–808. doi: 10.1007/s12602-020-09734-8.
  • Pericolini, E., E. Gabrielli, N. Ballet, S. Sabbatini, E. Roselletti, A. Cayzeele Decherf, F. Pélerin, E. Luciano, S. Perito, P. Jüsten, et al. 2017. Therapeutic activity of a Saccharomyces cerevisiae-based probiotic and inactivated whole yeast on vaginal candidiasis. Virulence 8 (1):74–90. doi: 10.1080/21505594.2016.1213937.
  • Perricone, M., A. Bevilacqua, M. R. Corbo, and M. Sinigaglia. 2014. Technological characterization and probiotic traits of yeasts isolated from Altamura sourdough to select promising microorganisms as functional starter cultures for cereal-based products. Food Microbiology 38:26–35. doi: 10.1016/j.fm.2013.08.006.
  • Psomas, E., C. Andrighetto, E. Litopoulou-Tzanetaki, A. Lombardi, and N. Tzanetakis. 2001. Some probiotic properties of yeast isolates from infant faeces and Feta cheese. International Journal of Food Microbiology 69 (1–2):125–33. doi: 10.1016/S0168-1605(01)00580-3.
  • Rannikko, J., V. Holmberg, M. Karppelin, P. Arvola, R. Huttunen, E. Mattila, N. Kerttula, T. Puhto, Ü. Tamm, I. Koivula, et al. 2021. Fungemia and other fungal infections associated with use of Saccharomyces boulardii probiotic supplements. Emerging Infectious Diseases 27 (8):2090–6.
  • Rodriguez, D. L., M. M. Quail, A. D. Hernday, and C. J. Nobile. 2020. Transcriptional circuits regulating developmental processes in Candida albicans. Frontiers in Cellular and Infection Microbiology 10:605711. doi: 10.3389/fcimb.2020.605711.
  • Romanin, D. E., S. Llopis, S. Genoves, P. Martorell, V. D. Ramon, G. L. Garrote, and M. Rumbo. 2016. Probiotic yeast Kluyveromyces marxianus CIDCA 8154 shows anti-inflammatory and anti-oxidative stress properties in in vivo models. Beneficial Microbes 7 (1):83–93. doi: 10.3920/BM2015.0066.
  • Rychen, G., G. Aquilina, G. Azimonti, V. Bampidis, M. d L. Bastos, G. Bories, A. Chesson, P. S. Cocconcelli, G. Flachowsky, J. Gropp, et al. 2018. Guidance on the characterization of microorganisms used as feed additives or as production organisms. EFSA Journal. European Food Safety Authority 16 (3):e05206. doi: 10.2903/j.efsa.2018.5206.
  • Saadat, Y. R., A. Y. Khosroushahi, A. A. Movassaghpour, M. Talebi, and B. P. Gargari. 2020. Modulatory role of exopolysaccharides of Kluyveromyces marxianus and Pichia kudriavzevii as probiotic yeasts from dairy products in human colon cancer cells. Journal of Functional Foods 64:103675. doi: 10.1016/j.jff.2019.103675.
  • Saber, A., B. Alipour, Z. Faghfoori, A. M. Jam, and A. Y. Khosroushahi. 2017. Secretion metabolites of probiotic yeast, Pichia kudriavzevii AS-12, induces apoptosis pathways in humaSSSn colorectal cancer cell lines. Nutrition Research (New York, N.Y.) 41:36–46. doi: 10.1016/j.nutres.2017.04.001.
  • Saber, A., B. Alipour, Z. Faghfoori, and A. Y. Khosroushahi. 2017. Secretion metabolites of dairy Kluyveromyces marxianus AS41 isolated as probiotic, induces apoptosis in different human cancer cell lines and exhibit anti-pathogenic effects. Journal of Functional Foods 34:408–21. doi: 10.1016/j.jff.2017.05.007.
  • Sadeghi, A., M. Ebrahimi, S. Shahryari, M. S. Kharazmi, and S. M. Jafari. 2022. Food applications of probiotic yeasts; focusing on their techno-functional, postbiotic and protective capabilities. Trends in Food Science & Technology 128:278–95. doi: 10.1016/j.tifs.2022.08.018.
  • Salehi, R. M., M. Bayat, P. Owlia, S. L. M. Gargari, and S. J. Hashemi. 2018. Effect of Saccharomyces boulardii extract on SAP2 gene expression and antifungal susceptibility of Candida albicans. Jundishapur Journal of Microbiology 11 (3):e59891.
  • Sarkar, P., D. H. L. Kumar, C. Dhumal, S. S. Panigrahi, and R. Choudhary. 2015. Traditional and ayurvedic foods of Indian origin. Journal of Ethnic Foods 2 (3):97–109. doi: 10.1016/j.jef.2015.08.003.
  • Schulze, J., and U. Sonnenborn. 2009. Yeasts in the gut: From commensals to infectious agents. Deutsches Arzteblatt International 106 (51–52):837–42. doi: 10.3238/arztebl.2009.0837.
  • Serra, J. L., F. G. Moura, G. V. de Melo Pereira, C. R. Soccol, H. Rogez, and S. Darnet. 2019. Determination of the microbial community in Amazonian cocoa bean fermentation by Illumina-based metagenomic sequencing. Lwt 106:229–39. doi: 10.1016/j.lwt.2019.02.038.
  • Silva, T., M. Reto, M. Sol, A. Peito, C. M. Peres, C. Peres, and F. X. Malcata. 2011. Characterization of yeasts from Portuguese brined olives, with a focus on their potentially probiotic behavior. LWT - Food Science and Technology 44 (6):1349–54. doi: 10.1016/j.lwt.2011.01.029.
  • Simões, L. A., A. Cristina de Souza, I. Ferreira, D. S. Melo, L. A. A. Lopes, M. Magnani, R. F. Schwan, and D. R. Dias. 2021. Probiotic properties of yeasts isolated from Brazilian fermented table olives. Journal of Applied Microbiology 131 (4):1983–97. doi: 10.1111/jam.15065.
  • Singh, T. A., K. R. Devi, G. Ahmed, and K. Jeyaram. 2014. Microbial and endogenous origin of fibrinolytic activity in traditional fermented foods of Northeast India. Food Research International 55:356–62. doi: 10.1016/j.foodres.2013.11.028.
  • Srinivas, B., G. S. Rani, B. K. Kumar, B. Chandrasekhar, K. V. Krishna, K. V. T. A. Devi, and B. Bhima. 2017. Evaluating the probiotic and therapeutic potentials of Saccharomyces cerevisiae strain (OBS2) isolated from fermented nectar of toddy palm. AMB Express 7 (1):2. doi: 10.1186/s13568-016-0301-1.
  • Suryabhan, P., K. Lohith, and K. A. Anu-Appaiah. 2019. Sucrose and sorbitol supplementation on maltodextrin encapsulation enhance the potential probiotic yeast survival by spray drying. Lwt 107:243–8. doi: 10.1016/j.lwt.2019.03.002.
  • Szajewska, H., and M. Kołodziej. 2015. Systematic review with meta‐analysis: Saccharomyces boulardii in the prevention of antibiotic‐associated diarrhoea. Alimentary Pharmacology & Therapeutics 42 (7):793–801.
  • Teoh, A. L., G. Heard, and J. Cox. 2004. Yeast ecology of kombucha fermentation. International Journal of Food Microbiology 95 (2):119–26. doi: 10.1016/j.ijfoodmicro.2003.12.020.
  • Tiago, F. C. P., F. S. Martins, E. L. S. Souza, P. F. P. Pimenta, H. R. C. Araujo, I. M. Castro, R. L. Brandão, and J. R. Nicoli. 2012. Adhesion to the yeast cell surface as a mechanism for trapping pathogenic bacteria by Saccharomyces probiotics. Journal of Medical Microbiology 61 (9):1194–207. doi: 10.1099/jmm.0.042283-0.
  • van der Aa Kuhle, A., K. Skovgaard, and L. Jespersen. 2005. In vitro screening of probiotic properties of Saccharomyces cerevisiae var. boulardii and food-borne Saccharomyces cerevisiae strains. International Journal of Food Microbiology 101 (1):29–39. doi: 10.1016/j.ijfoodmicro.2004.10.039.
  • Vanderpool, C., F. Yan, and D. B. Polk. 2008. Mechanisms of probiotic action: Implications for therapeutic applications in inflammatory bowel diseases. Inflammatory Bowel Diseases 14 (11):1585–96. doi: 10.1002/ibd.20525.
  • Vejarano, R., and A. Gil-Calderón. 2021. Commercially available non-Saccharomyces yeasts for winemaking: Current market, advantages over Saccharomyces, biocompatibility, and safety. Fermentation 7 (3):171. doi: 10.3390/fermentation7030171.
  • Walsh, A. M., F. Crispie, K. Kilcawley, O. O’Sullivan, M. G. O’Sullivan, M. J. Claesson, and P. D. Cotter. 2016. Microbial succession and flavor production in the fermented dairy beverage kefir. Msystems 1 (5):e00052-16. doi: 10.1128/mSystems.00052-16.
  • Williams, P. E., C. A. Tait, G. M. Innes, and C. J. Newbold. 1991. Effects of the inclusion of yeast culture (Saccharomyces cerevisiae plus growth medium) in the diet of dairy cows on milk yield and forage degradation and fermentation patterns in the rumen of steers. Journal of Animal Science 69 (7):3016–26. doi: 10.2527/1991.6973016x.
  • Winters, M., D. Panayotides, M. Bayrak, G. Rémont, C. G. Viejo, D. Liu, B. Le, Y. Liu, J. Luo, P. Zhang, et al. 2019. Defined co-cultures of yeast and bacteria modify the aroma, crumb and sensory properties of bread. Journal of Applied Microbiology 127 (3):778–93. doi: 10.1111/jam.14349.
  • Witthuhn, R. C., T. Schoeman, and T. J. Britz. 2005. Characterisation of the microbial population at different stages of Kefir production and Kefir grain mass cultivation. International Dairy Journal 15 (4):383–9. doi: 10.1016/j.idairyj.2004.07.016.
  • Wolfe, B. E., J. E. Button, M. Santarelli, and R. J. Dutton. 2014. Cheese rind communities provide tractable systems for in situ and in vitro studies of microbial diversity. Cell 158 (2):422–33. doi: 10.1016/j.cell.2014.05.041.
  • Zeng, X., J. Fan, L. He, Z. Duan, and W. Xia. 2019. Technological properties and probiotic potential of yeasts isolated from traditional low-salt fermented Chinese fish Suan yu. Journal of Food Biochemistry 43 (8):e12865. doi: 10.1111/jfbc.12865.
  • Zhang, L., Y. Yue, X. Wang, W. Dai, C. Piao, and H. Yu. 2022. Optimization of fermentation for gamma-aminobutyric acid (GABA) production by yeast Kluyveromyces marxianus C21 in okara (soybean residue). Bioprocess and Biosystems Engineering 45 (7):1111–23. doi: 10.1007/s00449-022-02702-2.
  • Zuzuarregui, A., and M. L. del Olmo. 2004. Expression of stress response genes in wine strains with different fermentative behavior. FEMS Yeast Research 4 (7):699–710. doi: 10.1016/j.femsyr.2004.01.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.