626
Views
5
CrossRef citations to date
0
Altmetric
Reviews

Selenium-enriched foods and their ingredients: As intervention for the vicious cycle between autophagy and overloaded stress responses in Alzheimer’s disease

, , ORCID Icon, , , ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Alcântara, D. B., A. P. Dionísio, A. G. Artur, B. K. S. Silveira, A. F. Lopes, J. A. C. Guedes, L. R. Luz, R. F. Nascimento, G. S. Lopes, H. H. M. Hermsdorff, et al. 2022. Selenium in Brazil nuts: An overview of agronomical aspects, recent trends in analytical chemistry, and health outcomes. Food Chemistry 372:131207. doi: 10.1016/j.foodchem.2021.131207.
  • Alzheimer’s Association. 2022. Alzheimer’s disease facts and figures. Alzheimer’s & Dementia 18 (4):700–89. doi: 10.1002/alz.12638.
  • Aman, Y., T. Schmauck-Medina, M. Hansen, R. I. Morimoto, A. K. Simon, I. Bjedov, K. Palikaras, A. Simonsen, T. Johansen, N. Tavernarakis, et al. 2021. Autophagy in healthy aging and disease. Nature Aging 1 (8):634–50. doi: 10.1038/s43587-021-00098-4.
  • Barbara, G., M. R. Barbaro, D. Fuschi, M. Palombo, F. Falangone, C. Cremon, G. Marasco, and V. Stanghellini. 2021. Inflammatory and microbiota-related regulation of the intestinal epithelial barrier. Frontiers in Nutrition 8:718356. doi: 10.3389/fnut.2021.718356.
  • Bourdenx, M., A. Martín-Segura, A. Scrivo, J. A. Rodriguez-Navarro, S. Kaushik, I. Tasset, A. Diaz, N. J. Storm, Q. Xin, Y. R. Juste, et al. 2021. Chaperone-mediated autophagy prevents collapse of the neuronal metastable proteome. Cell 184 (10):2696–714.e25. doi: 10.1016/j.cell.2021.03.048.
  • Cardoso, B. R., T. P. Ong, W. Jacob-Filho, O. Jaluul, M. I. Freitas, and S. M. Cozzolino. 2010. Nutritional status of selenium in Alzheimer’s disease patients. The British Journal of Nutrition 103 (6):803–6. doi: 10.1017/S0007114509992832.
  • Cosin-Roger, J., S. Simmen, H. Melhem, K. Atrott, I. Frey-Wagner, M. Hausmann, C. de Vallière, M. R. Spalinger, P. Spielmann, R. H. Wenger, et al. 2017. Hypoxia ameliorates intestinal inflammation through NLRP3/mTOR downregulation and autophagy activation. Nature Communications 8 (1):98. doi: 10.1038/s41467-017-00213-3.
  • Di Tommaso, N., A. Gasbarrini, and F. R. Ponziani. 2021. Intestinal barrier in human health and disease. International Journal of Environmental Research and Public Health 18 (23):12836. doi: 10.3390/ijerph182312836.
  • Dong, Z., Y. Liu, G. Dong, and H. Wu. 2021. Effect of boiling and frying on the selenium content, speciation, and in vitro bioaccessibility of selenium-biofortified potato (Solanum tuberosum L.). Food Chemistry 348:129150. doi: 10.1016/j.foodchem.2021.129150.
  • Du, X., Q. Shi, Y. Zhao, Y. Xie, X. Li, Q. Liu, J. Iqbal, H. Zhang, X. Liu, and L. Shen. 2021. Se-Methylselenocysteine (SMC) improves cognitive deficits by attenuating synaptic and metabolic abnormalities in Alzheimer’s mice model: A proteomic study. ACS Chemical Neuroscience 12 (7):1112–32. doi: 10.1021/acschemneuro.0c00549.
  • Fang, E. F., Y. Hou, K. Palikaras, B. A. Adriaanse, J. S. Kerr, B. Yang, S. Lautrup, M. M. Hasan-Olive, D. Caponio, X. Dan, et al. 2019. Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nature Neuroscience 22 (3):401–12. doi: 10.1038/s41593-018-0332-9.
  • Fang, Y., X. Pan, E. Zhao, Y. Shi, X. Shen, J. Wu, F. Pei, Q. Hu, and W. Qiu. 2019. Isolation and identification of immunomodulatory selenium-containing peptides from selenium-enriched rice protein hydrolysates. Food Chemistry 275:696–702. doi: 10.1016/j.foodchem.2018.09.115.
  • Feng, M., X. Wang, H. Xiong, T. Qiu, H. Zhang, F. Guo, L. Jiang, and Y. Sun. 2021. Anti-inflammatory effects of three selenium-enriched brown rice protein hydrolysates in LPS-induced RAW264.7 macrophages via NF-κB/MAPKs signaling pathways. Journal of Functional Foods 76:104320. doi: 10.1016/j.jff.2020.104320.
  • Galić, L., T. Vinković, B. Ravnjak, and Z. Lončarić. 2021. Agronomic biofortification of significant cereal crops with selenium—A review. Agronomy 11 (5):1015. doi: 10.3390/agronomy11051015.
  • González-Salitre, L., A. Román-Gutiérrez, E. Contreras-López, M. Bautista-Ávila, G. Rodríguez-Serrano, and L. González-Olivares. 2021. Promising use of selenized yeast to develop new enriched food: Human health implications. Food Reviews International 1–18. doi: 10.1080/87559129.2021.1934695.
  • Haq, S., H. Wang, J. Grondin, S. Banskota, J. K. Marshall, I. I. Khan, U. Chauhan, F. Cote, Y. H. Kwon, D. Philpott, et al. 2021. Disruption of autophagy by increased 5-HT alters gut microbiota and enhances susceptibility to experimental colitis and Crohn’s disease. Science Advances 7 (45):eabi6442. doi: 10.1126/sciadv.abi6442.
  • Haq, S., J. Grondin, S. Banskota, and W. I. Khan. 2019. Autophagy: Roles in intestinal mucosal homeostasis and inflammation. Journal of Biomedical Science 26 (1):19. doi: 10.1186/s12929-019-0512-2.
  • Hark, T. J., N. R. Rao, C. Castillon, T. Basta, S. Smukowski, H. Bao, A. Upadhyay, E. Bomba-Warczak, T. Nomura, E. T. O’Toole, et al. 2021. Pulse-chase proteomics of the App Knock-in mouse models of Alzheimer’s disease reveals that synaptic dysfunction originates in presynaptic terminals. Cell Systems 12 (2):141–58.e9. doi: 10.1016/j.cels.2020.11.007.
  • Houtman, J., K. Freitag, N. Gimber, J. Schmoranzer, F. L. Heppner, and M. Jendrach. 2019. Beclin1-driven autophagy modulates the inflammatory response of microglia via NLRP3. The EMBO Journal 38 (4):e99430. doi: 10.15252/embj.201899430.
  • Hu, J., Z. Wang, L. Zhang, J. Peng, T. Huang, X. Yang, B. R. Jeong, and Q. Yang. 2022. Seleno-amino acids in vegetables: A review of their forms and metabolism. Frontiers in Plant Science 13:804368. doi: 10.3389/fpls.2022.804368.
  • Huang, R., Z. Zhu, Q. Wu, A. E. D. A. Bekhit, S. Wu, M. Chen, J. Wang, and Y. Ding. 2021. Whole-plant foods and their macromolecules: Untapped approaches to modulate neuroinflammation in Alzheimer’s disease. Critical Reviews in Food Science and Nutrition 1–19. doi: 10.1080/10408398.2021.1975093.
  • Hyrslova, I., A. Kana, V. Kantorova, G. Krausova, I. Mrvikova, and I. Doskocil. 2022. Selenium accumulation and biotransformation in Streptococcus, Lactococcus, and Enterococcus strains. Journal of Functional Foods 92:105056. doi: 10.1016/j.jff.2022.105056.
  • Jaishy, B., Q. Zhang, H. S. Chung, C. Riehle, J. Soto, S. Jenkins, P. Abel, L. A. Cowart, J. E. Van Eyk, and E. D. Abel. 2015. Lipid-induced NOX2 activation inhibits autophagic flux by impairing lysosomal enzyme activity. Journal of Lipid Research 56 (3):546–61. doi: 10.1194/jlr.M055152.
  • Joshi, V., A. Upadhyay, V. K. Prajapati, and A. Mishra. 2020. How autophagy can restore proteostasis defects in multiple diseases? Medicinal Research Reviews 40 (4):1385–439. doi: 10.1002/med.21662.
  • Khan, S., H. L. Mentrup, E. A. Novak, V. S. Siow, Q. Wang, E. C. Crawford, C. Schneider, T. E. Comerford, B. Firek, M. B. Rogers, et al. 2022. Cyclic GMP-AMP synthase contributes to epithelial homeostasis in intestinal inflammation via Beclin-1-mediated autophagy. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 36 (5):e22282. doi: 10.1096/fj.202200138R.
  • Kocot, A. M., and B. Wróblewska. 2021. Fermented products and bioactive food compounds as a tool to activate autophagy and promote the maintenance of the intestinal barrier function. Trends in Food Science & Technology 118:905–19. doi: 10.1016/j.tifs.2021.11.014.
  • Kwon, Y., Y. Bang, S. H. Moon, A. Kim, and H. J. Choi. 2020. Amitriptyline interferes with autophagy-mediated clearance of protein aggregates via inhibiting autophagosome maturation in neuronal cells. Cell Death & Disease 11 (10):874. doi: 10.1038/s41419-020-03085-6.
  • Lassen, K. G., and R. J. Xavier. 2018. Mechanisms and function of autophagy in intestinal disease. Autophagy 14 (2):216–20. doi: 10.1080/15548627.2017.1389358.
  • Leiter, O., Z. Zhuo, R. Rust, J. M. Wasielewska, L. Grönnert, S. Kowal, R. W. Overall, V. S. Adusumilli, D. G. Blackmore, A. Southon, et al. 2022. Selenium mediates exercise-induced adult neurogenesis and reverses learning deficits induced by hippocampal injury and aging. Cell Metabolism 34 (3):408–23.e8. doi: 10.1016/j.cmet.2022.01.005.
  • Li, P., Y. Ma, C. Yu, S. Wu, K. Wang, H. Yi, and W. Liang. 2021. Autophagy and aging: Roles in skeletal muscle, eye, brain and hepatic tissue. Frontiers in Cell and Developmental Biology 9:752962. doi: 10.3389/fcell.2021.752962.
  • Li, Q., Y. Wu, J. Chen, A. Xuan, and X. Wang. 2022. Microglia and immunotherapy in Alzheimer’s disease. Acta Neurologica Scandinavica 145 (3):273–8. doi: 10.1111/ane.13551.
  • Liu, K., and M. Ning. 2021. Antioxidant activity stability and digestibility of protein from Se-enriched germinated brown rice. LWT-Food Science and Technology 142:111032. doi: 10.1016/j.lwt.2021.111032.
  • Liu, K., R. Du, and F. Chen. 2020. Stability of the antioxidant peptide SeMet-Pro-Ser identified from selenized brown rice protein hydrolysates. Food Chemistry 319:126540. doi: 10.1016/j.foodchem.2020.126540.
  • Liu, W., T. Hou, W. Shi, D. Guo, and H. He. 2018. Hepatoprotective effects of selenium-biofortified soybean peptides on liver fibrosis induced by tetrachloromethane. Journal of Functional Foods 50:183–91. doi: 10.1016/j.jff.2018.09.034.
  • Ma, L., Y. Ni, Z. Wang, W. Tu, L. Ni, F. Zhuge, A. Zheng, L. Hu, Y. Zhao, L. Zheng, et al. 2020. Spermidine improves gut barrier integrity and gut microbiota function in diet-induced obese mice. Gut Microbes 12 (1):1832857. doi: 10.1080/19490976.2020.1832857.
  • Maseko, T., K. Howell, F. R. Dunshea, and K. Ng. 2014. Selenium-enriched Agaricus bisporus increases expression and activity of glutathione peroxidase-1 and expression of glutathione peroxidase-2 in rat colon. Food Chemistry 146:327–33. doi: 10.1016/j.foodchem.2013.09.074.
  • Menzies, F. M., A. Fleming, A. Caricasole, C. F. Bento, S. P. Andrews, A. Ashkenazi, J. Füllgrabe, A. Jackson, M. Jimenez Sanchez, C. Karabiyik, et al. 2017. Autophagy and neurodegeneration: Pathogenic mechanisms and therapeutic opportunities. Neuron 93 (5):1015–34. doi: 10.1016/j.neuron.2017.01.022.
  • Pan, H. H., X. X. Zhou, Y. Y. Ma, W. S. Pan, F. Zhao, M. S. Yu, and J. Q. Liu. 2020. Resveratrol alleviates intestinal mucosal barrier dysfunction in dextran sulfate sodium-induced colitis mice by enhancing autophagy. World Journal of Gastroenterology 26 (33):4945–59. doi: 10.3748/wjg.v26.i33.4945.
  • Pang, Y., D. Wu, Y. Ma, Y. Cao, Q. Liu, M. Tang, Y. Pu, and T. Zhang. 2021. Reactive oxygen species trigger NF-κB-mediated NLRP3 inflammasome activation involvement in low-dose CdTe QDs exposure-induced hepatotoxicity. Redox Biology 47:102157. doi: 10.1016/j.redox.2021.102157.
  • Parker, A., S. Fonseca, and S. R. Carding. 2020. Gut microbes and metabolites as modulators of blood-brain barrier integrity and brain health. Gut Microbes 11 (2):135–57. doi: 10.1080/19490976.2019.1638722.
  • Plaza-Sirvent, C., B. Zhao, A. W. Bronietzki, M. C. Pils, N. Tafrishi, M. Schuster, T. Strowig, and I. Schmitz. 2021. A central role for Atg5 in microbiota-dependent Foxp3+ RORγt+ Treg cell preservation to maintain intestinal immune homeostasis. Frontiers in Immunology 12:705436. doi: 10.3389/fimmu.2021.705436.
  • Pophaly, S. D., Poonam, P. Singh, H. Kumar, S. K. Tomar, and R. Singh. 2014. Selenium enrichment of lactic acid bacteria and bifidobacteria: A functional food perspective. Trends in Food Science & Technology 39 (2):135–45. doi: 10.1016/j.tifs.2014.07.006.
  • Pyrzynska, K., and A. Sentkowska. 2021. Selenium in plant foods: Speciation analysis, bioavailability, and factors affecting composition. Critical Reviews in Food Science and Nutrition 61 (8):1340–52. doi: 10.1080/10408398.2020.1758027.
  • Qiu, Y., J. Zhang, R. Ji, Y. Zhou, L. Shao, D. Chen, and J. Tan. 2019. Preventative effects of selenium-enriched Bifidobacterium longum on irinotecan-induced small intestinal mucositis in mice. Beneficial Microbes 10 (5):569–77. doi: 10.3920/BM2018.0096.
  • Raftery, A. L., E. Tsantikos, N. L. Harris, and M. L. Hibbs. 2020. Links between inflammatory bowel disease and chronic obstructive pulmonary disease. Frontiers in Immunology 11:2144. doi: 10.3389/fimmu.2020.02144.
  • Rocchi, A., S. Yamamoto, T. Ting, Y. Fan, K. Sadleir, Y. Wang, W. Zhang, S. Huang, B. Levine, R. Vassar, et al. 2017. A Becn1 mutation mediates hyperactive autophagic sequestration of amyloid oligomers and improved cognition in Alzheimer’s disease. PLoS Genetics 13 (8):e1006962. doi: 10.1371/journal.pgen.1006962.
  • Sharma, C., and S. R. Kim. 2021. Linking oxidative stress and proteinopathy in Alzheimer’s disease. Antioxidants 10 (8):1231. doi: 10.3390/antiox10081231.
  • She, H., Y. He, Y. Zhao, and Z. Mao. 2018. Release the autophage brake on inflammation: The MAPK14/p38α-ULK1 pedal. Autophagy 14 (6):1097–8. doi: 10.1080/15548627.2018.1446626.
  • Shen, Y., Y. Zhang, J. Du, B. Jiang, T. Shan, H. Li, H. Bao, and Y. Si. 2021. CXCR5 down-regulation alleviates cognitive dysfunction in a mouse model of sepsis-associated encephalopathy: Potential role of microglial autophagy and the p38MAPK/NF-κB/STAT3 signaling pathway. Journal of Neuroinflammation 18 (1):246. doi: 10.1186/s12974-021-02300-1.
  • Song, G. L., C. Chen, Q. Y. Wu, Z. H. Zhang, R. Zheng, Y. Chen, S. Z. Jia, and J. Z. Ni. 2018. Selenium-enriched yeast inhibited beta-amyloid production and modulated autophagy in a triple transgenic mouse model of Alzheimer’s disease. Metallomics: Integrated Biometal Science 10 (8):1107–15. doi: 10.1039/c8mt00041g.
  • Song, T., X. Song, C. Zhu, R. Patrick, M. Skurla, I. Santangelo, M. Green, D. Harper, B. Ren, B. P. Forester, et al. 2021. Mitochondrial dysfunction, oxidative stress, neuroinflammation, and metabolic alterations in the progression of Alzheimer’s disease: A meta-analysis of in vivo magnetic resonance spectroscopy studies. Ageing Research Reviews 72:101503. doi: 10.1016/j.arr.2021.101503.
  • Song, X., L. Qiao, S. Yan, Y. Chen, X. Dou, and C. Xu. 2021. Preparation, characterization, and in vivo evaluation of anti-inflammatory activities of selenium nanoparticles synthesized by Kluyveromyces lactis GG799. Food & Function 12 (14):6403–15. doi: 10.1039/d1fo01019k.
  • Talebi, M., S. A. Mohammadi Vadoud, A. Haratian, M. Talebi, T. Farkhondeh, A. M. Pourbagher-Shahri, and S. Samarghandian. 2022. The interplay between oxidative stress and autophagy: Focus on the development of neurological diseases. Behavioral and Brain Functions: BBF 18 (1):3. doi: 10.1186/s12993-022-00187-3.
  • Tiwari, S., V. Atluri, A. Kaushik, A. Yndart, and M. Nair. 2019. Alzheimer’s disease: Pathogenesis, diagnostics, and therapeutics. International Journal of Nanomedicine 14:5541–54. doi: 10.2147/IJN.S200490.
  • Tong, C., P. Li, L. H. Yu, L. Li, K. Li, Y. Chen, S. H. Yang, and M. Long. 2020. Selenium-rich yeast attenuates ochratoxin A-induced small intestinal injury in broiler chickens by activating the Nrf2 pathway and inhibiting NF-κB activation. Journal of Functional Foods 66:103784. doi: 10.1016/j.jff.2020.103784.
  • Tran, M., and P. H. Reddy. 2021. Defective autophagy and mitophagy in aging and Alzheimer’s disease. Frontiers in Neuroscience 14:612757. doi: 10.3389/fnins.2020.612757.
  • Vu, D. L., K. Saurav, M. Mylenko, K. Ranglová, J. Kuta, D. Ewe, J. Masojídek, and P. Hrouzek. 2019. In vitro bioaccessibility of selenoamino acids from selenium (Se)-enriched Chlorella vulgaris biomass in comparison to selenized yeast; a Se-enriched food supplement; and Se-rich foods. Food Chemistry 279:12–9. doi: 10.1016/j.foodchem.2018.12.004.
  • Wan, M. L. Y., K. H. Ling, H. El-Nezami, and M. F. Wang. 2019. Influence of functional food components on gut health. Critical Reviews in Food Science and Nutrition 59 (12):1927–36. doi: 10.1080/10408398.2018.1433629.
  • World Health Organization (WHO). 2021. Dementia [Internet] [updated September 2, 2021; cited August 29, 2022]. https://www.who.int/news-room/fact-sheets/detail/dementia.
  • Wu, J., J. Ding, Y. Shi, Y. Fang, P. Li, F. Fan, E. Zhao, X. Sun, X. Shen, and Q. Hu. 2021. Inhibition of immunotoxicity of Pb2+-induced RAW264.7 macrophages by selenium species in selenium-enriched rice. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 148:111943. doi: 10.1016/j.fct.2020.111943.
  • Wu, J., P. Li, Y. Shi, Y. Fang, Y. Zhu, F. Fan, F. Pei, J. Xia, M. Xie, and Q. Hu. 2020. Neuroprotective effects of two selenium-containing peptides, TSeMMM and SeMDPGQQ, derived from selenium-enriched rice protein hydrolysates on Pb2+-induced oxidative stress in HT22 cells. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 135:110932. doi: 10.1016/j.fct.2019.110932.
  • Wu, S., A. E. D. A. Bekhit, Q. Wu, M. Chen, X. Liao, J. Wang, and Y. Ding. 2021. Bioactive peptides and gut microbiota: Candidates for a novel strategy for reduction and control of neurodegenerative diseases. Trends in Food Science & Technology 108:164–76. doi: 10.1016/j.tifs.2020.12.019.
  • Wu, S., Q. Wu, J. Wang, Y. Li, B. Chen, Z. Zhu, R. Huang, M. Chen, A. Huang, Y. Xie, et al. 2022. Novel selenium peptides obtained from selenium-enriched Cordyceps militaris alleviate neuroinflammation and gut microbiota dysbacteriosis in LPS-injured mice. Journal of Agricultural and Food Chemistry 70 (10):3194–206. doi: 10.1021/acs.jafc.1c08393.
  • Wu, S., Y. Wei, J. Li, Y. Bai, P. Yin, and S. Wang. 2021. SIRT5 represses neurotrophic pathways and Aβ production in Alzheimer’s disease by targeting autophagy. ACS Chemical Neuroscience 12 (23):4428–37. doi: 10.1021/acschemneuro.1c00468.
  • Xiao, X., Y. Cheng, D. Song, X. Li, Y. Hu, Z. Lu, F. Wang, and Y. Wang. 2019. Selenium-enriched Bacillus paralicheniformis SR14 attenuates H2O2-induced oxidative damage in porcine jejunum epithelial cells via the MAPK pathway. Applied Microbiology and Biotechnology 103 (15):6231–43. doi: 10.1007/s00253-019-09922-9.
  • Xie, M., X. Sun, P. Li, X. Shen, and Y. Fang. 2021. Selenium in cereals: Insight into species of the element from total amount. Comprehensive Reviews in Food Science and Food Safety 20 (3):2914–40. doi: 10.1111/1541-4337.12748.
  • Xie, Y., Q. Liu, L. Zheng, B. Wang, X. Qu, J. Ni, Y. Zhang, and X. Du. 2018. Se-Methylselenocysteine ameliorates neuropathology and cognitive deficits by attenuating oxidative stress and metal dyshomeostasis in Alzheimer model mice. Molecular Nutrition & Food Research 62 (12):e1800107. doi: 10.1002/mnfr.201800107.
  • Xiong, Y. J., Z. B. Deng, J. N. Liu, J. J. Qiu, L. Guo, P. P. Feng, J. R. Sui, D. P. Chen, and H. S. Guo. 2019. Enhancement of epithelial cell autophagy induced by sinensetin alleviates epithelial barrier dysfunction in colitis. Pharmacological Research 148:104461. doi: 10.1016/j.phrs.2019.104461.
  • Xu, M., S. Zhu, Y. Li, S. Xu, G. Shi, and Z. Ding. 2021. Effect of selenium on mushroom growth and metabolism: A review. Trends in Food Science & Technology 118:328–40. doi: 10.1016/j.tifs.2021.10.018.
  • Xu, Y., N. E. Propson, S. Du, W. Xiong, and H. Zheng. 2021. Autophagy deficiency modulates microglial lipid homeostasis and aggravates tau pathology and spreading. Proceedings of the National Academy of Sciences 118 (27):e2023418118. doi: 10.1073/pnas.2023418118.
  • Yan, S., L. Qiao, X. Dou, X. Song, Y. Chen, B. Zhang, and C. Xu. 2021. Biogenic selenium nanoparticles by Lactobacillus casei ATCC 393 alleviate the intestinal permeability, mitochondrial dysfunction and mitophagy induced by oxidative stress. Food & Function 12 (15):7068–80. doi: 10.1039/d0fo03141k.
  • Yang, J., and H. Yang. 2023. Recent development in Se-enriched yeast, lactic acid bacteria and bifidobacteria. Critical Reviews in Food Science and Nutrition 63 (3):411–25. doi: 10.1080/10408398.2021.1948818.
  • Yang, S., L. Li, L. Yu, L. Sun, K. Li, C. Tong, W. Xu, G. Cui, M. Long, and P. Li. 2020. Selenium-enriched yeast reduces caecal pathological injuries and intervenes changes of the diversity of caecal microbiota caused by Ochratoxin-A in broilers. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 137:111139. doi: 10.1016/j.fct.2020.111139.
  • Yu, T. X., H. K. Chung, L. Xiao, J. J. Piao, S. Lan, S. K. Jaladanki, D. J. Turner, J. P. Raufman, M. Gorospe, and J. Y. Wang. 2020. Long noncoding RNA H19 impairs the intestinal barrier by suppressing autophagy and lowering paneth and goblet cell function. Cellular and Molecular Gastroenterology and Hepatology 9 (4):611–25. doi: 10.1016/j.jcmgh.2019.12.002.
  • Yu, T., J. Guo, S. Zhu, M. Li, Z. Zhu, S. Cheng, S. Wang, Y. Sun, and X. Cong. 2020a. Protective effects of selenium-enriched peptides from Cardamine violifolia against high-fat diet induced obesity and its associated metabolic disorders in mice. RSC Advances 10 (52):31411–24. doi: 10.1039/d0ra04209a.
  • Yu, T., J. Guo, S. Zhu, X. Zhang, Z. Z. Zhu, S. Cheng, and X. Cong. 2020b. Protective effects of selenium-enriched peptides from Cardamine violifolia on d-galactose-induced brain aging by alleviating oxidative stress, neuroinflammation, and neuron apoptosis. Journal of Functional Foods 75:104277. doi: 10.1016/j.jff.2020.104277.
  • Yuan, H., W. Wang, D. Chen, X. Zhu, and L. Meng. 2017. Effects of a treatment with Se-rich rice flour high in resistant starch on enteric dysbiosis and chronic inflammation in diabetic ICR mice. Journal of the Science of Food and Agriculture 97 (7):2068–74. doi: 10.1002/jsfa.8011.
  • Zhang, H., Z. Zhao, B. Nie, C. Lyu, and X. Liu. 2021. Selenium loss and changes in product quality during cooking of selenium enriched potato tubers. Journal of Food Composition and Analysis 96:103728. doi: 10.1016/j.jfca.2020.103728.
  • Zhang, J., H. Zhou, H. Li, Z. Ying, and X. Liu. 2021. Research progress on separation of selenoproteins/Se-enriched peptides and their physiological activities. Food & Function 12 (4):1390–401. doi: 10.1039/d0fo02236e.
  • Zhang, X., H. He, J. Xiang, B. Li, M. Zhao, and T. Hou. 2021. Selenium-containing soybean antioxidant peptides: Preparation and comprehensive comparison of different selenium supplements. Food Chemistry 358:129888. doi: 10.1016/j.foodchem.2021.129888.
  • Zhang, X., H. He, J. Xiang, H. Yin, and T. Hou. 2020. Selenium-containing proteins/peptides from plants: A review on the structures and functions. Journal of Agricultural and Food Chemistry 68 (51):15061–73. doi: 10.1021/acs.jafc.0c05594.
  • Zhang, Y., X. Ding, Y. X. Yuan, L. L. Guo, and X. J. Hao. 2020. Cytotoxic monoterpenoid indole alkaloids from Tabernaemontana corymbosa as potent autophagy inhibitors by the attenuation of lysosomal acidification. Journal of Natural Products 83 (5):1432–9. doi: 10.1021/acs.jnatprod.9b00856.
  • Zhang, Z. H., L. Wen, Q. Y. Wu, C. Chen, R. Zheng, Q. Liu, J. Z. Ni, and G. L. Song. 2017. Long-term dietary supplementation with selenium-enriched yeast improves cognitive impairment, reverses synaptic deficits, and mitigates tau pathology in a triple transgenic mouse model of Alzheimer’s disease. Journal of Agricultural and Food Chemistry 65 (24):4970–9. doi: 10.1021/acs.jafc.7b01465.
  • Zhang, Z. H., Q. Y. Wu, C. Chen, R. Zheng, Y. Chen, Q. Liu, J. Z. Ni, and G. L. Song. 2017. Selenomethionine attenuates the Amyloid-β level by both inhibiting Amyloid-β production and modulating autophagy in neuron-2a/AβPPswe cells. Journal of Alzheimer’s Disease: JAD 59 (2):591–602. doi: 10.3233/JAD-170216.
  • Zhang, Z. H., Q. Y. Wu, R. Zheng, C. Chen, Y. Chen, Q. Liu, P. R. Hoffmann, J. Z. Ni, and G. L. Song. 2017. Selenomethionine mitigates cognitive decline by targeting both tau hyperphosphorylation and autophagic clearance in an Alzheimer’s disease mouse model. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 37 (9):2449–62. doi: 10.1523/JNEUROSCI.3229-16.2017.
  • Zhang, Z., X. Yang, Y. Q. Song, and J. Tu. 2021. Autophagy in Alzheimer’s disease pathogenesis: Therapeutic potential and future perspectives. Ageing Research Reviews 72:101464. doi: 10.1016/j.arr.2021.101464.
  • Zhao, M., T. Luo, Z. Zhao, H. Rong, G. Zhao, and L. Lei. 2021. Food chemistry of selenium and controversial roles of selenium in affecting blood cholesterol concentrations. Journal of Agricultural and Food Chemistry 69 (17):4935–45. doi: 10.1021/acs.jafc.1c00784.
  • Zhou, F., Q. Peng, M. Wang, N. Liu, Q. T. Dinh, H. Zhai, M. Xue, and D. Liang. 2021. Influence of processing methods and exogenous selenium species on the content and in vitro bioaccessibility of selenium in Pleurotus eryngii. Food Chemistry 338:127661. doi: 10.1016/j.foodchem.2020.127661.
  • Zhou, M., W. Xu, J. Wang, J. Yan, Y. Shi, C. Zhang, W. Ge, J. Wu, P. Du, and Y. Chen. 2018. Boosting mTOR-dependent autophagy via upstream TLR4-MyD88-MAPK signalling and downstream NF-κB pathway quenches intestinal inflammation and oxidative stress injury. EBioMedicine 35:345–60. doi: 10.1016/j.ebiom.2018.08.035.
  • Zhu, C., Q. Ling, Z. Cai, Y. Wang, Y. Zhang, P. R. Hoffmann, W. Zheng, T. Zhou, and Z. Huang. 2016. Selenium-containing phycocyanin from Se-enriched Spirulina platensis reduces inflammation in dextran sulfate sodium-induced Colitis by inhibiting NF-κB activation. Journal of Agricultural and Food Chemistry 64 (24):5060–70. doi: 10.1021/acs.jafc.6b01308.
  • Zhu, S., C. Du, T. Yu, X. Cong, Y. Liu, S. Chen, and Y. Li. 2019. Antioxidant activity of selenium-enriched peptides from the protein hydrolysate of Cardamine violifolia. Journal of Food Science 84 (12):3504–11. doi: 10.1111/1750-3841.14843.
  • Zhu, S., W. Yang, Y. Lin, C. Du, D. Huang, S. Chen, T. Yu, and X. Cong. 2021. Antioxidant and anti-fatigue activities of selenium-enriched peptides isolated from Cardamine violifolia protein hydrolysate. Journal of Functional Foods 79:104412. doi: 10.1016/j.jff.2021.104412.
  • Zhu, S., Y. Jiang, K. Xu, M. Cui, W. Ye, G. Zhao, L. Jin, and X. Chen. 2020. The progress of gut microbiome research related to brain disorders. Journal of Neuroinflammation 17 (1):25. doi: 10.1186/s12974-020-1705-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.