790
Views
5
CrossRef citations to date
0
Altmetric
Reviews

Pectin mediates the mechanism of host blood glucose regulation through intestinal flora

, , , , , , , , , & show all

References

  • Amar, J., R. Burcelin, J. B. Ruidavets, P. D. Cani, J. Fauvel, M. C. Alessi, B. Chamontin, and J. Ferriéres. 2008. Energy intake is associated with endotoxemia in apparently healthy men. The American Journal of Clinical Nutrition 87 (5):1219–1223. doi: 10.1093/ajcn/87.5.1219.
  • Amyot, J., M. Semache, M. Ferdaoussi, G. Fontés, and V. Poitout. 2012. Lipopolysaccharides impair insulin gene expression in isolated islets of langerhans via toll-like receptor-4 and nf-kb signalling. PloS one 7 (4):e36200.
  • Backhed, F., H. Ding, T. Wang, L. V. Hooper, G. Y. Koh, A. Nagy, C. F. Semenkovich, and J. I. Gordon. 2004. Gut microbiota as an environmental factor that regulates fat storage. Proceedings of the National Academy of Sciences of the United States of America 101 (44):15718–15723. doi: 10.1073/pnas.0407076101.
  • Bang, S.-J., G. Kim, M. Y. Lim, E.-J. Song, D.-H. Jung, J.-S. Kum, Y.-D. Nam, C.-S. Park, and D.-H. Seo. 2018. The influence of in vitro pectin fermentation on the human fecal microbiome. AMB Express 8 (1):1–9. doi: 10.1186/s13568-018-0629-9.
  • Bai, Y., P. Wu, K. Wang, C. Li, E. Li, and R. G. Gilbert. 2017. Effects of pectin on molecular structural changes in starch during digestion. Food Hydrocolloids 69:10–18. doi: 10.1016/j.foodhyd.2017.01.021.
  • Barrera, J. G., D. A. Sandoval, D. A. D'Alessio, and R. J. Seeley. 2011. Glp-1 and energy balance: An integrated model of short-term and long-term control. Nature reviews. Endocrinology 7 (9):507–516. doi: 10.1038/nrendo.2011.77.
  • Batterham, R. L., M. A. Cowley, C. J. Small, H. Herzog, M. A. Cohen, C. L. Dakin, A. M. Wren, A. E. Brynes, M. J. Low, M. A. Ghatei, et al. 2002. Gut hormone pyy(3-36) physiologically inhibits food intake. Nature 418 (6898):650–654. doi: 10.1038/nature00887.
  • Begley, M., C. G. M. Gahan, and C. Hill. 2005. The interaction between bacteria and bile. FEMS microbiology Reviews 29 (4):625–651. doi: 10.1016/j.femsre.2004.09.003.
  • Benoit, B., E. Meugnier, M. Castelli, S. Chanon, A. Vieille-Marchiset, C. Durand, N. Bendridi, S. Pesenti, P. Monternier, A. Durieux, et al. 2017. Fibroblast growth factor 19 regulates skeletal muscle mass and ameliorates muscle wasting in mice. Nature medicine 23 (8):990–996. doi: 10.1038/nm.4363.
  • Bhatnagar, S., H. A. Damron, and F. B. Hillgartner. 2009. Fibroblast growth factor-19, a novel factor that inhibits hepatic fatty acid synthesis. The Journal of Biological Chemistry 284 (15):10023–10033. doi: 10.1074/jbc.M808818200.
  • Binder, H. J. 2010. Role of colonic short-chain fatty acid transport in diarrhea. Annual review of Physiology 72:297–313. doi: 10.1146/annurev-physiol-021909-135817.
  • Boey, D., S. Lin, T. Karl, P. Baldock, N. Lee, R. Enriquez, M. Couzens, K. Slack, R. Dallmann, A. Sainsbury, et al. 2006. Peptide yy ablation in mice leads to the development of hyperinsulinaemia and obesity. Diabetologia 49 (6):1360–1370. doi: 10.1007/s00125-006-0237-0.
  • Briere, D. A., X. Ruan, C. C. Cheng, A. M. Siesky, T. E. Fitch, C. Dominguez, S. G. Sanfeliciano, C. Montero, C. S. Suen, Y. Xu, et al. 2015. Novel small molecule agonist of tgr5 possesses anti-diabetic effects but causes gallbladder filling in mice. PLoS One 10:e136873. doi: 10.1371/journal.pone.0136873.
  • Brown, A. J., S. M. Goldsworthy, A. A. Barnes, M. M. Eilert, L. Tcheang, D. Daniels, A. I. Muir, M. J. Wigglesworth, I. Kinghorn, N. J. Fraser, et al. 2003. The orphan g protein-coupled receptors gpr41 and gpr43 are activated by propionate and other short chain carboxylic acids. The Journal of Biological Chemistry 278 (13):11312–11319. doi: 10.1074/jbc.m211609200.
  • Browning, M. G., B. M. Pessoa, J. Khoraki, and G. M. Campos. 2019. Changes in bile acid metabolism, transport, and signaling as central drivers for metabolic improvements after bariatric surgery. Current Obesity Reports 8 (2):175–184. doi: 10.1007/s13679-019-00334-4.
  • C. Oliveira., R. Fachi, J. L. Vieira, A. Sato, F. T, and Vinolo, M. A. R. 2016. Regulation of immune cell function by short-chain fatty acids. Clinical & Translational Immunology 5 (4):e73. doi: 10.1038/cti.2016.17.
  • Canfora, E. E., J. Jocken, and E. E. Blaak. 2015. Short-chain fatty acids in control of body weight and insulin sensitivity. Nature Reviews Endocrinology 11 (10):577–91. doi: 10.1038/nrendo.2015.128.
  • Canfora, E. E., van der Beek, C. M. Jocken, J. W. E. Goossens, G. H. Holst, J. J. Olde Damink, S. W. M. Lenaerts, K. Dejong, C. H. C. Blaak, and E. E. 2017. Colonic infusions of short-chain fatty acid mixtures promote energy metabolism in overweight/obese men: A randomized crossover trial. Scientific Reports 7. doi: 10.1038/s41598-017-02546-x.
  • Cani, P. D., J. Amar, M. A. Iglesias, M. Poggi, C. Knauf, D. Bastelica, A. M. Neyrinck, F. Fava, K. M. Tuohy, C. Chabo, et al. 2007. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56 (7):1761–72. doi: 10.2337/db06-1491.
  • Cani, P. D., S. Possemiers, T. Van de Wiele, Y. Guiot, A. Everard, O. Rottier, L. Geurts, D. Naslain, A. Neyrinck, D. M. Lambert, et al. 2009. Changes in gut microbiota control inflammation in obese mice through a mechanism involving glp-2-driven improvement of gut permeability. Gut 58 (8):1091–103. doi: 10.1136/gut.2008.165886.
  • Cariou, B., K. van Harmelen, D. Duran-Sandoval, T. H. van Dijk, A. Grefhorst, M. Abdelkarim, S. Caron, G. R. Torpier, J. Fruchart, F. J. Gonzalez, et al. 2006. The farnesoid x receptor modulates adiposity and peripheral insulin sensitivity in mice. The Journal of Biological Chemistry 281 (16):11039–11049. doi: 10.1074/jbc.M510258200.
  • Centanni, M., S. M. Carnachan, T. J. Bell, A. M. Daines, S. F. R. Hinkley, G. W. Tannock, and I. M. Sims. 2019. Utilization of complex pectic polysaccharides from New Zealand plants (Tetragonia tetragonioides and Corynocarpus laevigatus) by gut bacteroides species. Journal of Agricultural and Food Chemistry 67 (27):7755–7764. doi: 10.1021/acs.jafc.9b02429.
  • Cerdó, T., J. García-Santos, M. G. Bermúdez, and C. Campoy. 2019. The role of probiotics and prebiotics in the prevention and treatment of obesity. Nutrients 11:635. doi: 10.3390/nu11030635.
  • Cervantes-Paz, B., J. D. J. Ornelas-Paz, S. Ruiz-Cruz, C. Rios-Velasco, V. Ibarra-Junquera, E. M. Yahia, and A. A. Gardea-Béjar. 2017. Effects of pectin on lipid digestion and possible implications for carotenoid bioavailability during pre-absorptive stages: A review. Food Research International (Ottawa, Ont.) 99 (Pt 2):917–927. doi: 10.1016/j.foodres.2017.02.012.
  • Chassard, C., E. Delmas, P. A. Lawson, and A. Bernalier-Donadille. 2008. Bacteroides xylanisolvens sp. nov., a xylan-degrading bacterium isolated from human faeces. International Journal of Systematic and Evolutionary Microbiology 58:1008–13. doi: 10.1099/ijs.0.65504-0.
  • Chambers, E. S., A. Viardot, A. Psichas, D. J. Morrison, K. G. Murphy, S. E. K. Zac-Varghese, K. MacDougall, T. Preston, C. Tedford, G. S. Finlayson, et al. 2015. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut 64 (11):1744–1754. doi: 10.1136/gutjnl-2014-307913.
  • Chen, L., I. van den Munckhof, C. L. Schraa, K. ter Horst, R. Koehorst, M. van Faassen, M. van der Ley, C. Doestzada, M. Zhernakova, D. V. Kurilshikov, et al. 2020. Genetic and microbial associations to plasma and fecal bile acids in obesity relate to plasma lipids and liver fat content. Cell reports 33 (1):108212. doi: 10.1016/j.celrep.2020.108212.
  • Cherbut, C., Ferrier, L. Roze, C. Anini, Y. Blottiere, H. Lecannu, G. Galmiche, and J. P. 1998. Short-chain fatty acids modify colonic motility through nerves and polypeptide yy release in the rat. The American Journal of Physiology 275 (6):G1415–G1422. doi: 10.1152/ajpgi.1998.275.6.G1415.
  • Chung, W. S. F., M. Meijerink, B. Zeuner, J. Holck, P. Louis, A. S. Meyer, J. M. Wells, H. J. Flint, and S. H. Duncan. 2017. Prebiotic potential of pectin and pectic oligosaccharides to promote anti-inflammatory commensal bacteria in the human colon. FEMS Microbiology Ecology 93 (11) doi: 10.1093/femsec/fix127.
  • Cook, S. I., and J. H. Sellin. 1998. Short chain fatty acids in health and disease. Alimentary pharmacology & Therapeutics 12 (6):499–507. doi: 10.1046/j.1365-2036.1998.00337.x.
  • Cuche, G., J. C. Cuber, and C. H. Malbert. 2000. Ileal short-chain fatty acids inhibit gastric motility by a humoral pathway. American journal of Physiology Gastrointestinal and Liver Physiology 279 (5):G925–G930. doi: 10.1152/ajpgi.2000.279.5.G925.
  • de la Cuesta-Zuluaga, J., N. Mueller, R. Álvarez-Quintero, E. Velásquez-Mejía, J. Sierra, V. Corrales-Agudelo, J. Carmona, J. Abad, and J. Escobar. 2018. Higher fecal short-chain fatty acid levels are associated with gut microbiome dysbiosis, obesity, hypertension and cardiometabolic disease risk factors. Nutrients 11 (1):51. doi: 10.3390/nu11010051.
  • De Vadder, F., P. Kovatcheva-Datchary, D. Goncalves, J. Vinera, C. Zitoun, A. Duchampt, F. Backhed, and G. Mithieux. 2014. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156 (1-2):84–96. doi: 10.1016/j.cell.2013.12.016.
  • De La Cuesta-Zuluaga, J., N. T. Mueller, V. Corrales-Agudelo, E. P. V. Ia, J. A. Carmona, J. M. Abad, and J. S. Escobar. 2016. Metformin is associated with higher relative abundance of mucin-degrading akkermansia muciniphila and several shortchain fatty acid–producing microbiota in the gut. Diabetes Care :54–62. doi: 10.2337/dc16-1324/-/DC1.
  • den Besten, G., A. Gerding, T. H. van Dijk, J. Ciapaite, A. Bleeker, K. van Eunen, R. Havinga, A. K. Groen, D. Reijngoud, and B. M. Bakker. 2015. Protection against the metabolic syndrome by guar gum-derived short-chain fatty acids depends on peroxisome proliferator-activated receptor γ and glucagon-like peptide-1. Plos ONE 10 (8):e136364. doi: 10.1371/journal.pone.0136364.
  • Den Besten, G., K. Van Eunen, A. K. Groen, K. Venema, D.-J. Reijngoud, and B. M. Bakker. 2013. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of Lipid Research 54 (9):2325–40. doi: 10.1194/jlr.R036012.
  • Devlin, A. S., and M. A. Fischbach. 2015. A biosynthetic pathway for a prominent class of microbiota-derived bile acids. Nature chemical Biology 11 (9):685–90. doi: 10.1038/nchembio.1864.
  • Do Nascimento, G. E., S. M. B. Winnischofer, M. I. Ramirez, M. Iacomini, and L. M. C. Cordeiro. 2017. The influence of sweet pepper pectin structural characteristics on cytokine secretion by thp-1 macrophages. Food research International (Ottawa, Ont.) 102:588–94. doi: 10.1016/j.foodres.2017.09.037.
  • Dongowski, G., A. Lorenz, and H. Anger. 2000. Degradation of pectins with different degrees of esterification by Bacteroides thetaiotaomicron isolated from human gut flora. Applied and Environmental Microbiology 66 (4):1321–7. doi: 10.1128/AEM.66.4.1321-1327.2000.
  • Dongowski, G. 1995. Influence of pectin structure on the interaction with bile acids under in vitro conditions. Zeitschrift fur Lebensmittel-Untersuchung und -Forschung 201 (4):390–8. doi: 10.1007/BF01192740.
  • Duan, M., Y. Wang, Q. Zhang, R. Zou, M. Guo, and H. Zheng. 2021. Characteristics of gut microbiota in people with obesity. Plos ONE 16 (8):e255446. doi: 10.1371/journal.pone.0255446.
  • Düfer, M., K. Hörth, R. Wagner, B. Schittenhelm, S. Prowald, F. J. Thomas, J. Wagner, R. Oberwinkler, F. J. Lukowski, P. Gonzalez, et al. 2012. Bile acids acutely stimulate insulin secretion of mouse β-cells via farnesoid x receptor activation and k(atp) channel inhibition. Diabetes 61 (6):1479–89. doi: 10.2337/db11-0815/-/DC1.
  • Duncan, S. H., A. Belenguer, G. Holtrop, A. M. Johnstone, H. J. Flint, and G. E. Lobley. 2007. Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Applied and Environmental Microbiology 73 (4):1073–8. doi: 10.1128/AEM.02340-06.
  • Duran-Sandoval, D., B. Cariou, F. Percevault, N. Hennuyer, A. Grefhorst, T. H. van Dijk, F. J. Gonzalez, J. C. Fruchart, F. Kuipers, and B. Staels. 2005. The farnesoid x receptor modulates hepatic carbohydrate metabolism during the fasting-refeeding transition. The Journal of Biological Chemistry 280 (33):29971–9. doi: 10.1074/jbc.M501931200.
  • Elshahed, M. S., A. Miron, A. C. Aprotosoaie, and M. A. Farag. 2021. Pectin in diet: Interactions with the human microbiome, role in gut homeostasis, and nutrient-drug interactions. Carbohydrate polymers 255:117388. doi: 10.1016/j.carbpol.2020.117388.
  • Everard, A., V. Lazarevic, N. Gaïa, M. Johansson, M. Ståhlman, F. Backhed, N. M. Delzenne, J. Schrenzel, P. François, P. D. Cani, et al. 2014. Microbiome of prebiotic-treated mice reveals novel targets involved in host response during obesity. The ISME Journal 8 (10):2116–30. doi: 10.1038/ismej.2014.45.
  • Ey, B., A. Eyking, G. Gerken, D. K. Podolsky, and E. Cario. 2009. Tlr2 mediates gap junctional intercellular communication through connexin-43 in intestinal epithelial barrier injury. The Journal of Biological Chemistry 284 (33):22332–43. doi: 10.1074/jbc.M901619200.
  • Fang, Y., E. Studer, C. Mitchell, S. Grant, W. M. Pandak, P. B. Hylemon, and P. Dent. 2007. Conjugated bile acids regulate hepatocyte glycogen synthase activity in vitro and in vivo via gαi signaling. Molecular pharmacology 71 (4):1122–8. doi: 10.1124/mol.106.032060.
  • Fang, S., J. M. Suh, S. M. Reilly, E. Yu, O. Osborn, D. Lackey, E. Yoshihara, A. Perino, S. Jacinto, Y. Lukasheva, et al. 2015. Intestinal fxr agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nature medicine 21 (2):159–65. doi: 10.1038/nm.3760.
  • Fernandes, R., S. D. Viana, S. Nunes, and F. Reis. 2019. Diabetic gut microbiota dysbiosis as an inflammaging and immunosenescence condition that fosters progression of retinopathy and nephropathy. Biochimica et Biophysica Acta 1865 (7):1876–97. doi: 10.1016/j.bbadis.2018.09.032.[PMC].
  • Flint, H. J., K. P. Scott, S. H. Duncan, P. Louis, and E. Forano. 2012. Microbial degradation of complex carbohydrates in the gut. Gut Microbes 3 (4):289–306. doi: 10.4161/gmic.19897.
  • Forman, B. M., E. Goode, J. Chen, A. E. Oro, D. J. Bradley, T. Perlmann, D. J. Noonan, L. T. Burka, T. McMorris, W. W. Lamph, et al. 1995. Identification of a nuclear receptor that is activated by farnesol metabolites. Cell 81 (5):687–93. doi: 10.1016/0092-8674(95)90530-8.
  • Fujikawa, T., E. D. Berglund, V. R. Patel, G. Ramadori, C. R. Vianna, L. Vong, F. Thorel, S. Chera, P. L. Herrera, B. B. Lowell, et al. 2013. Leptin engages a hypothalamic neurocircuitry to permit survival in the absence of insulin. Cell Metabolism 18 (3):431–44. doi: 10.1016/j.cmet.2013.08.004.
  • Fujikawa, T., J.-C. Chuang, I. Sakata, G. Ramadori, and R. Coppari. 2010. Leptin therapy improves insulin-deficient type 1 diabetes by cns-dependent mechanisms in mice. Proceedings of the National Academy of Sciences of the United States of America 107 (40):17391–6. doi: 10.1073/pnas.1008025107.
  • Fujishiro, M., Y. Gotoh, H. Katagiri, H. Sakoda, T. Ogihara, M. Anai, Y. Onishi, H. Ono, M. Abe, N. Shojima, et al. 2003. Three mitogen-activated protein kinases inhibit insulin signaling by different mechanisms in 3t3-l1 adipocytes. Molecular Endocrinology (Baltimore, Md.) 17 (3):487–97. doi: 10.1210/me.2002-0131.
  • Fushimi, T., K. Tayama, M. Fukaya, K. Kitakoshi, N. Nakai, Y. Tsukamoto, and Y. Sato. 2001. Acetic acid feeding enhances glycogen repletion in liver and skeletal muscle of rats. Nutrient Metabolism 13:1973–7.
  • Ganusov, V. V., and R. J. De Boer. 2007. Do most lymphocytes in humans really reside in the gut? Trends in Immunology 28 (12):514–8. doi: 10.1016/j.it.2007.08.009.
  • Gao, Z., J. Yin, J. Zhang, R. E. Ward, R. J. Martin, M. Lefevre, W. T. Cefalu, and J. Ye. 2009. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes (New York, N.Y 58 (7):1509–17. doi: 10.2337/db08-1637.
  • García-Carrizo, F., B. Cannon, J. Nedergaard, C. Picó, A. Dols, A. M. Rodríguez, and A. Palou. 2020. Regulation of thermogenic capacity in brown and white adipocytes by the prebiotic high-esterified pectin and its postbiotic acetate. International Journal of Obesity (2005) 44 (3):715–26. doi: 10.1038/s41366-019-0445-6.
  • Garcia-Roves, P. M. 2011. Mitochondrial pathophysiology and type 2 diabetes mellitus. Archives of Physiology and Biochemistry 117 (3):177–87. doi: 10.3109/13813455.2011.584538.
  • Gasmi Benahmed, A., A. Gasmi, A. Doşa, S. Chirumbolo, P. K. Mujawdiya, J. Aaseth, M. Dadar, and G. Bjørklund. 2021. Association between the gut and oral microbiome with obesity. Anaerobe 70:102248. doi: 10.1016/j.anaerobe.2020.102248.
  • Ghaffarzadegan, T., N. Marungruang, F. Fåk, and M. Nyman. 2016. Molecular properties of guar gum and pectin modify cecal bile acids, microbiota, and plasma lipopolysaccharide-binding protein in rats. Plos ONE 11 (6):e157427. doi: 10.1371/journal.pone.0157427.
  • Ghanim, H., S. Abuaysheh, C. L. Sia, K. Korzeniewski, A. Chaudhuri, J. M. Fernandez-Real, and P. Dandona. 2009. Increase in plasma endotoxin concentrations and the expression of toll-like receptors and suppressor of cytokine signaling-3 in mononuclear cells after a high-fat, high-carbohydrate meal. Diabetes Care 32 (12):2281–7. doi: 10.2337/dc09-0979.
  • Gill, R. K., S. Saksena, W. A. Alrefai, Z. Sarwar, J. L. Goldstein, R. E. Carroll, K. Ramaswamy, and P. K. Dudeja. 2005. Expression and membrane localization of mct isoforms along the length of the human intestine. American Journal of Physiology. Cell Physiology 289 (4):C846–C852. doi: 10.1152/ajpcell.00112.2005.
  • Gómez, B., B. Gullón, R. Yáñez, H. Schols, and J. L. Alonso. 2016. Prebiotic potential of pectins and pectic oligosaccharides derived from lemon peel wastes and sugar beet pulp: A comparative evaluation. Journal of Functional Foods 20:108–21. doi: 10.1016/j.jff.2015.10.029.
  • Goncalves, P., J. R. Araujo, and F. Martel. 2011. Characterization of butyrate uptake by nontransformed intestinal epithelial cell lines. The Journal of Membrane Biology 240 (1):35–46. doi: 10.1007/s00232-011-9340-3.
  • González-Regueiro, J. A., L. Moreno-Castañeda, M. Uribe, and N. C. Chávez-Tapia. 2017. The role of bile acids in glucose metabolism and their relation with diabetes. Annals of Hepatology 16 (Suppl. 1: s3-105):16–21. doi: 10.5604/01.3001.0010.5494.
  • Guh, D. P., W. Zhang, N. Bansback, Z. Amarsi, C. L. Birmingham, and A. H. Anis. 2009. The incidence of co-morbidities related to obesity and overweight: A systematic review and meta-analysis. BMC Public Health 9 (1):88. doi: 10.1186/1471-2458-9-88.
  • Gullón, B., P. Gullón, F. Tavaria, M. Pintado, A. M. Gomes, J. L. Alonso, and J. C. Parajó. 2014. Structural features and assessment of prebiotic activity of refined arabinoxylooligosaccharides from wheat bran. Journal of Functional Foods 6:438–49. doi: 10.1016/j.jff.2013.11.010.
  • Gunness, P., H. Zhai, B. A. Williams, D. Zhang, and M. J. Gidley. 2021. Pectin and mango pulp both reduce plasma cholesterol in pigs but have different effects on triglycerides and bile acids. Food Hydrocolloids 112:106369. doi: 10.1016/j.foodhyd.2020.106369.
  • Guo, C., S. Xie, Z. Chi, J. Zhang, Y. Liu, L. Zhang, M. Zheng, X. Zhang, D. Xia, Y. Ke, et al. 2016. Bile acids control inflammation and metabolic disorder through inhibition of nlrp3 inflammasome. Immunity 45 (4):802–16. doi: 10.1016/j.immuni.2016.09.008.
  • Gupta, N., P. M. Martin, P. D. Prasad, and V. Ganapathy. 2006. Slc5a8 (smct1)-mediated transport of butyrate forms the basis for the tumor suppressive function of the transporter. Life Sciences 78 (21):2419–25. doi: 10.1016/j.lfs.2005.10.028.
  • Halestrap, A. P., and D. Meredith. 2004. The slc16 gene family-from monocarboxylate transporters (mcts) to aromatic amino acid transporters and beyond. Pflugers Archive: European Journal of Physiology 447 (5):619–28. doi: 10.1007/s00424-003-1067-2.
  • Hardie, D. G. 2004. Amp-activated protein kinase: A master switch in glucose and lipid metabolism. Reviews in Endocrine & Metabolic Disorders 5 (2):119–25. doi: 10.1023/B:REMD.0000021433.63915.bb.
  • Hardie, D. G., J. W. Scott, D. A. Pan, and E. R. Hudson. 2003. Management of cellular energy by the amp-activated protein kinase system. FEBS Letters 546 (1):113–20. doi: 10.1016/S0014-5793(03)00560-X.
  • Harholt, J., A. Suttangkakul, and H. V. Scheller. 2010. Biosynthesis of pectin. Plant physiology 153 (2):384–95. doi: 10.1104/pp.110.156588.
  • Harig, J. M., E. K. Ng, P. K. Dudeja, T. A. Brasitus, and K. Ramaswamy. 1996. Transport of n-butyrate into human colonic luminal membrane vesicles. The American Journal of Physiology 271 (3 Pt 1):G415–G422. doi: 10.1152/ajpgi.1996.271.3.g415.
  • Harris, R. A. 2021. Energy metabolism | gluconeogenesis. In Encyclopedia of biological chemistry III (3rd ed.), 170–86.
  • Havemann, G. D., and T. A. Bobik. 2003. Protein content of polyhedral organelles involved in coenzyme b12-dependent degradation of 1,2-propanediol in salmonella enterica serovar typhimurium lt2. Journal of Bacteriology 185 (17):5086–95. doi: 10.1128/JB.185.17.5086.
  • He, S., F. Kahles, S. Rattik, M. Nairz, C. S. McAlpine, A. Anzai, D. Selgrade, A. M. Fenn, C. T. Chan, J. E. Mindur, et al. 2019. Gut intraepithelial t cells calibrate metabolism and accelerate cardiovascular disease. Nature 566 (7742):115–9. doi: 10.1038/s41586-018-0849-9.
  • He, X., W. Li, Y. Chen, L. Lei, F. Li, J. Zhao, K. Zeng, and J. Ming. 2022. Dietary fiber of tartary buckwheat bran modified by steam explosion alleviates hyperglycemia and modulates gut microbiota in db/db mice. Food research International (Ottawa, Ont.) 157:111386. doi: 10.1016/j.foodres.2022.111386.
  • He, J., P. Zhang, L. Shen, L. Niu, Y. Tan, L. Chen, Y. Zhao, L. Bai, X. Hao, X. Li, et al. 2020. Short-chain fatty acids and their association with signalling pathways in inflammation, glucose and lipid metabolism. International Journal of Molecular Sciences 21 (17):6356. doi: 10.3390/ijms21176356.
  • Hodge, R. J., and D. J. Nunez. 2016. Therapeutic potential of takeda-g-protein-receptor-5 (tgr5) agonists. Hope or hype? Diabetes, Obesity & Metabolism 18 (5):439–43. doi: 10.1111/dom.12636.
  • Hoytema Van Konijnenburg, D. P., B. S. Reis, V. A. Pedicord, J. Farache, G. D. Victora, and D. Mucida. 2017. Intestinal epithelial and intraepithelial t cell crosstalk mediates a dynamic response to infection. Cell 171 (4):783–94.e13. doi: 10.1016/j.cell.2017.08.046.
  • Hu, X., Y. Bonde, G. Eggertsen, and M. Rudling. 2014. Muricholic bile acids are potent regulators of bile acid synthesis via a positive feedback mechanism. Journal of Internal Medicine 275 (1):27–38. doi: 10.1111/joim.12140.
  • Hug, H., M. Mohajeri, and G. La Fata. 2018. Toll-like receptors: Regulators of the immune response in the human gut. Nutrients 10 (2):203. doi: 10.3390/nu10020203.
  • Hu, J., S. Nie, and M. Xie. 2018. Antidiabetic mechanism of dietary polysaccharides based on their gastrointestinal functions. Journal of Agricultural and Food Chemistry 66 (19):4781–6. doi: 10.1021/acs.jafc.7b05410.
  • Ignacio, A., M. R. Fernandes, V. A. A. Rodrigues, F. C. Groppo, A. L. Cardoso, M. J. Avila-Campos, and V. Nakano. 2016. Correlation between body mass index and fecal microbiota from children. Clinical Microbiology and Infection 22 (3):e251–e258. doi: 10.1016/j.cmi.2015.10.031.
  • Inagaki, T., M. Choi, A. Moschetta, L. Peng, C. L. Cummins, J. G. McDonald, G. Luo, S. A. Jones, B. Goodwin, J. A. Richardson, et al. 2005. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metabolism 2 (4):217–25. doi: 10.1016/j.cmet.2005.09.001.
  • Inagaki, T., A. Moschetta, Y. Lee, L. Peng, G. Zhao, M. Downes, R. T. Yu, J. M. Shelton, J. A. Richardson, J. J. Repa, et al. 2006. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proceedings of the National Academy of Sciences of the United States of America 103 (10):3920–5.
  • Islam, K. B. M. S., S. Fukiya, M. Hagio, N. Fujii, S. Ishizuka, T. Ooka, Y. Ogura, T. Hayashi, and A. Yokota. 2011. Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. Gastroenterology (New York, N.Y. 1943) 141 (5):1773–81. doi: 10.1053/j.gastro.2011.07.046.
  • Jacob, J., and R. Isaac. 2012. Behavioral therapy for management of obesity. Indian Journal of Endocrinology and Metabolism 16 (1):28–32. doi: 10.4103/2230-8210.91180.
  • Jensen, N. S., and E. Canale-Parola. 1986. Bacteroides pectinophilus sp. nov. and Bacteroides galacturonicus sp. nov.: Two pectinolytic bacteria from the human intestinal tract. Applied and Environmental Microbiology 52 (4):880–7. doi: 10.1128/AEM.52.4.880-887.1986.
  • Ji, X., F. Zhou, Y. Zhang, R. Deng, W. Xu, M. Bai, Y. Liu, L. Shao, X. Wang, and L. Zhou. 2019. Butyrate stimulates hepatic gluconeogenesis in mouse primary hepatocytes. Experimental and Therapeutic Medicine 17 (3):1677–87. doi: 10.3892/etm.2018.7136.
  • Jia, W., G. Xie, and W. Jia. 2018. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nature Reviews Gastroenterology & Hepatology 15 (2):111–28. doi: 10.1038/nrgastro.2017.119.
  • Jiang, T., X. Gao, C. Wu, F. Tian, Q. Lei, J. Bi, B. Xie, H. Wang, S. Chen, and X. Wang. 2016. Apple-derived pectin modulates gut microbiota, improves gut barrier function, and attenuates metabolic endotoxemia in rats with diet-induced obesity. Nutrients 8 (3):126. doi: 10.3390/nu8030126.
  • Jin, M.-Y., X.-Y. Wu, M.-Y. Li, X.-T. Li, R.-M. Huang, Y.-M. Sun, and Z.-L. Xu. 2021. Noni (Morinda citrifolia L.) fruit polysaccharides regulated IBD mice via targeting gut microbiota: Association of JNK/ERK/NF-κB signaling pathways. Journal of Agricultural and Food Chemistry 69 (35):10151–62. doi: 10.1021/acs.jafc.1c03833.
  • Kaiko, G. E., S. H. Ryu, O. I. Koues, P. L. Collins, L. Solnica-Krezel, E. J. Pearce, E. L. Pearce, E. M. Oltz, and T. S. Stappenbeck. 2016. The colonic crypt protects stem cells from microbiota-derived metabolites. Cell 165 (7):1708–20. doi: 10.1016/j.cell.2016.05.018.
  • Kakiyama, G., W. M. Pandak, P. M. Gillevet, P. B. Hylemon, D. M. Heuman, K. Daita, H. Takei, A. Muto, H. Nittono, J. M. Ridlon, et al. 2013. Modulation of the fecal bile acid profile by gut microbiota in cirrhosis. Journal of Hepatology 58 (5):949–55. doi: 10.1016/j.jhep.2013.01.003.
  • Karaki, S-i., H. Tazoe, H. Hayashi, H. Kashiwabara, K. Tooyama, Y. Suzuki, and A. Kuwahara. 2009. Expression of the short-chain fatty acid receptor, gpr43, in the human colon. Biomedical Research 30:149–56. doi: 10.2220/biomedres.30.149.
  • Kasubuchi, M., S. Hasegawa, T. Hiramatsu, A. Ichimura, and I. Kimura. 2015. Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients 7 (4):2839–49. doi: 10.3390/nu7042839.
  • Katsuma, S., A. Hirasawa, and G. Tsujimoto. 2005. Bile acids promote glucagon-like peptide-1 secretion through tgr5 in a murine enteroendocrine cell line stc-1. Biochemical and Biophysical Research Communications 329 (1):386–90. doi: 10.1016/j.bbrc.2005.01.139.
  • Kim, D. J., S. Yoon, S. C. Ji, J. Yang, Y. Kim, S. Lee, K. Yu, I. Jang, J. Chung, and J. Cho. 2018. Ursodeoxycholic acid improves liver function via phenylalanine/tyrosine pathway and microbiome remodelling in patients with liver dysfunction. Scientific Reports 8. doi: 10.1038/s41598-018-30349-1.
  • Kimura, I., A. Ichimura, R. Ohue-Kitano, and M. Igarashi. 2020. Free fatty acid receptors in health and disease. Physiological Reviews 100 (1):171–210. doi: 10.1152/physrev.00041.2018.
  • Kir, S., S. A. Beddow, V. T. Samuel, P. Miller, S. F. Previs, K. Suino-Powell, H. E. Xu, G. I. Shulman, S. A. Kliewer, and D. J. Mangelsdorf. 2011. Fgf19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis. Science (American Association for the Advancement of Science) 331 (6024):1621–4. doi: 10.1126/science.1198363.
  • Koh, A., F. De Vadder, P. Kovatcheva-Datchary, F. Bäckhed, D. O. M. A. Institute Of Medicine, L. Wallenberg, U. Göteborgs, U. Gothenburg, F. C. A. M. Center, A. Sahlgrenska, et al. 2016. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell 165 (6):1332–45. doi: 10.1016/j.cell.2016.05.041.
  • Koutsos, A., M. Lima, L. Conterno, M. Gasperotti, M. Bianchi, F. Fava, U. Vrhovsek, J. Lovegrove, and K. Tuohy. 2017. Effects of commercial apple varieties on human gut microbiota composition and metabolic output using an in vitro colonic model. Nutrients 9 (6):533. doi: 10.3390/nu9060533.
  • Kumar, D. P., A. Asgharpour, F. Mirshahi, S. H. Park, S. Liu, Y. Imai, J. L. Nadler, J. R. Grider, K. S. Murthy, and A. J. Sanyal. 2016. Activation of transmembrane bile acid receptor tgr5 modulates pancreatic islet α cells to promote glucose homeostasis. The Journal of Biological Chemistry 291 (13):6626–40. doi: 10.1074/jbc.M115.699504.
  • Kumar, D. P., S. Rajagopal, S. Mahavadi, F. Mirshahi, J. R. Grider, K. S. Murthy, and A. J. Sanyal. 2012. Activation of transmembrane bile acid receptor tgr5 stimulates insulin secretion in pancreatic β cells. Biochemical and Biophysical Research Communications 427 (3):600–5. doi: 10.1016/j.bbrc.2012.09.104.
  • Kwong, E., Y. Li, P. B. Hylemon, and H. Zhou. 2015. Bile acids and sphingosine-1-phosphate receptor 2 in hepatic lipid metabolism. Acta Pharmaceutica Sinica B 5 (2):151–7. doi: 10.1016/j.apsb.2014.12.009.
  • Larsen, N., C. Bussolo De Souza, L. Krych, T. Barbosa Cahú, M. Wiese, W. Kot, K. M. Hansen, A. Blennow, K. Venema, and L. Jespersen. 2019. Potential of pectins to beneficially modulate the gut microbiota depends on their structural properties. Frontiers in Microbiology 10:223. doi: 10.3389/fmicb.2019.00223.
  • Larsen, N., F. K. Vogensen, F. W. J. van den Berg, D. S. Nielsen, A. S. Andreasen, B. K. Pedersen, W. A. Al-Soud, S. J. Sørensen, L. H. Hansen, and M. Jakobsen. 2010. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PloS ONE 5 (2):e9085. doi: 10.1371/journal.pone.0009085.
  • Le Chatelier, E., T. Nielsen, J. Qin, E. Prifti, F. Hildebrand, G. Falony, M. Almeida, M. Arumugam, J. Batto, S. Kennedy, et al. 2013. Richness of human gut microbiome correlates with metabolic markers. Nature 500 (7464):541–6., doi: 10.1038/nature12506.
  • Lecomte, V., N. O. Kaakoush, C. A. Maloney, M. Raipuria, K. D. Huinao, H. M. Mitchell, and M. J. Morris. 2015. Changes in gut microbiota in rats fed a high fat diet correlate with obesity-associated metabolic parameters. Plos ONE 10 (5):e126931. doi: 10.1371/journal.pone.0126931.
  • Lee, S.-Y., I.-K. Hong, B.-R. Kim, S.-M. Shim, J. S. Lee, H.-Y. Lee, C. S. Choi, B.-K. Kim, and T. Park. 2015. Activation of sphingosine kinase 2 by endoplasmic reticulum stress ameliorates hepatic steatosis and insulin resistance in mice. Hepatology (Baltimore, Md.) 62 (1):135–46. doi: 10.1002/hep.27804/suppinfo.
  • Ley, R. E., P. J. Turnbaugh, S. Klein, and J. I. Gordon. 2006. Human gut microbes associated with obesity. Nature 444 (7122):1022–3. doi: 10.1038/4441022a.
  • Li, R., S. Andreu-Sánchez, F. Kuipers, and J. Fu. 2021. Gut microbiome and bile acids in obesity-related diseases. Best practice & Research Clinical Endocrinology & Metabolism 35 (3):101493. doi: 10.1016/j.beem.2021.101493.
  • Li, X., H. Chen, Y. Guan, X. Li, L. Lei, J. Liu, L. Yin, G. Liu, and Z. Wang. 2013. Acetic acid activates the amp-activated protein kinase signaling pathway to regulate lipid metabolism in bovine hepatocytes. PloS ONE 8 (7):e67880. doi: 10.1371/journal.pone.0067880.
  • Li, T., J. Y. L. Chiang, and Q. Ma. 2014. Bile acid signaling in metabolic disease and drug therapy. Pharmacological Reviews 66 (4):948–83. doi: 10.1124/pr.113.008201.
  • Li, F., C. Jiang, K. W. Krausz, Y. Li, I. Albert, H. Hao, K. M. Fabre, J. B. Mitchell, A. D. Patterson, and F. J. Gonzalez. 2013. Microbiome remodelling leads to inhibition of intestinal farnesoid x receptor signalling and decreased obesity. Nature Communications 4:2384. doi: 10.1038/ncomms3384.
  • Lopez-Siles, M., T. M. Khan, S. H. Duncan, H. J. M. Harmsen, L. J. Garcia-Gil, and H. J. Flint. 2012. Cultured representatives of two major phylogroups of human colonic Faecalibacterium prausnitzii can utilize pectin, uronic acids, and host-derived substrates for growth. Applied and Environmental Microbiology 78 (2):420–8. doi: 10.1128/AEM.06858-11.
  • Lu, Y.-C., W.-C. Yeh, and P. S. Ohashi. 2008. Lps/tlr4 signal transduction pathway. Cytokine 42 (2):145–51. doi: 10.1016/j.cyto.2008.01.006.
  • Luo, P., K. Lednovich, K. Xu, C. Nnyamah, B. T. Layden, and P. Xu. 2022. Central and peripheral regulations mediated by short-chain fatty acids on energy homeostasis. Translational Research 248:128–50. doi: 10.1016/j.trsl.2022.06.003.
  • Mackay, C. R., D. Artis, D. Yu, R. J. Xavier, A. Ng, F. Mackay, F. Sierro, J. Kranich, M. S. Rolph, M. M. Teixeira, et al. 2009. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor gpr43. Nature (London) 461 (7268):1282–6. doi: 10.1038/nature08530.
  • Madhogaria, B., P. Bhowmik, and A. Kundu. 2022. Correlation between human gut microbiome and diseases. Infectious Medicine 1 (3):180–91. doi: 10.1016/j.imj.2022.08.004.
  • Makishima, M., Arthur, Y. Okamoto, J. J. Repa, H. Tu, R. M. Learned, A. Luk, M. V. Hull, K. D. Lustig, D. J. Mangelsdorf, Shan, B, et al. 1999. Identification of a nuclear receptor for bile acids. Science (American Association for the Advancement of Science) 284 (5418):1362–5. doi: 10.1126/science.284.5418.1362.
  • Ma, Q., Y. Li, P. Li, M. Wang, J. Wang, Z. Tang, T. Wang, L. Luo, C. Wang, T. Wang, et al. 2019. Research progress in the relationship between type 2 diabetes mellitus and intestinal flora. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 117:109138. doi: 10.1016/j.biopha.2019.109138.
  • Mao, G., S. Li, C. Orfila, X. Shen, S. Zhou, R. J. Linhardt, X. Ye, and S. Chen. 2019. Depolymerized rg-i-enriched pectin from citrus segment membranes modulates gut microbiota, increases scfa production, and promotes the growth of bifidobacterium spp., Lactobacillus spp. Food & Function 10 (12):7828–43. doi: 10.1039/c9fo01534e.
  • Markowiak-Kopeć, P., and K. Śliżewska. 2020. The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome. Nutrients 12 (4):1107. doi: 10.3390/nu12041107.
  • Ma, K., P. K. Saha, L. Chan, and D. D. Moore. 2006. Farnesoid x receptor is essential for normal glucose homeostasis. The Journal of Clinical Investigation 116 (4):1102–9. doi: 10.1172/JCI25604.
  • McDonald, B. D., B. Jabri, and A. Bendelac. 2018. Diverse developmental pathways of intestinal intraepithelial lymphocytes. Nature Reviews Immunology 18 (8):514–25. doi: 10.1038/s41577-018-0013-7.
  • McNelis, J. C., Y. S. Lee, R. Mayoral, R. Van Der Kant, A. M. F. Johnson, J. Wollam, and J. M. Olefsky. 2015. Gpr43 potentiates β-cell function in obesity. Diabetes 64 (9):3203–17. doi: 10.2337/db14-1938.
  • Minokoshi, Y., Y.-B. Kim, O. D. Peroni, L. G. D. Fryer, C. Muller, D. Carlingf, and B. B. Kahn. 2002. Leptin stimulates fatty-acidoxidation by activating amp-activated protein kinase. Nature 17:339–43.
  • Mohnen, D. 2008. Pectin structure and biosynthesis. Current opinion in Plant Biology 11 (3):266–77. doi: 10.1016/j.pbi.2008.03.006.
  • Nagahashi, M., K. Takabe, R. Liu, K. Peng, X. Wang, Y. Wang, N. C. Hait, X. Wang, J. C. Allegood, A. Yamada, et al. 2015. Conjugated bile acid-activated s1p receptor 2 is a key regulator of sphingosine kinase 2 and hepatic gene expression. Hepatology (Baltimore, Md.) 61 (4):1216–26. doi: 10.1002/hep.27592.
  • Nagahashi, M., K. Yuza, Y. Hirose, M. Nakajima, R. Ramanathan, N. C. Hait, P. B. Hylemon, H. Zhou, K. Takabe, and T. Wakai. 2016. The roles of bile acids and sphingosine-1-phosphate signaling in the hepato-biliary diseases. Journal of Lipid Research 57 (9):1636–43. doi: 10.1194/jlr.R069286.
  • Ndeh, D., A. Rogowski, A. Cartmell, A. S. Luis, A. Baslé, J. Gray, I. Venditto, J. Briggs, X. Zhang, A. Labourel, et al. 2017. Complex pectin metabolism by gut bacteria reveals novel catalytic functions. Nature 544 (7648):65–70. doi: 10.1038/nature21725.
  • Nihei, N., H. Okamoto, T. Furune, N. Ikuta, K. Sasaki, G. Rimbach, Y. Yoshikawa, and K. Terao. 2018. Dietary α-cyclodextrin modifies gut microbiota and reduces fat accumulation in high-fat-diet-fed obese mice. BioFactors 44 (4):336–47. doi: 10.1002/biof.1429.
  • Nilsson, N. E., K. Kotarsky, C. Owman, and B. Olde. 2003. Identification of a free fatty acid receptor, ffa2r, expressed on leukocytes and activated by short-chain fatty acids. Biochemical and Biophysical Research Communications 303 (4):1047–52. doi: 10.1016/s0006-291x(03)00488-1.
  • O'Neill, M. A., T. Ishii, P. Albersheim, and A. G. Darvill. 2004. Rhamnogalacturonan ii: Structure and function of a borate cross-linked cell wall pectic polysaccharide. Annual Review of Plant Biology 55:109–39. doi: 10.1146/annurev.arplant.55.031903.141750.
  • Ørgaard, A., S. L. Jepsen, and J. J. Holst. 2019. Short-chain fatty acids and regulation of pancreatic endocrine secretion in mice. Islets 11 (5):103–11. doi: 10.1080/19382014.2019.1587976.
  • Palmas, V., S. Pisanu, V. Madau, E. Casula, A. Deledda, R. Cusano, P. Uva, S. Vascellari, A. Loviselli, A. Manzin, et al. 2021. Gut microbiota markers associated with obesity and overweight in italian adults. Scientific Reports 11 (1). doi: 10.1038/s41598-021-84928-w.
  • Pan, Z. K. 2004. Toll-like receptors and tlr-mediated signaling: More questions than answers. American journal of Physiology Lung Cellular and Molecular Physiology 286 (5):L918–L920. doi: 10.1152/ajplung.00381.2003.
  • Patil, D. P., D. P. Dhotre, S. G. Chavan, A. Sultan, D. S. Jain, V. B. Lanjekar, J. Gangawani, P. S. Shah, J. S. Todkar, S. Shah, et al. 2012. Molecular analysis of gut microbiota in obesity among Indian individuals. Journal of Biosciences 37 (4):647–57. doi: 10.1007/s12038-012-9244-0.
  • Perry, R. J., L. Peng, N. A. Barry, G. W. Cline, D. Zhang, R. L. Cardone, K. F. Petersen, R. G. Kibbey, A. L. Goodman, and G. I. Shulman. 2016. Acetate mediates a microbiome–brain–β-cell axis to promote metabolic syndrome. Nature 534 (7606):213–7. doi: 10.1038/nature18309.
  • Petit, E., W. G. LaTouf, M. V. Coppi, T. A. Warnick, D. Currie, I. Romashko, S. Deshpande, K. Haas, J. G. Alvelo-Maurosa, C. Wardman, et al. 2013. Involvement of a bacterial microcompartment in the metabolism of fucose and rhamnose by clostridium phytofermentans. PLoS ONE 8 (1):e54337. doi: 10.1371/journal.pone.0054337.
  • Potthoff, M. J., J. Boney-Montoya, M. Choi, T. He, N. E. Sunny, S. Satapati, H. E. Kelly Suino-Powell, R. D. Xu, B. N. Gerard, S. C. Finck, et al. 2011. Fgf15/19 regulates hepatic glucose metabolism by inhibiting the creb-pgc-1α pathway. Cell Metabolism 13 (6):729–38. doi: 10.1016/j.cmet.2011.03.019.
  • Poul, L., E. Loison, C. Struyf, S. Springael, J. Y. Lannoy, V. Decobecq, M. E. Brezillon, S. Dupriez, V. Vassart, G. Van Damme, et al. 2003. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. The Journal of Biological Chemistry 278 (28):25481–9. doi: 10.1074/jbc.M301403200.
  • Prawitt, J., M. Abdelkarim, J. H. M. Stroeve, I. Popescu, H. Duez, V. R. Velagapudi, J. Dumont, E. Bouchaert, H. Theo, A. Van Dijk, et al. 2011. Farnesoid x receptor deficiency improves glucose homeostasis in mouse models of obesity. Diabetes 60 (7):1861–71. doi: 10.2337/db11-0030/-/DC1.
  • Priyadarshini, M., and B. T. Layden. 2015. Ffar3 modulates insulin secretion and global gene expression in mouse islets. Islets 7 (2):e1045182. doi: 10.1080/19382014.2015.1045182.
  • Priyadarshini, M., S. R. Villa, M. Fuller, B. Wicksteed, C. R. Mackay, T. Alquier, V. Poitout, H. Mancebo, R. G. Mirmira, A. Gilchrist, et al. 2015. An acetate-specific gpcr, ffar2, regulates insulin secretion. Molecular endocrinology (Baltimore, Md.) 29 (7):1055–66. doi: 10.1210/me.2015-1007.
  • Rankin, L. C., and D. Artis. 2018. Beyond host defense: Emerging functions of the immune system in regulating complex tissue physiology. Cell 173 (3):554–67. doi: 10.1016/j.cell.2018.03.013.
  • Regard, J. B., I. T. Sato, and S. R. Coughlin. 2008. Anatomical profiling of g protein-coupled receptor expression. Cell 135 (3):561–71. doi: 10.1016/j.cell.2008.08.040.
  • Ren, T., F. Liu, D. Wang, B. Li, P. Jiang, J. Li, H. Li, C. Chen, W. Wu, and L. Jiao. 2023. Rhamnogalacturonan-i enriched pectin from steamed ginseng ameliorates lipid metabolism in type 2 diabetic rats via gut microbiota and ampk pathway. Journal of Ethnopharmacology 301:115862. doi: 10.1016/j.jep.2022.115862.
  • Renard, C. M. G. C., M. Crépeau, and J. Thibault. 1995. Structure of the repeating units in the rhamnogalacturonic backbone of apple, beet and citrus pectins. Carbohydrate Research 275 (1):155–65. doi: 10.1016/0008-6215(95)00140-O.
  • Renga, B., A. Mencarelli, P. Vavassori, V. Brancaleone, and S. Fiorucci. 2010. The bile acid sensor fxr regulates insulin transcription and secretion. Biochimica et Biophysica Acta 1802 (3):363–72. doi: 10.1016/j.bbadis.2010.01.002.
  • Ridlon, J. M., J. M. Alves, P. B. Hylemon, and J. S. Bajaj. 2013. Cirrhosis, bile acids and gut microbiota. Gut Microbes 4 (5):382–7. doi: 10.1016/j.23851335.
  • Robert, C., C. Chassard, P. A. Lawson, and A. Bernalier-Donadille. 2007. Bacteroides cellulosilyticus sp. nov., a cellulolytic bacterium from the human gut microbial community. International Journal of Systematic and Evolutionary Microbiology 57:1516–20. doi: 10.1099/ijs.0.64998-0.
  • Rodrigues, D., G. Walton, S. Sousa, T. A. P. Rocha-Santos, A. C. Duarte, A. C. Freitas, and A. M. P. Gomes. 2016. In vitro fermentation and prebiotic potential of selected extracts from seaweeds and mushrooms. LWT 73:131–9. doi: 10.1016/j.lwt.2016.06.004.
  • Rodríguez-Daza, M., M. Roquim, S. Dudonné, G. Pilon, E. Levy, A. Marette, D. Roy, and Y. Desjardins. 2020. Berry polyphenols and fibers modulate distinct microbial metabolic functions and gut microbiota enterotype-like clustering in obese mice. Frontiers in Microbiology 11:2032. doi: 10.3389/fmicb.2020.02032.
  • Roediger, W. E. W., and A. Moore. 1981. Effect of short-chain fatty acid on sodium absorption in isolated human colon perfused through the vascular bed. Digestive Diseases and Sciences 26 (2):100–6. doi: 10.1007/BF01312224.
  • Rowland, I., G. Gibson, A. Heinken, K. Scott, J. Swann, I. Thiele, and K. Tuohy. 2018. Gut microbiota functions: Metabolism of nutrients and other food components. European Journal of Nutrition 57 (1):1–24. doi: 10.1007/s00394-017-1445-8.
  • Rubio-Senent, F., G. Rodríguez-Gutiérrez, A. Lama-Muñoz, and J. Fernández-Bolaños. 2015. Pectin extracted from thermally treated olive oil by-products: Characterization, physico-chemical properties, in vitro bile acid and glucose binding. Food Hydrocolloids 43:311–21. doi: 10.1016/j.foodhyd.2014.06.001.
  • Sahasrabudhe, N. M., M. Beukema, L. Tian, B. Troost, J. Scholte, E. Bruininx, G. Bruggeman, M. van den Berg, A. Scheurink, H. A. Schols, et al. 2018. Dietary fiber pectin directly blocks toll-like receptor 2–1 and prevents doxorubicin-induced ileitis. Frontiers in Immunology 9:383. doi: 10.3389/fimmu.2018.00383.
  • Sakakibara, S., T. Yamauchi, Y. Oshima, Y. Tsukamoto, and T. Kadowaki. 2006. Acetic acid activates hepatic ampk and reduces hyperglycemia in diabetic kk-a(y) mice. Biochemical and Biophysical Research Communications 344 (2):597–604. doi: 10.1016/j.bbrc.2006.03.176.
  • Salyers, A. A., J. R. Vercellotti, S. E. H. West, and T. D. Wilkins. 1977. Fermentation of mucin and plant polysaccharides by strains of bacteroides from the human colon. Applied and Environmental Microbiology 33 (2):319–22. doi: 10.1128/aem.33.2.319-322.1977.
  • Sama, I., A. Sayin, M. Wahlstro, J. Felin, J. Sirkku, H.-U. Ntti, K. Marschall, B. Bamberg, T. Angelin, M. Hyo Tyla Inen, et al. 2013. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring fxr antagonist. Cell Metabolism 17 (2):225–35.
  • Samout, N., H. Bouzenna, S. Dhibi, S. Ncib, A. ElFeki, and N. Hfaiedh. 2016. Therapeutic effect of apple pectin in obese rats. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 83:1233–8. doi: 10.1016/j.biopha.2016.08.038.
  • Samuel, B. S., A. Shaito, T. Motoike, F. E. Rey, F. Backhed, J. K. Manchester, R. E. Hammer, S. C. Williams, J. Crowley, M. Yanagisawa, et al. 2008. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding g protein-coupled receptor, gpr41. Proceedings of the National Academy of Sciences of the United States of America 105 (43):16767–72. doi: 10.1073/pnas.0808567105.
  • Santacruz, A., M. C. Collado, L. García-Valdés, M. T. Segura, J. A. Martín-Lagos, T. Anjos, M. Martí-Romero, R. M. Lopez, J. Florido, C. Campoy, et al. 2010. Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. The British Journal of Nutrition 104 (1):83–92. doi: 10.1017/S0007114510000176.
  • Schreuder, T. C., H. A. Marsman, M. Lenicek, J. R. van Werven, A. J. Nederveen, P. L. Jansen, and F. G. Schaap. 2010. The hepatic response to fgf19 is impaired in patients with nonalcoholic fatty liver disease and insulin resistance. American journal of Physiology Gastrointestinal and Liver Physiology 298 (3):G440–G445. doi: 10.1152/ajpgi.00322.2009.
  • Seol, W., H. S. Choi, and D. D. Moore. 1995. Isolation of proteins that interact specifically with the retinoid x receptor: Two novel orphan receptors. Molecular Endocrinology (Baltimore, Md.) 9 (1):72–85. doi: 10.1210/mend.9.1.7760852.
  • Shapiro, H., A. A. Kolodziejczyk, D. Halstuch, and E. Elinav. 2018. Bile acids in glucose metabolism in health and disease. The Journal of Experimental Medicine 215 (2):383–96. doi: 10.1084/jem.20171965.
  • Shtriker, M. G., M. Hahn, E. Taieb, A. Nyska, U. Moallem, O. Tirosh, and Z. Madar. 2018. Fenugreek galactomannan and citrus pectin improve several parameters associated with glucose metabolism and modulate gut microbiota in mice. Nutrition 46:134–42.e3. doi: 10.1016/j.nut.2017.07.012.
  • Sinal, C. J., M. Tohkin, M. Miyata, J. M. Ward, G. Lambert, and F. J. Gonzalez. 2000. Targeted disruption of the nuclear receptor fxr/bar impairs bile acid and lipid homeostasis. Cell 102 (6):731–44. doi: 10.1016/S0092-8674(00)00062-3.
  • Song, M. J., K. H. Kim, J. M. Yoon, and J. B. Kim. 2006. Activation of toll-like receptor 4 is associated with insulin resistance in adipocytes. Biochemical and Biophysical Research Communications 346 (3):739–45. doi: 10.1016/j.bbrc.2006.05.170.
  • Stayrook, K. R., K. S. Bramlett, R. S. Savkur, J. Ficorilli, T. Cook, M. E. Christe, L. F. Michael, and T. P. Burris. 2005. Regulation of carbohydrate metabolism by the farnesoid x receptor. Endocrinology (Philadelphia) 146:984–91. doi: 10.1210/en.2004-0965.
  • Steliou, K., M. S. Boosalis, S. P. Perrine, J. Sangerman, and D. V. Faller. 2012. Butyrate histone deacetylase inhibitors. BioResearch 1 (4):192–8. doi: 10.1089/biores.2012.0223.
  • Studer, E., X. Zhou, R. Zhao, Y. Wang, K. Takabe, M. Nagahashi, W. M. Pandak, P. Dent, S. Spiegel, R. Shi, et al. 2012. Conjugated bile acids activate the sphingosine-1-phosphate receptor 2 in primary rodent hepatocytes. Hepatology (Baltimore, Md.) 55 (1):267–76. doi: 10.1002/hep.24681.
  • Sun, L., C. Xie, G. Wang, Y. Wu, Q. Wu, X. Wang, J. Liu, Y. Deng, J. Xia, B. Chen, et al. 2018. Gut microbiota and intestinal fxr mediate the clinical benefits of metformin. Nature medicine 24 (12):1919–29. doi: 10.1038/s41591-018-0222-4.
  • Swann, J. R., E. J. Want, F. M. Geier, K. Spagou, I. D. Wilson, J. E. Sidaway, J. K. Nicholson, and E. Holmes. 2011. Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. Proceedings of the National Academy of Sciences 108, 4523–30. doi: 10.1073/pnas.1006734107.
  • Tai, N., F. S. Wong, and L. Wen. 2015. The role of gut microbiota in the development of type 1, obesity and type 2 diabetes mellitus. Reviews in Endocrine & Metabolic Disorders 16 (1):55–65. doi: 10.1007/s11154-015-9309-0.
  • Takebe, K., J. Nio, M. Morimatsu, S. Karaki, A. Kuwahara, I. Kato, and T. Iwanaga. 2005. Histochemical demonstration of a na(+)-coupled transporter for short-chain fatty acids (slc5a8) in the intestine and kidney of the mouse. Biomedical research (Tokyo, Japan) 26 (5):213–21. doi: 10.2220/biomedres.26.213.
  • Tan, J., C. McKenzie, M. Potamitis, A. N. Thorburn, C. R. Mackay, and L. Macia. 2014. The role of short-chain fatty acids in health and disease. Advances in Immunology 121:91–119. doi: 10.1016/B978-0-12-800100-4.00003-9.
  • Tazoe, H., Y. Otomo, S-i Karaki, I. Kato, Y. Fukami, M. Terasaki, and A. Kuwahara. 2009. Expression of short-chain fatty acid receptor gpr41 in the human colon. Biomedical Research 30 (3):149–56. doi: 10.1007/s10735-007-9145.
  • Teramae, H., T. Yoshikawa, R. Inoue, K. Ushida, K. Takebe, J. Nio-Kobayashi, and T. Iwanaga. 2010. The cellular expression of smct2 and its comparison with other transporters for monocarboxylates in the mouse digestive tract. Biomedical research (Tokyo, Japan) 31 (4):239–49. doi: 10.2220/biomedres.31.239.
  • Thomas, C., A. Gioiello, L. Noriega, A. Strehle, J. Oury, G. Rizzo, A. Macchiarulo, H. Yamamoto, C. Mataki, M. Pruzanski, et al. 2009. Tgr5-mediated bile acid sensing controls glucose homeostasis. Cell metabolism 10 (3):167–77. doi: 10.1016/j.cmet.2009.08.001.
  • Tian, L., G. Bruggeman, M. van den Berg, K. Borewicz, A. J. W. Scheurink, E. Bruininx, P. de Vos, H. Smidt, H. A. Schols, and H. Gruppen. 2017. Effects of pectin on fermentation characteristics, carbohydrate utilization, and microbial community composition in the gastrointestinal tract of weaning pigs. Molecular Nutrition & Food Research 61:1600186. doi: 10.1002/mnfr.201600186.
  • Tian, L., J. Scholte, K. Borewicz, B. van den Bogert, H. Smidt, A. J. Scheurink, H. Gruppen, and H. A. Schols. 2016. Effects of pectin supplementation on the fermentation patterns of different structural carbohydrates in rats. Molecular nutrition & Food Research 60 (10):2256–66. doi: 10.1002/mnfr.201600149.
  • Tirosh, A., E. S. Calay, G. Tuncman, K. C. Claiborn, K. E. Inouye, K. Eguchi, M. Alcala, M. Rathaus, K. S. Hollander, I. Ron, et al. 2019. The short-chain fatty acid propionate increases glucagon and fabp4 production, impairing insulin action in mice and humans. Science Translational Medicine 11. doi: 10.1126/scitranslmed.aav0120.
  • Tolhurst, G., Helen Heffron, Y. S. Lam, H. E. Parker, A. M. Habib, E. Diakogiannaki, J. Cameron, J. Grosse, F. Reimann, and F. M. Gribble, 2012. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the g-protein – coupled receptor ffar2. Diabets :364–71. doi: 10.2337/db11-1019/-/DC1.
  • Tomlinson, E., L. Fu, L. John, B. Hultgren, X. Huang, M. Renz, J. P. Stephan, S. P. Tsai, L. Powell-Braxton, D. French, et al. 2002. Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity. Endocrinology 143 (5):1741–7. doi: 10.1210/endo.143.5.8850.
  • Topping, D. L., and P. M. Clifton. 2001. Short-chain fatty acids and human colonic function: Roles of resistant starch and nonstarch polysaccharides. Physiological Reviews 81 (3):1031–64. doi: 10.1152/physrev.2001.81.3.1031.
  • Torres, L. E., K. Melián, A. Moreno, J. Alonso, C. A. Sabatier, M. Hernández, L. Bermúdez, and B. L. Rodríguez. 2009. Prevalence of vaca, caga and baba2 genes in Cuban Helicobacter pylori isolates. World journal of Gastroenterology 15 (2):204–10. doi: 10.3748/wjg.15.204.
  • Tseng, C.-H., and C. Wu. 2019. The gut microbiome in obesity. Journal of the Formosan Medical Association 118:S3–S9. doi: 10.1016/j.jfma.2018.07.009.
  • Tyagi, S., J. Venugopalakrishnan, K. Ramaswamy, and P. K. Dudeja. 2002. Mechanism of n-butyrate uptake in the human proximal colonic basolateral membranes. American journal of Physiology Gastrointestinal and Liver Physiology 282 (4):G676–G682. doi: 10.1152/ajpgi.00173.2000.
  • Van Dijk, T. H, A. Grefhorst, Maaike, H. Oosterveer, V. W. Bloks, B. Staels, D.-J. Reijngoud, and F. Kuipers. 2009. An increased flux through the glucose 6-phosphate pool in enterocytes delays glucose absorption in fxr-/- mice. The Journal of Biological Chemistry 284 (16):10315–23. doi: 10.1074/jbc.M807317200.
  • van den Hoek, A. M., A. C. Heijboer, E. P. Corssmit, P. J. Voshol, J. A. Romijn, L. M. Havekes, and H. Pijl. 2004. Pyy3-36 reinforces insulin action on glucose disposal in mice fed a high-fat diet. Diabetes 53 (8):1949–52. doi: 10.2337/diabetes.53.8.1949.
  • Vidyasagar, S., C. Barmeyer, J. Geibel, H. J. Binder, and V. M. Rajendran. 2005. Role of short-chain fatty acids in colonic hco3 secretion. American Journal of Physiology: Gastrointestinal and Liver Physiology 51:G1217–G1226. doi: 10.1152/ajpgi.00415.2004.
  • Holloway, W. D., C. Tasman, and K. Maher. 1983. Pectin digestion in humans. The American Journal of clinicalNutrition 37:253–5. doi: 10.1093/ajcn/37.2.253.
  • Wahlström, A., S. I. Sayin, H. Marschall, F. Bäckhed, A. Sahlgrenska, D. O. M. A. Institute Of Medicine, A. F. M. O. Institutionen För Medicin, U. Göteborgs, U. Gothenburg, and A. Sahlgrenska. 2016. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell metabolism 24 (1):41–50. doi: 10.1016/j.cmet.2016.05.005.
  • Wang, L., P. Li, Z. Tang, X. Yan, and B. Feng. 2016. Structural modulation of the gut microbiota and the relationship with body weight: Compared evaluation of liraglutide and saxagliptin treatment. Scientific Reports 6:33251. doi: 10.1038/srep33251.
  • Watanabe, M., Y. Horai, S. M. Houten, K. Morimoto, T. Sugizaki, E. Arita, C. Mataki, H. Sato, Y. Tanigawara, K. Schoonjans, et al. 2011. Lowering bile acid pool size with a synthetic farnesoid x receptor (fxr) agonist induces obesity and diabetes through reduced energy expenditure. The Journal of Biological Chemistry 286 (30):26913–20. doi: 10.1074/jbc.M111.248203.
  • Watanabe, M., S. M. Houten, L. Wang, A. Moschetta, D. J. Mangelsdorf, R. A. Heyman, D. D. Moore, and J. Auwerx. 2004. Bile acids lower triglyceride levels via a pathway involving fxr, shp, and srebp-1c. The Journal of Clinical Investigation 113 (10):1408–18. doi: 10.1172/JCI21025.
  • Witjes, J. J., L. P. Smits, C. T. Pekmez, A. Prodan, A. S. Meijnikman, M. A. Troelstra, K. E. C. Bouter, H. Herrema, E. Levin, A. G. Holleboom, et al. 2020. Donor fecal microbiota transplantation alters gut microbiota and metabolites in obese individuals with steatohepatitis. Hepatology Communications 4 (11):1578–90. doi: 10.1002/hep4.1601.
  • Wu, D., J. Zheng, G. Mao, W. Hu, X. Ye, R. J. Linhardt, and S. Chen. 2020. Rethinking the impact of rg-i mainly from fruits and vegetables on dietary health. Critical reviews in Food Science and Nutrition 60 (17):2938–60. doi: 10.1080/10408398.2019.1672037.
  • Xie, C., C. Jiang, J. Shi, X. Gao, D. Sun, L. Sun, T. Wang, S. Takahashi, M. Anitha, K. W. Krausz, et al. 2017. An intestinal farnesoid x receptor-ceramide signaling axis modulates hepatic gluconeogenesis in mice. Diabetes 66 (3):613–26. doi: 10.2337/db16-0663.
  • Xu, H., G. T. Barnes, Q. Yang, G. Tan, D. Yang, C. J. Chou, J. Sole, A. Nichols, J. S. Ross, L. A. Tartaglia, et al. 2003. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. Journal of Clinical Investigation 112 (12):1821–30. doi: 10.1172/JCI200319451.
  • Yamagata, K., H. Daitoku, Y. Shimamoto, H. Matsuzaki, K. Hirota, J. Ishida, and A. Fukamizu. 2004. Bile acids regulate gluconeogenic gene expression via small heterodimer partner-mediated repression of hepatocyte nuclear factor 4 and foxo1. The Journal of Biological Chemistry 279 (22):23158–65. doi: 10.1074/jbc.M314322200.
  • Yamashit, H. 2015. Biological function of acetic acid–improvement in obesity and glucose tolerance by acetic acid in type 2 diabetic rats. Critical Reviews in Food Science and Nutrition 56:S171–S175. doi: 10.1080/10408398.2015.1045966.
  • Yamashita, H., K. Fujisawa, E. Ito, S. Idei, N. Kawaguchi, M. Kimoto, M. Hiemori, and H. Tsuji. 2007. Improvement of obesity and glucose tolerance by acetate in type 2 diabetic otsuka long-evans tokushima fatty (oletf) rats. Bioscience, Biotechnology, and Biochemistry 71 (5):1236–43. doi: 10.1271/bbb.60668.
  • Ye, J. 2013. Mechanisms of insulin resistance in obesity. Frontiers of Medicine 7 (1):14–24. doi: 10.1007/s11684-013-0262-6.
  • Ye, J., L. Lv, W. Wu, Y. Li, D. Shi, D. Fang, F. Guo, H. Jiang, R. Yan, W. Ye, et al. 2018. Butyrate protects mice against methionine–choline-deficient diet-induced non-alcoholic steatohepatitis by improving gut barrier function, attenuating inflammation and reducing endotoxin levels. Frontiers in Microbiology 9:1967. doi: 10.3389/fmicb.2018.01967.
  • Zhang, H., J. K. DiBaise, A. Zuccolo, D. Kudrna, M. Braidotti, Y. Yu, P. Parameswaran, M. D. Crowell, R. Wing, B. E. Rittmann, et al. 2009. Human gut microbiota in obesity and after gastric bypass. Proceedings of the National Academy of Sciences of the United States of America 106 (7):2365–70. doi: 10.1073/pnas.0812600106.
  • Zhang, Y., H. R. Kast-Woelbern, and P. A. Edwards. 2003. Natural structural variants of the nuclear receptor farnesoid x receptor affect transcriptional activation. The Journal of Biological Chemistry 278 (1):104–10. doi: 10.1074/jbc.m209505200.
  • Zhang, Y., F. Y. Lee, G. Barrera, H. Lee, C. Vales, F. J. Gonzalez, T. M. Willson, and P. A. Edwards. 2006. Activation of the nuclear receptor fxr improves hyperglycemia and hyperlipidemia in diabetic mice. Proceedings of the National Academy of Sciences of the United States of America 103 (4):1006–11. doi: 10.1073/pnas.0506982103.
  • Zhang, Y., X. Pan, S. Ran, and K. Wang. 2019. Purification, structural elucidation and anti-inflammatory activity in vitro of polysaccharides from smilax china l. International journal of Biological Macromolecules 139:233–43. doi: 10.1016/j.ijbiomac.2019.07.209.
  • Zhang, Q., Y. Wu, J. Wang, G. Wu, W. Long, Z. Xue, L. Wang, X. Zhang, X. Pang, Y. Zhao, et al. 2016. Accelerated dysbiosis of gut microbiota during aggravation of dss-induced colitis by a butyrate-producing bacterium. Scientific Reports 6:27572. doi: 10.1038/srep27572.
  • Zhao, Y., J. Bi, J. Yi, J. Peng, and Q. Ma. 2022. Dose-dependent effects of apple pectin on alleviating high fat-induced obesity modulated by gut microbiota and scfas. Food Science and Human Wellness 2022:143–54. doi: 10.1016/j.fshw.2021.07.015.
  • Zheng, X., T. Chen, R. Jiang, A. Zhao, Q. Wu, J. Kuang, D. Sun, Z. Ren, M. Li, M. Zhao, et al. 2021. Hyocholic acid species improve glucose homeostasis through a distinct tgr5 and fxr signaling mechanism. Cell metabolism 33 (4):791–803.e7. doi: 10.1016/j.cmet.2020.11.017.
  • Zhou, M., J. Bi, J. Chen, R. Wang, and A. Richel. 2021. Impact of pectin characteristics on lipid digestion under simulated gastrointestinal conditions: Comparison of water-soluble pectins extracted from different sources. Food Hydrocolloids 112:106350. doi: 10.1016/j.foodhyd.2020.106350.
  • Zhou, F., X. Wang, B. Han, X. Tang, R. Liu, Q. Ji, Z. Zhou, and L. Zhang. 2021. Short-chain fatty acids contribute to neuropathic pain via regulating microglia activation and polarization. Molecular pain 17:1744806921996520. doi: 10.1177/1744806921996520.
  • Zhu, K., G. Mao, D. Wu, C. Yu, H. Cheng, H. Xiao, X. Ye, R. J. Linhardt, C. Orfila, and S. Chen. 2020. Highly branched rg-i domain enrichment is indispensable for pectin mitigating against high-fat diet-induced obesity. Journal of Agricultural and Food Chemistry 68 (32):8688–701. doi: 10.1021/acs.jafc.0c02654.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.