557
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Recent progress in health effects and biosynthesis of lacto-N-tetraose, the most dominant core structure of human milk oligosaccharide

, , ORCID Icon & ORCID Icon

References

  • Ackerman, D. L., R. S. Doster, J.-H. Weitkamp, D. M. Aronoff, J. A. Gaddy, and S. D. Townsend. 2017. Human milk oligosaccharides exhibit antimicrobial and antibiofilm properties against group B Streptococcus. ACS Infectious Diseases 3 (8):595–605.
  • Aly, M. R., I. I. el-S, H. A. el-S, and R. R. Schmidt. 1999. Synthesis of lacto-N-neotetraose and lacto-N-tetraose using the dimethylmaleoyl group as amino protective group. Carbohydrate Research 316 (1–4):121–32. doi: 10.1016/S0008-6215(99)00051-8.
  • Andersson, B., J. Dahmén, T. Frejd, H. Leffler, G. Magnusson, G. Noori, and C. S. Edén. 1983. Identification of an active disaccharide unit of a glycoconjugate receptor for pneumococci attaching to human pharyngeal epithelial cells. The Journal of Experimental Medicine 158 (2):559–70.
  • Andersson, B., O. Porras, L. A. Hanson, T. Lagergård, and C. Svanborg-Edén. 1986. Inhibition of attachment of Streptococcus pneumoniae and Haemophilus influenzae by human milk and receptor oligosaccharides. The Journal of Infectious Diseases 153 (2):232–7.
  • Asakuma, S., E. Hatakeyama, T. Urashima, E. Yoshida, T. Katayama, K. Yamamoto, H. Kumagai, H. Ashida, J. Hirose, and M. Kitaoka. 2011. Physiology of consumption of human milk oligosaccharides by infant gut-associated bifidobacteria. The Journal of Biological Chemistry 286 (40):34583–92.
  • Baumgärtner, F., J. Conrad, G. A. Sprenger, and C. Albermann. 2014. Synthesis of the human milk oligosaccharide lacto-N-tetraose in metabolically engineered, plasmid-free E. coli. Chembiochem: A European Journal of Chemical Biology 15 (13):1896–900.
  • Baumgärtner, F., G. A. Sprenger, and C. Albermann. 2015. Galactose-limited fed-batch cultivation of Escherichia coli for the production of lacto-N-tetraose. Enzyme and Microbial Technology 75–76:37–43.
  • Bode, L. 2012. Human milk oligosaccharides: Every baby needs a sugar mama. Glycobiology 22 (9):1147–62. doi: 10.1093/glycob/cws074.
  • Brand-Miller, J. C., P. McVeagh, Y. McNeil, and M. Messer. 1998. Digestion of human milk oligosaccharides by healthy infants evaluated by the lactulose hydrogen breath test. The Journal of Pediatrics 133 (1):95–8.
  • Castejón-Vilatersana, M., M. Faijes, and A. Planas. 2021. Transglycosylation activity of engineered Bifidobacterium lacto-N-biosidase mutants at donor subsites for lacto-N-tetraose synthesis. International Journal of Molecular Sciences 22 (6):3230. doi: 10.3390/ijms22063230.
  • Castillo-Courtade, L., S. Han, S. Lee, F. M. Mian, R. Buck, and P. Forsythe. 2015. Attenuation of food allergy symptoms following treatment with human milk oligosaccharides in a mouse model. Allergy 70 (9):1091–102. doi: 10.1111/all.12650.
  • Chong, H.-Y., L. T.-H. Tan, J. W.-F. Law, K.-W. Hong, V. Ratnasingam, N.-S A. Mutalib, L.-H. Lee, and V. Letchumanan. 2022. Exploring the potential of human milk and formula milk on infants’ gut and health. Nutrients 14 (17):3554. doi: 10.3390/nu14173554.
  • Collins, P. M., K. Bum-Erdene, X. Yu, and H. Blanchard. 2014. Galectin-3 interactions with glycosphingolipids. Journal of Molecular Biology 426 (7):1439–51.
  • Craft, K. M., H. C. Thomas, and S. D. Townsend. 2019. Sialylated variants of lacto-N-tetraose exhibit antimicrobial activity against group B Streptococcus. Organic & Biomolecular Chemistry 17 (7):1893–900. doi: 10.1039/c8ob02080a.
  • Craft, K. M., and S. D. Townsend. 2017. Synthesis of lacto-N-tetraose. Carbohydrate research 440–441:43–50.
  • Cuxart, I., J. Coines, O. Esquivias, M. Faijes, A. Planas, X. Biarnés, and C. Rovira. 2022. Enzymatic hydrolysis of human milk oligosaccharides: The molecular mechanism of Bifidobacterium Bifidum lacto-N-biosidase. ACS Catalysis 12 (8):4737–43.
  • El-Hawiet, A., E. N. Kitova, P. I. Kitov, L. Eugenio, K. K. S. Ng, G. L. Mulvey, T. C. Dingle, A. Szpacenko, G. D. Armstrong, and J. S. Klassen. 2011. Binding of Clostridium difficile toxins to human milk oligosaccharides. Glycobiology 21 (9):1217–27.
  • El-Hawiet, A., E. N. Kitova, and J. S. Klassen. 2015. Recognition of human milk oligosaccharides by bacterial exotoxins. Glycobiology 25 (8):845–54.
  • Engfer, M. B., B. Stahl, B. Finke, G. Sawatzki, and H. Daniel. 2000. Human milk oligosaccharides are resistant to enzymatic hydrolysis in the upper gastrointestinal tract. The American Journal of Clinical Nutrition 71 (6):1589–96.
  • Fujimoto, H., M. Miyasato, Y. Ito, T. Sasaki, and K. Ajisaka. 1998. Purification and properties of recombinant β-galactosidase from Bacillus circulans. Glycoconjugate Journal 15 (2):155–60.
  • Garrido, D., J. H. Kim, J. B. German, H. E. Raybould, and D. A. Mills. 2011. Oligosaccharide binding proteins from Bifidobacterium longum subsp. infantis reveals a preference for host glycans. PloS One 6 (3):e17315.
  • Garrido, D., S. Ruiz-Moyano, and D. A. Mills. 2012. Release and utilization of N-acetyl-D-glucosamine from human milk oligosaccharides by Bifidobacterium longum subsp. infantis. Anaerobe 18 (4):430–5.
  • Holscher, H. D., S. R. Davis, and K. A. Tappenden. 2014. Human milk oligosaccharides influence maturation of human intestinal Caco-2 Bbe and HT-29 cells. The Journal of Nutrition 144 (5):586–91. doi: 10.3945/jn.113.189704.
  • Hu, M., M. Li, M. Miao, and T. Zhang. 2022a. Engineering Escherichia coli for the high-titer biosynthesis of lacto-N-tetraose. Journal of Agricultural and Food Chemistry 70 (28):8704–12.
  • Hu, L., S. Ramani, R. Czako, B. Sankaran, Y. Yu, D. F. Smith, R. D. Cummings, M. K. Estes, and B. V. V. Prasad. 2015. Structural basis of glycan specificity in neonate-specific bovine-human reassortant rotavirus. Nature Communications 6:8346.
  • Ito, T., T. Katayama, M. Hattie, H. Sakurama, J. Wada, R. Suzuki, H. Ashida, T. Wakagi, K. Yamamoto, K. A. Stubbs, et al. 2013. Crystal structures of a glycoside hydrolase family 20 lacto-N-biosidase from Bifidobacterium bifidum. The Journal of Biological Chemistry 288 (17):11795–806.
  • Jacobi, S. K., T. Yatsunenko, D. Li, S. Dasgupta, R. K. Yu, B. M. Berg, M. Chichlowski, and J. Odle. 2016. Dietary isomers of sialyllactose increase ganglioside sialic acid concentrations in the corpus callosum and cerebellum and modulate the colonic microbiota of formula-fed piglets. The Journal of Nutrition 146 (2):200–8.
  • James, K., M. O. Motherway, F. Bottacini, and D. van Sinderen. 2016. Bifidobacterium breve UCC2003 metabolises the human milk oligosaccharides lacto-N-tetraose and lacto-N-neotetraose through overlapping, yet distinct pathways. Scientific Reports 6:38560.
  • Jantscher-Krenn, E., T. Lauwaet, L. A. Bliss, S. L. Reed, F. D. Gillin, and L. Bode. 2012. Human milk oligosaccharides reduce Entamoeba histolytica attachment and cytotoxicity in vitro. The British Journal of Nutrition 108 (10):1839–46.
  • Jantscher-Krenn, E., M. Zherebtsov, C. Nissan, K. Goth, Y. S. Guner, N. Naidu, B. Choudhury, A. V. Grishin, H. R. Ford, and L. Bode. 2012. The human milk oligosaccharide disialyllacto-N-tetraose prevents necrotizing enterocolitis in neonatal rats. Gut 61 (10):1417–25.
  • Jones, C. M., N. J. H. Lozada, and B. F. Pfleger. 2015. Efflux systems in bacteria and their metabolic engineering applications. Applied Microbiology and Biotechnology 99 (22):9381–93.
  • Kong, C., A. de Jong, B. J. de Haan, J. Kok, and P. de Vos. 2022. Human milk oligosaccharides and non-digestible carbohydrates reduce pathogen adhesion to intestinal epithelial cells by decoy effects or by attenuating bacterial virulence. Food Research International (Ottawa, ON) 151:110867. doi: 10.1016/j.foodres.2021.110867.
  • Kong, C., M. Elderman, L. Cheng, B. J. de Haan, A. Nauta, and P. de Vos. 2019. Modulation on intestinal epithelial glycocalyx development by human milk oligosaccharides and non-digestible carbohydrates. Molecular Nutrition & Food Research 63 (17):e1900303.
  • Krześlak, A., and A. Lipińska. 2004. Galectin-3 as a multifunctional protein. Cellular & Molecular Biology Letters 9 (2):305–28.
  • Laucirica, D. V. T., R. Schoemaker, M. K. Estes, and S. Ramani. 2017. Milk oligosaccharides inhibit human rotavirus infectivity inMA104 cells. Journal of Nutrition 147:1709.
  • Li, Z., Y. Zhu, P. Zhang, W. Zhang, and W. Mu. 2022. Pathway optimization and uridine 5′-triphosphate regeneration for enhancing lacto-N-tetraose biosynthesis in engineered Escherichia coli. Journal of Agricultural and Food Chemistry 70 (25):7727–35.
  • Lin, A. E., C. A. Autran, A. Szyszka, T. Escajadillo, M. Huang, K. Godula, A. R. Prudden, G.-J. Boons, A. L. Lewis, K. S. Doran, et al. 2017. Human milk oligosaccharides inhibit growth of group B Streptococcus. Journal of Biological Chemistry 292 (27):11243–9. doi: 10.1074/jbc.M117.789974.
  • Liu, Y., T. A. Ramelot, P. Huang, Y. Liu, Z. Li, T. Feizi, W. Zhong, F.-T. Wu, M. Tan, M. A. Kennedy, et al. 2016. Glycan specificity of P[19] rotavirus and comparison with those of related P genotypes. Journal of Virology 90 (21):9983–96.
  • Liu, X.-W., C. Xia, L. Li, W.-Y. Guan, N. Pettit, H.-C. Zhang, M. Chen, and P. G. Wang. 2009. Characterization and synthetic application of a novel β1,3-galactosyltransferase from Escherichia coli O55:H7. Bioorganic & Medicinal Chemistry 17 (14):4910–5.
  • Manthey, C. F., C. A. Autran, L. Eckmann, and L. Bode. 2014. Human milk oligosaccharides protect against enteropathogenic Escherichia coli (EPEC) attachment in vitro and EPEC colonization in suckling mice. Journal of Pediatric Gastroenterology and Nutrition 58:167.
  • Masi, A. C., N. D. Embleton, C. A. Lamb, G. Young, C. L. Granger, J. Najera, D. P. Smith, K. L. Hoffman, J. F. Petrosino, L. Bode, et al. 2021. Human milk oligosaccharide DSLNT and gut microbiome in preterm infants predicts necrotizing enterocolitis. Gut 70 (12):2273–82.
  • Matsuki, T., K. Yahagi, H. Mori, H. Matsumoto, T. Hara, S. Tajima, E. Ogawa, H. Kodama, K. Yamamoto, T. Yamada, et al. 2016. A key genetic factor for fucosyllactose utilization affects infant gut microbiota development. Nature Communications 7:11939.
  • McArthur, J. B., H. Yu, and X. Chen. 2019. A bacterial β1-3-galactosyltransferase enables multigram-scale synthesis of human milk lacto-N-tetraose (LNT) and its fucosides. ACS Catalysis 9 (12):10721–6.
  • McDonald, A. G., J. Mariethoz, G. P. Davey, and F. Lisacek. 2022. In silico analysis of the human milk oligosaccharides glycome reveals key enzymes of their biosynthesis. Scientific Report 12:10846.
  • Moore, R. E., L. L. Xu, and S. D. Townsend. 2021. Prospecting human milk oligosaccharides as a defense against viral infections. ACS Infectious Diseases 7 (2):254–63. doi: 10.1021/acsinfecdis.0c00807.
  • Moya-Gonzálvez, E. M., A. Rubio-del-Campo, J. Rodríguez-Díaz, and M. J. Yebra. 2021. Infant-gut associated Bifidobacterium dentium strains utilize the galactose moiety and release lacto-N-triose from the human milk oligosaccharides lacto-N-tetraose and lacto-N-­neotetraose. Scientific Reports 11 (1):23328.
  • Mudd, A. T., S. A. Fleming, B. Labhart, M. Chichlowski, B. M. Berg, S. M. Donovan, and R. N. Dilger. 2017. Dietray sialyllactose influences sialic acid concentrations in the prefrontal cortex and magnetic resonance imaging measures in corpus callosum of young pigs. Nutrients 9 (12):1297. doi: 10.3390/nu9121297.
  • Murata, T., T. Inukai, M. Suzuki, M. Yamagishi, and A. T. Usui. 1999. Facile enzymatic conversion of lactose into lacto-N-tetraose and lacto-N-neotetraose. Glycoconjugate Journal 16 (3):189–95.
  • Natividad, J. M., B. Marsaux, C. L. G. Rodenas, A. Rytz, G. Vandevijver, M. Marzorati, P. Van den Abbeele, M. Calatayud, and F. Rochat. 2022. Human milk oligosaccharides and lactose differentially affect infant gut microbiota and intestinal barrier in vitro. Nutrients 14 (12):2546. doi: 10.3390/nu14122546.
  • Nezaratizade, S., N. Hashemi, D. Ommi, I. E. Orhan, and F. Khamesipour. 2021. A systematic review of anti-Entamoeba histolytica activity of medicinal plants published in the last 20 years. Parasitology 148 (6):672–84.
  • Nishimoto, M., and M. Kitaoka. 2007. Identification of N-acetylhexosamine 1-kinase in the complete lacto-N-biose I/galacto-N-biose metabolic pathway in Bifidobacterium longum. Applied and Environmental Microbiology 73 (20):6444–9.
  • Özcan, E., and D. A. Sela. 2018. Inefficient metabolism of the human milk oligosaccharides lacto-N-tetraose and lacto-N-neotetraose shifts Bifidobacterium longum subsp. infantis Physiology. Frontiers in Nutrition 5:46.
  • Parschat, K., C. Melsaether, K. R. Japelt, and S. Jennewein. 2021. Clinical evaluation of 16-week supplementation with 5HMO-mix in healthy-term human infants to determine tolerability, safety, and effect on growth. Nutrients 13:2871.
  • Phipps, K. R., N. Baldwin, B. Lynch, D. R. Stannard, A. Šoltesová, B. Gilby, M. H. Mikš, and C. H. Röhrig. 2018. Preclinical safety evaluation of the human-identical milk oligosaccharide lacto-N-tetraose. Regulatory Toxicology and Pharmacology: RTP 99:260–73.
  • Priem, B., M. Gilbert, W. W. Wakarchuk, A. Heyraud, and E. Samain. 2002. A new fermentation process allows large-scale production of human milk oligosaccharides by metabolically engineered bacteria. Glycobiology 12 (4):235–40.
  • Ramani, S., C. J. Stewart, D. R. Laucirica, N. J. Ajami, B. Robertson, C. A. Autran, D. Shinge, S. Rani, S. Anandan, L. Hu, et al. 2018. Human milk oligosaccharides, milk microbiome and infant gut microbiome modulate neonatal rotavirus infection. Nature Communications 9 (1):5010.
  • Rosa, F., A. K. Sharma, M. Gurung, D. Casero, K. Matazel, L. Bode, C. Simecka, A. A. Elolimy, P. Tripp, C. Randolph, et al. 2022. Human milk oligosaccharides impact cellular and inflammatory gene expression and immune response. Frontiers in Immunology 13:907529.
  • Sakanaka, M., A. Gotoh, K. Yoshida, T. Odamaki, H. Koguchi, J.-Z. Xiao, M. Kitaoka, and T. Katayama. 2020. Varied pathways of infant gut-associated Bifidobacterium to assimilate human milk oligosaccharides: Prevalence of the gene set and its correlation with bifidobacteria-rich microbiota formation. Nutrients 12 (1):71.
  • Sakurama, H., M. Kiyohara, J. Wada, Y. Honda, M. Yamaguchi, S. Fukiya, A. Yokota, H. Ashida, H. Kumagai, M. Kitaoka, et al. 2013. Lacto-N-biosidase encoded by a novel gene of Bifidobacterium longum subspecies longum shows unique substrate specificity and requires a designated chaperone for its active expression. The Journal of Biological Chemistry 288 (35):25194–206.
  • Schmölzer, K., M. Weingarten, K. Baldenius, and B. Nidetzky. 2019. Lacto-N-tetraose synthesis by wild-type and glycosynthase variants of the β-N-hexosaminidase from Bifidobacterium bifidum. Organic & Biomolecular Chemistry 17 (23):5661–5. doi: 10.1039/c9ob00424f.
  • Sheng, Y., A. Vinjamuri, M. R. S. Alvarez, Y. Xie, M. McGrath, S. Chen, M. Barboza, M. Frieman, and C. B. Lebrilla. 2022. Host cell glycocalyx remodeling reveals SARS-CoV-2 spike protein glycomic binding sites. Frontiers in Molecular Biosciences 9:799703.
  • Spicer, S. K., J. A. Gaddy, and S. D. Townsend. 2022. Recent advances on human milk oligosaccharide antimicrobial activity. Current Opinion in Chemical Biology 71:102202.
  • Sugita, T., and K. Koketsu. 2022. Transporter engineering enables the efficient production of lacto-N-triose II and lacto-N-tetraose in Escherichia coli. Journal of Agricultural and Food Chemistry 70 (16):5106–14.
  • Suzuki, R., J. Wada, T. Katayama, S. Fushinobu, T. Wakagi, H. Shoun, H. Sugimoto, A. Tanaka, H. Kumagai, H. Ashida, et al. 2008. Structural and thermodynamic analyses of solute-binding protein from Bifidobacterium longum specific for core 1 disaccharide and lacto-N-biose I. The Journal of Biological Chemistry 283 (19):13165–73.
  • Thomson, P., D. A. Medina, and D. Garrido. 2018. Human milk oligosaccharides and infant gut bifidobacteria: Molecular strategies for their utilization. Food Microbiology 75:37–46.
  • Thurl, S., M. Munzert, G. Boehm, C. Matthews, and B. Stahl. 2017. Systematic review of the concentrations of oligosaccharides in human milk. Nutrition Reviews 75 (11):920–33.
  • Turck, D., T. Bohn, J. Castenmiller, S. D. Henauw, K. I. Hirsch-Ernst, A. Maciuk, I. Mangelsdorf, H. J. McArdle, A. Naska, C. Pelaez, EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA), et al. 2022a. Safety of lacto-N-tetraose (LNT) produced by derivative strains of Escherichia coli BL21(DE3) as a novel food pursuant to Regulation (EU) 2015/2283. EFSA Journal. European Food Safety Authority 20 (5):e07242.
  • Turck, D., T. Bohn, J. Castenmiller, S. D. Henauw, K. I. Hirsch-Ernst, A. Maciuk, I. Mangelsdorf, H. J. McArdle, A. Naska, C. Pelaze, EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA), et al. 2022b. Safety of the extension of use of 2'-fucosyllactose/difucosyllactose (2'-FL/DFL) mixture and lacto-N-tetraose (LNT) as novel foods in food supplements for infants pursuant to Regulation (EU) 2015/2283. EFSA Journal. European Food Safety Authority 20 (3):e07140.
  • Turck, D., J. Castenmiller, S. D. Henauw, K. I. Hirsch-Ernst, J. Kearney, A. Maciuk, I. Mangelsdorf, H. J. McArdle, A. Naska, C. Pelaez, EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA), et al. 2019. Safety of lacto-N-tetraose (LNT) as a novel food pursuant to Regulation (EU) 2015/2283. EFSA Journal. European Food Safety Authority 17 (12):e05907.
  • Urashima, T., J. Hirabayashi, S. Sato, and A. Kobata. 2018. Human milk oligosaccharides as essential tools for basic and application studies on galectins. Trends in Glycoscience and Glycotechnology 30:SE51–65.
  • Urashima, T., T. Katayama, K. Fukuda, and J. Hirabayashi. 2021. Human milk oligosaccharides and innate immunity. In Comprehensive glycoscience, 2nd ed, ed. J. Barchi. Amsterdam: Elsevier. doi: 10.1016/B978-0-12-819475-1.00009-2.
  • Urashima, T., G. Odaka, S. Asakuma, Y. Uemura, K. Goto, A. Senda, T. Saito, K. Fukuda, M. Messer, and O. T. Oftedal. 2009. Chemical characterization of oligosaccharides in chimpanzee, bonobo, gorilla, orangutan, and siamang milk or colostrum. Glycobiology 19 (5):499–508.
  • Urashima, T., E. Taufik, K. Fukuda, and S. Asakuma. 2013. Recent advances in studies on milk oligosaccharides of cows and other domestic farm animals. Bioscience, Biotechnology, and Biochemistry 77 (3):455–66.
  • Vazquez, E., A. Barranco, M. Ramirez, A. Gruart, J. M. Delgado-Garcia, E. Martinez-Lara, S. Blanco, M. J. Martin, E. Castanys, R. Buck, et al. 2015. Effects of a human milk oligosaccharide, 2'-fucosyllactose, on hippocampal long-term potentiation and learning capabilities in rodents. The Journal of Nutritional Biochemistry 26 (5):455–65.
  • Vuillemin, M., J. Holck, M. Matwiejuk, E. S. M. Prieto, J. Muschiol, D. Molnar-Gabor, A. S. Meyer, and B. Zeuner. 2021. Improvement of the transglycosylation efficiency of a lacto-N-biosidase from Bifidobacterium bifidum by protein engineering. Applied Sciences-Basel 11:11493.
  • Wada, J., T. Ando, M. Kiyohara, H. Ashida, M. Kitaoka, M. Yamaguchi, H. Kumagai, T. Katayama, and K. Yamamoto. 2008. Bifidobacterium bifidum lacto-N-biosidase, a critical enzyme for the degradation of human milk oligosaccharides with a type 1 structure. Applied and Environmental Microbiology 74 (13):3996–4004.
  • Wang, C., M. Zhang, H. Guo, J. Yan, F. Liu, J. Chen, Y. Li, and F. Ren. 2019. Human milk oligosaccharides protect against Necrotizing Enterocolitis by inhibiting intestinal damage via increasing the proliferation of crypt cells. Molecular Nutrition & Food Research 63 (18):e1900262. doi: 10.1002/mnfr.201900262.
  • Wu, R. Y., B. Li, Y. Koike, P. Maattanen, H. Miyake, M. Cadete, K. C. Johnson-Henry, S. R. Botts, C. Lee, T. R. Abrahamsson, et al. 2019. Human milk oligosaccharides increase mucin expression in experimental necrotizing enterocolitis. Molecular Nutrition & Food Research 63 (3):e1800658.
  • Yamada, C., A. Gotoh, M. Sakanaka, M. Hattie, K. A. Stubbs, A. Katayama-Ikegami, J. Hirose, S. Kurihara, T. Arakawa, M. Kitaoka, et al. 2017. Molecular insight into evolution of symbiosis between breast-fed infants and a member of the human gut microbiome Bifidobacterium longum. Cell Chemistry Biology 24 (4):515–24.
  • Yoshida, E., H. Sakurama, M. Kiyohara, M. Nakajima, M. Kitaoka, H. Ashida, J. Hirose, T. Katayama, K. Yamamoto, and H. Kumagai. 2012. Bifidobacterium longum subsp. infantis uses two different β-galactosidases for selectively degrading type-1 and type-2 human milk oligosaccharides. Glycobiology 22 (3):361–8.
  • Yu, Y., Y. Lasanajak, X. Song, L. Hu, S. Ramani, M. L. Mickum, D. J. Ashline, B. V. V. Prasad, M. K. Estes, V. N. Reinhold, et al. 2014. Human milk contains novel glycans that are potential decoy receptors for neonatal rotaviruses*. Molecular & Cellular Proteomics: MCP 13 (11):2944–60.
  • Zeppenfeld, T., C. Larisch, J. W. Lengeler, and K. Jahreis. 2000. Glucose transporter mutants of Escherichia K-12 with changes in substrate recognition of IICB(Glc) and induction behavior of the ptsG gene. Journal of Bacteriology 182 (16):4443–52.
  • Zhang, W., J. He-Yang, W. Tu, and X. Zhou. 2021. Sialylated human milk oligosaccharides prevent intestinal inflammation by inhibiting toll like receptor 4/NLRP3 inflammasome pathway in necrotizing enterocolitis rats. Nutrition and Metobolism 18:5.
  • Zhang, B., L.-Q. Li, F. Liu, and J.-Y. Wu. 2022a. Human milk oligosaccharides and infant gut microbiota: Molecular structures, utilization strategies and immune function. Carbohydrate Polymers 276:118738.
  • Zhang, P., Y. Zhu, Z. Li, W. Zhang, C. Guang, and W. Mu. 2022b. Designing a highly efficient biosynthetic route for lacto-N-neotetraose production in Escherichia coli. Journal of Agricultural and Food Chemistry 70 (32):9961–8.
  • Zheng, J., H. Xu, J. Fang, and X. Zhang. 2022. Enzymatic and chemoenzymatic synthesis of human milk oligosaccharides and derivatives. Carbohydrate Polymers 291:119564.
  • Zhu, Y., H. Cao, H. Wang, and W. Mu. 2022a. Biosynthesis of human milk oligosaccharides via metabolic engineering approaches: Current advances and challenges. Current Opinion in Biotechnology 78:102841.
  • Zhu, Y., Z. Li, G. Luo, H. Wu, W. Zhang, and W. Mu. 2021a. Metabolic engineering of Escherichia coli for efficient biosynthesis of lacto-N-tetraose using a novel β-1,3-galactosyltransferase from Pseudogulbenkiania ferrooxidans. Journal of Agricultural and Food Chemistry 69 (38):11342–9.
  • Zhu, Y., G. Luo, L. Wan, J. Meng, S. Y. Lee, and W. Mu. 2022b. Physiological effects, biosynthesis, and derivatization of key human milk tetrasaccharides, lacto-N-tetraose, and lacto-N-neotetraose. Critical Reviews in Biotechnology 42 (4):578–96.
  • Zhu, Y., L. Wan, W. Li, D. Ni, W. Zhang, X. Yan, and W. Mu. 2022c. Recent advances on 2'-fucosyllactose: Physiological properties, applications, and production approaches. Critical Reviews in Food Science and Nutrition 62 (8):2083–92.
  • Zhu, Y., L. Wan, J. Meng, G. Luo, G. Chen, H. Wu, W. Zhang, and W. Mu. 2021b. Metabolic engineering of Escherichia coli for lacto-N-triose II production with high productivity. Journal of Agricultural and Food Chemistry 69 (12):3702–11.
  • Zhu, Y., W. Zhang, and W. Mu. 2022d. Human milk oligosaccharides: The new gold standard for premium infant formula. Journal of Agricultural and Food Chemistry 70 (7):2061–3.
  • Zhu, Y., J. Zhang, W. Zhang, and W. Mu. 2023. Recent progress on health effects and biosynthesis of two key sialylated human milk oligosaccharides, 3′-sialyllactose and 6′-sialyllactose. Biotechnology Advances 62:108058.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.