558
Views
0
CrossRef citations to date
0
Altmetric
Review

Encapsulation of enzymes in food industry using spray drying: recent advances and process scale-ups

, , , &

References

  • Abdel-Mageed, H. M., S. A. Fouad, M. H. Teaima, A. M. Abdel-Aty, A. S. Fahmy, D. S. Shaker, and S. A. Mohamed. 2019. Optimization of nano spray drying parameters for production of -amylase nanopowder for biotheraputic applications using factorial design. Drying Technology 37:2152–60. doi: 10.1080/07373937.2019.1565576.
  • Ajmera, A., and R. Scherließ. 2014. Stabilisation of proteins via mixtures of amino acids during spray drying. International Journal of Pharmaceutics 463 (1):98–107. doi: 10.1016/j.ijpharm.2014.01.002.
  • Al-Dirawi, K. H., and A. E. Bayly. 2020. An experimental study of binary collisions of miscible droplets with non-identical viscosities. Experiments in Fluids 61. doi: 10.1007/s00348-019-2874-3.
  • Alehosseini, A., M. Sarabi-Jamab, B. Ghorani, and R. Kadkhodaee. 2019. Electro-encapsulation of Lactobacillus casei in high-resistant capsules of whey protein containing transglutaminase enzyme. Lwt-Food Science and Technology 102:150–8. doi: 10.1016/j.lwt.2018.12.022.
  • Altay, O., O. Koprualan, I. Ilter, M. Koc, F. K. Ertekin, and S. M. Jafari. 2022. Spray drying encapsulation of essential oils; process efficiency, formulation strategies, and applications. Critical Reviews in Food Science and Nutrition, doi: 10.1080/10408398.2022.2113364.
  • Antoniraj, M. G., M. M. Leena, J. A. Moses, and C. Anandharamakrishnan. 2020. Cross-linked chitosan microparticles preparation by modified three fluid nozzle spray drying approach. International Journal of Biological Macromolecules 147:1268–77. doi: 10.1016/j.ijbiomac.2019.09.254.
  • Arpagaus, C., A. Collenberg, D. Rutti, E. Assadpour, and S. M. Jafari. 2018. Nano spray drying for encapsulation of pharmaceuticals. International Journal of Pharmaceutics 546 (1-2):194–214. doi: 10.1016/j.ijpharm.2018.05.037.
  • Arpagaus, C., P. John, A. Collenberg, and D. Rutti. 2017. Nanocapsules formation by nano spray drying. In Nanoencapsulation technologies for the food and nutraceutical industries. Academic Press.
  • Assadpour, E., and S. M. Jafari. 2019. Advances in spray-drying encapsulation of food bioactive ingredients: From microcapsules to nanocapsules. In: Annual review of food science and technology, eds. M. P. Doyle, and D. J. Mcclements, vol. 10.
  • Banks, S. R., K. Enck, M. Wright, E. C. Opara, and M. E. Welker. 2019. Chemical modification of alginate for controlled oral drug delivery. Journal of Agricultural and Food Chemistry 67 (37):10481–8. doi: 10.1021/acs.jafc.9b01911.
  • Baumann, J. M., M. S. Adam, and J. D. Wood. 2021. Engineering advances in spray drying for pharmaceuticals. In: Annual review of chemical and biomolecular engineering, eds. M. F. Doherty, and R. A. Segalman, Vol 12.
  • Beck-Broichsitter, M., A. Bohr, L. Aragao-Santiago, A. Klingl, and T. Kissel. 2017. Formulation and process considerations for the design of sildenafil-loaded polymeric microparticles by vibrational spray-drying. Pharmaceutical Development and Technology 22 (6):691–8. doi: 10.3109/10837450.2015.1098661.
  • Beckhorn, E. J., M. D. Labbee, and L. Underkof. 1965. Food additives – Production and use of microbial enzymes for food processing. Journal of Agricultural and Food Chemistry 13:30. doi: 10.1021/jf60137a010.
  • Boel, E., R. Koekoekx, S. Dedroog, I. Babkin, M. R. Vetrano, C. Clasen, and G. Van Den Mooter. 2020. Unraveling particle formation: From single droplet drying to spray drying and electrospraying. Pharmaceutics 12. doi: 10.3390/pharmaceutics12070625.
  • Bucko, M., D. Mislovicova, J. Nahalka, A. Vikartovska, J. Sefcovicova, J. Katrlik, J. Tkac, P. Gemeiner, I. Lacik, V. Stefuca, et al. 2012. Immobilization in biotechnology and biorecognition: From macro- to nanoscale systems. Chemical Papers 66:983–98. doi: 10.2478/s11696-012-0226-3.
  • Burki, K., I. Jeon, C. Arpagaus, and G. Betz. 2011. New insights into respirable protein powder preparation using a nano spray dryer. International Journal of Pharmaceutics 408 (1-2):248–56. doi: 10.1016/j.ijpharm.2011.02.012.
  • Chen, H. Y., Y. W. Ting, H. C. Kuo, C. W. Hsieh, H. Y. Hsu, C. N. Wu, and K. C. Cheng. 2021. Enzymatic degradation of ginkgolic acids by laccase immobilized on core/shell Fe3O4/nylon composite nanoparticles using novel coaxial electrospraying process. International Journal of Biological Macromolecules 172:270–80. doi: 10.1016/j.ijbiomac.2021.01.004.
  • Coelho, A. L. S., and R. C. Orlandelli. 2021. Immobilized microbial lipases in the food industry: A systematic literature review. Critical Reviews in Food Science and Nutrition 61 (10):1689–703. doi: 10.1080/10408398.2020.1764489.
  • Costa-Silva, T. A., P. S. Marques, C. R. F. Souza, S. Said, and W. P. Oliveira. 2015. Enzyme encapsulation in magnetic chitosan-Fe3O4 microparticles. Journal of Microencapsulation 32 (1):16–21. doi: 10.3109/02652048.2014.940013.
  • Davis, M., and G. Walker. 2018. Recent strategies in spray drying for the enhanced bioavailability of poorly water-soluble drugs. Journal of Controlled Release: Official Journal of the Controlled Release Society 269:110–27. doi: 10.1016/j.jconrel.2017.11.005.
  • Dhiman, A., R. Suhag, A. Singh, and P. K. Prabhakar. 2022. Mechanistic understanding and potential application of electrospraying in food processing: A review. Critical Reviews in Food Science and Nutrition 62 (30):8288–306. doi: 10.1080/10408398.2021.1926907.
  • Dordevic, V., B. Balanc, A. Belscak-Cvitanovic, S. Levic, K. Trifkovic, A. Kalusevic, I. Kostic, D. Komes, B. Bugarski, and V. Nedovic. 2015. Trends in encapsulation technologies for delivery of food bioactive compounds. Food Engineering Reviews 7:452–90. doi: 10.1007/s12393-014-9106-7.
  • Encina, C., C. Vergara, B. Gimenez, F. Oyarzun-Ampuero, and P. Robert. 2016. Conventional spray-drying and future trends for the microencapsulation of fish oil. Trends in Food Science & Technology 56:46–60. doi: 10.1016/j.tifs.2016.07.014.
  • Eun, J. B., A. Maruf, P. R. Das, and S. H. Nam. 2020. A review of encapsulation of carotenoids using spray drying and freeze drying. Critical Reviews in Food Science and Nutrition 60 (21):3547–72. doi: 10.1080/10408398.2019.1698511.
  • Fabra, M. J., Z. Perez-Bassart, D. Talens-Perales, M. Martinez-Sanz, A. Lopez-Rubio, J. Marin-Navarro, and J. Polaina. 2019. Matryoshka enzyme encapsulation: Development of zymoactive hydrogel particles with efficient lactose hydrolysis capability. Food Hydrocolloids 96:171–7. doi: 10.1016/j.foodhyd.2019.05.026.
  • Fathi, F., S. N. Ebrahimi, L. C. Matos, M. Oliveira, and R. C. Alves. 2022. Emerging drying techniques for food safety and quality: A review. Comprehensive Reviews in Food Science and Food Safety 21 (2):1125–60. doi: 10.1111/1541-4337.12898.
  • Fathi, M., A. Martin, and D. J. Mcclements. 2014. Nanoencapsulation of food ingredients using carbohydrate based delivery systems. Trends in Food Science & Technology 39:18–39. doi: 10.1016/j.tifs.2014.06.007.
  • Focaroli, S., G. N. Jiang, P. O'connell, J. V. Fahy, and A. M. Healy. 2020. The use of a three-fluid atomising nozzle in the production of spray-dried theophylline/salbutamol sulphate powders intended for pulmonary delivery. Pharmaceutics 12: 1116. doi: 10.3390/pharmaceutics12111116.
  • Foerster, M., T. Gengenbach, M. W. Woo, and C. Selomulya. 2016. The impact of atomization on the surface composition of spray-dried milk droplets. Colloids and Surfaces. B, Biointerfaces 140:460–71. doi: 10.1016/j.colsurfb.2016.01.012.
  • Francia, V., L. Martin, A. E. Bayly, and M. J. H. Simmons. 2017. Agglomeration during spray drying: Airborne clusters or breakage at the walls? Chemical Engineering Science 162:284–99. doi: 10.1016/j.ces.2016.12.033.
  • Freitas, S., H. P. Merkle, and B. Gander. 2004. Ultrasonic atomisation into reduced pressure atmosphere: Envisaging aseptic spray-drying for microencapsulation. Journal of Controlled Release : official Journal of the Controlled Release Society 95 (2):185–95. doi: 10.1016/j.jconrel.2003.11.005.
  • Frohlich, J. A., N. A. Ruprecht, J. Hinrichs, and R. Kohlus. 2020. Nozzle zone agglomeration in spray dryers: Effect of powder addition on particle coalescence. Powder Technology 374:223–32. doi: 10.1016/j.powtec.2020.07.009.
  • Gawalek, J. 2021. Effect of spray dryer scale size on the properties of dried beetroot juice. Molecules 26: 6700. doi: 10.3390/molecules26216700.
  • Geranpour, M., E. Assadpour, and S. M. Jafari. 2020. Recent advances in the spray drying encapsulation of essential fatty acids and functional oils. Trends in Food Science & Technology 102:71–90. doi: 10.1016/j.tifs.2020.05.028.
  • Gharsallaoui, A., G. Roudaut, O. Chambin, A. Voilley, and R. Saurel. 2007. Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Research International 40:1107–21. doi: 10.1016/j.foodres.2007.07.004.
  • Grattard, N., M. Pernin, B. Marty, G. Roudaut, D. Champion, and M. Le Meste. 2002. Study of release kinetics of small and high molecular weight substances dispersed into spray-dried ethylcellulose microspheres. Journal of Controlled Release: Official Journal of the Controlled Release Society 84 (3):125–35. doi: 10.1016/s0168-3659(02)00260-2.
  • Guo, F., Z. H. Xu, W. D. Zhang, T. X. Wang, X. X. Di, Q. Zhang, and Z. H. Zhu. 2021. Facile synthesis of catalase@ZIF-8 composite by biomimetic mineralization for efficient biocatalysis. Bioprocess and Biosystems Engineering 44 (6):1309–19. doi: 10.1007/s00449-021-02540-8.
  • Hlaing, M. M., B. R. Wood, D. Mcnaughton, D. Y. Ying, G. Dumsday, and M. A. Augustin. 2017. Effect of drying methods on protein and DNA conformation changes in Lactobacillus rhamnosus GG cells by fourier transform infrared spectroscopy. Journal of Agricultural and Food Chemistry 65 (8):1724–31. doi: 10.1021/acs.jafc.6b05508.
  • Ibili, H., and M. Dasdemir. 2019. Investigation of electrohydrodynamic atomization (electrospraying) parameters’ effect on formation of poly(lactic acid) nanoparticles. Journal of Materials Science 54:14609–23. doi: 10.1007/s10853-019-03899-6.
  • Jayaprakash, P., A. Maudhuit, C. Gaiani, and S. Desobry. 2023. Encapsulation of bioactive compounds using competitive emerging techniques: Electrospraying, nano spray drying, and electrostatic spray drying. Journal of Food Engineering 339: 111260. doi: 10.1016/j.jfoodeng.2022.111260.
  • Jiang, H., M. Zhang, S. Mcknight, and B. Adhikari. 2013. Microencapsulation of alpha-amylase by carrying out complex coacervation and drying in a single step using a novel three-fluid nozzle spray drying. Drying Technology 31:1901–10. doi: 10.1080/07373937.2013.771365.
  • Jiang, N., G. D. Kumar, J. R. Chen, A. Mishra, and K. M. Solval. 2020. Comparison of concurrent and mixed-flow spray drying on viability, growth kinetics and biofilm formation of Lactobacillus rhamnosus GG microencapsulated with fish gelatin and maltodextrin. Lwt-Food Science and Technology 124: 109200. doi: 10.1016/j.lwt.2020.109200.
  • Jubaer, H., J. Xiao, X. D. Chen, C. Selomulya, and M. W. Woo. 2019. Identification of regions in a spray dryer susceptible to forced agglomeration by CFD simulations. Powder Technology 346:23–37. doi: 10.1016/j.powtec.2019.01.088.
  • Kang, J., Y. P. Cai, Z. W. Wu, S. Y. Wang, and W. E. Yuan. 2021. Self-encapsulation of biomacromolecule drugs in porous microscaffolds with aqueous two-phase systems. Pharmaceutics 13: 426. doi: 10.3390/pharmaceutics13030426.
  • Kemp, I. C., T. Hartwig, P. Hamilton, R. Wadley, and A. Bisten. 2016. Production of fine lactose particles from organic solvent in laboratory and commercial-scale spray dryers. Drying Technology 34:830–42. doi: 10.1080/07373937.2015.1084314.
  • Kim, J. H., H. Lee, and W. G. Shin. 2021. Horizontal injection spray drying aerosol generator using an ultrasonic nozzle with clean counter flow. Journal of Aerosol Science 151: 105662. doi: 10.1016/j.jaerosci.2020.105662.
  • Koksel, F., and M. G. Scanlon. 2018. Investigation of the influence of bakery enzymes on non-yeasted dough properties during mixing. Journal of Cereal Science 79:86–92. doi: 10.1016/j.jcs.2017.10.002.
  • Kuriakose, R., and C. Anandharamakrishnan. 2010. Computational fluid dynamics (CFD) applications in spray drying of food products. Trends in Food Science & Technology 21:383–98. doi: 10.1016/j.tifs.2010.04.009.
  • Langrish, T. A. G., J. Harrington, X. Huang, and C. Zhong. 2020. Using CFD simulations to guide the development of a new spray dryer design. Processes 8:932. doi: 10.3390/pr8080932.
  • Lee, J., J. H. Ko, E. W. Lin, P. Wallace, F. Ruch, and H. D. Maynard. 2015. Trehalose hydrogels for stabilization of enzymes to heat. Polymer Chemistry 6 (18):3443–8. doi: 10.1039/c5py00121h.
  • Lefebvre, A. H. M., and G. Vincent. 2017. Atomization and sprays. Boca Raton: Taylor & Francis, CRC Press.
  • Li, P., S. Y. Moon, M. A. Guelta, S. P. Harvey, J. T. Hupp, and O. K. Farha. 2016. Encapsulation of a nerve agent detoxifying enzyme by a mesoporous zirconium metal-organic framework engenders thermal and long-term stability. Journal of the American Chemical Society 138 (26):8052–5. doi: 10.1021/jacs.6b03673.
  • Li, Q., M. R. Duan, D. Hou, X. Q. Chen, J. L. Shi, and W. Zhou. 2021. Fabrication and characterization of Ca(II)-alginate-based beads combined with different polysaccharides as vehicles for delivery, release and storage of tea polyphenols. Food Hydrocolloids 112: 106274. doi: 10.1016/j.foodhyd.2020.106274.
  • Liang, W., P. Wied, F. Carraro, C. J. Sumby, B. Nidetzky, C.-K. Tsung, P. Falcaro, and C. J. Doonan. 2021. Metal–organic framework-based enzyme biocomposites. Chemical Reviews 121 (3):1077–129. doi: 10.1021/acs.chemrev.0c01029.
  • Lintingre, E., F. Lequeux, L. Talini, and N. Tsapis. 2016. Control of particle morphology in the spray drying of colloidal suspensions. Soft Matter 12 (36):7435–44. doi: 10.1039/c6sm01314g.
  • Liu, J. Y., Z. H. Yu, X. R. Liao, J. H. Liu, F. J. Mao, and Q. G. Huang. 2016. Scalable production, fast purification, and spray drying of native Pycnoporus laccase and circular dichroism characterization. Journal of Cleaner Production 127:600–9. doi: 10.1016/j.jclepro.2016.03.154.
  • Marinopoulou, A., V. Karageorgiou, D. Petridis, and S. N. Raphaelides. 2021. Physical properties of starch-paracetamol molecular inclusion complexes produced by the spray drying process on an industrial scale. Drying Technology 39:1950–67. doi: 10.1080/07373937.2020.1815764.
  • Miotto, M., P. P. Olimpieri, L. Di Rienzo, F. Ambrosetti, P. Corsi, R. Lepore, G. G. Tartaglia, and E. Milanetti. 2019. Insights on protein thermal stability: A graph representation of molecular interactions. Bioinformatics (Oxford, England) 35 (15):2569–77. doi: 10.1093/bioinformatics/bty1011.
  • Mojtabavi, S., M. Torshabi, K. Gilani, N. Samadi, M. R. Khoshayand, M. R. Fazeli, and M. A. Faramarzi. 2022. Formulation, characterization, and bioactivity assessments of a laccase-based mouthwash. Journal of Drug Delivery Science and Technology 69: 103128. doi: 10.1016/j.jddst.2022.103128.
  • Mupondwa, E., X. Li, S. Boyetchko, R. Hynes, and J. Geissler. 2015. Technoeconomic analysis of large scale production of pre-emergent Pseudomonas fluorescens microbial bioherbicide in Canada. Bioresource Technology 175:517–28. doi: 10.1016/j.biortech.2014.10.130.
  • Neto, Y., L. A. P. De Freitas, and H. Cabral. 2014. Multivariate analysis of the stability of spray-dried Eupenicillium javanicum peptidases. Drying Technology 32:614–21. doi: 10.1080/07373937.2013.853079.
  • O'sullivan, J. J., E. A. Norwood, J. A. O'mahony, and A. L. Kelly. 2019. Atomisation technologies used in spray drying in the dairy industry: A review. Journal of Food Engineering 243:57–69. doi: 10.1016/j.jfoodeng.2018.08.027.
  • Obon, J. M., J. P. Luna-Abad, B. Bermejo, and J. A. Fernandez-Lopez. 2020. Thermographic studies of cocurrent and mixed flow spray drying of heat sensitive bioactive compounds. Journal of Food Engineering 268: 109745. doi: 10.1016/j.jfoodeng.2019.109745.
  • Patel, K. C., and X. D. Chen. 2007. Production of spherical and uniform-sized particles using a laboratory ink-jet spray dryer. Asia-Pacific Journal of Chemical Engineering 2:415–30. doi: 10.1002/apj.75.
  • Patel, S. K. S., S. H. Choi, Y. C. Kang, and J. K. Lee. 2016. Large-scale aerosol-assisted synthesis of biofriendly Fe2O3 yolk-shell particles: A promising support for enzyme immobilization. Nanoscale 8 (12):6728–38. doi: 10.1039/c6nr00346j.
  • Pelegri-O'day, E. M., and H. D. Maynard. 2016. Controlled radical polymerization as an enabling approach for the next generation of protein-polymer conjugates. Accounts of Chemical Research 49 (9):1777–85. doi: 10.1021/acs.accounts.6b00258.
  • Perdana, J., M. B. Fox, M. A. I. Schutyser, and R. M. Boom. 2012. Enzyme inactivation kinetics: Coupled effects of temperature and moisture content. Food Chemistry 133:116–23. doi: 10.1016/j.foodchem.2011.12.080.
  • Perdana, J., M. B. Fox, M. A. I. Schutyser, and R. M. Boom. 2013. Mimicking spray drying by drying of single droplets deposited on a flat surface. Food and Bioprocess Technology 6:964–77. doi: 10.1007/s11947-011-0767-4.
  • Pires Bolzan, R., E. Cruz, J. Batista Barbosa, S. Vilela Talma, and M. L. Leal Martins. 2022. Optimization of spray-drying conditions for obtaining Bacillus sp. SMIA-2 protease powder. Food Science and Technology 42:18121. doi: 10.1590/fst.18121.
  • Pisecky, J. 2012. Handbook of milk powder manufacture. Copenhagen, Denmark: GEA Process Engineering A/S (GEA Niro),
  • Poozesh, S., and E. Bilgili. 2019. Scale-up of pharmaceutical spray drying using scale-up rules: A review. International Journal of Pharmaceutics 562:271–92. doi: 10.1016/j.ijpharm.2019.03.047.
  • Rahman, U. J. U., and A. K. Pozarlik. 2021. Numerical study and experimental validation of skim milk drying in a process intensified counter flow spray dryer. Energies 14: 4974. doi: 10.3390/en14164974.
  • Rahman, U. J. U., A. K. Pozarlik, and G. Brem. 2021. Experimental analysis of spray drying in a process intensified counter flow dryer. Drying Technology 40: 3128. doi: 10.1080/07373937.2021.2004160.
  • Rajabi, H., M. Ghorbani, S. M. Jafari, A. S. Mahoonak, and G. Rajabzadeh. 2015. Retention of saffron bioactive components by spray drying encapsulation using maltodextrin, gum Arabic and gelatin as wall materials. Food Hydrocolloids 51:327–37. doi: 10.1016/j.foodhyd.2015.05.033.
  • Raveendran, S., B. Parameswaran, S. B. Ummalyma, A. Abraham, A. K. Mathew, A. Madhavan, S. Rebello, and A. Pandey. 2018. Applications of microbial enzymes in food industry. Food Technology and Biotechnology 56 (1):16–30. doi: 10.17113/ftb.56.01.18.5491.
  • Renteria-Ortega, M., M. D. Salgado-Cruz, E. Morales-Sanchez, L. Alamilla-Beltran, M. Valdespino-Leon, and G. Calderon-Dominguez. 2021. Glucose oxidase release of stressed chia mucilage-sodium alginate capsules prepared by electrospraying. Journal of Food Processing and Preservation 45: 15484. doi: 10.1111/jfpp.15484.
  • Schaefer, J., and G. Lee. 2015. Arrhenius activation energy of damage to catalase during spray-drying. International Journal of Pharmaceutics 489 (1-2):124–30. doi: 10.1016/j.ijpharm.2015.04.078.
  • Schutyser, M. A. I., E. M. Both, I. Siemons, E. M. J. Vaessen, and L. Zhang. 2019. Gaining insight on spray drying behavior of foods via single droplet drying analyses. Drying Technology 37:525–34. doi: 10.1080/07373937.2018.1482908.
  • Serfert, Y., J. Schroder, A. Mescher, J. Laackmann, K. Ratzke, M. Q. Shaikh, V. Gaukel, H. U. Moritz, H. P. Schuchmann, P. Walzel, et al. 2013. Spray drying behaviour and functionality of emulsions with beta-lactoglobulin/pectin interfacial complexes. Food Hydrocolloids 31:438–45. doi: 10.1016/j.foodhyd.2012.11.037.
  • Servais, C., R. Jones, and I. Roberts. 2002. The influence of particle size distribution on the processing of food. Journal of Food Engineering 51:201–8. doi: 10.1016/s0260-8774(01)00056-5.
  • Smeets, V., W. Baaziz, O. Ersen, E. M. Gaigneaux, C. Boissiere, C. Sanchez, and D. P. Debecker. 2019. Hollow zeolite microspheres as a nest for enzymes: A new route to hybrid heterogeneous catalysts. Chemical Science 11 (4):954–61. doi: 10.1039/c9sc04615a.
  • Soetaert, W., and E. J. Vandamme. 2010. Industrial biotechnology sustainable growth and economic success, Weinheim: Wiley-VCH.
  • Soukoulis, C., and T. Bohn. 2018. A comprehensive overview on the micro- and nano-technological encapsulation advances for enhancing the chemical stability and bioavailability of carotenoids. Critical Reviews in Food Science and Nutrition 58 (1):1–36. doi: 10.1080/10408398.2014.971353.
  • Strobel, S. A., L. Knowles, N. Nitin, H. B. Scher, and T. Jeoh. 2020. Comparative technoeconomic process analysis of industrial-scale microencapsulation of bioactives in cross-linked alginate. Journal of Food Engineering 266: 109695. doi: 10.1016/j.jfoodeng.2019.109695.
  • Sunderland, T., J. G. Kelly, and Z. Ramtoola. 2015. Application of a novel 3-fluid nozzle spray drying process for the microencapsulation of therapeutic agents using incompatible drug-polymer solutions. Archives of Pharmacal Research 38 (4):566–73. doi: 10.1007/s12272-013-0261-9.
  • Taheri-Kafrani, A., S. Kharazmi, M. Nasrollahzadeh, A. Soozanipour, F. Ejeian, P. Etedali, H. A. Mansouri-Tehrani, A. Razmjou, S. M. G. Yek, and R. S. Varma. 2021. Recent developments in enzyme immobilization technology for high-throughput processing in food industries. Critical Reviews in Food Science and Nutrition 61 (19):3160–96. doi: 10.1080/10408398.2020.1793726.
  • Tang, Y. T., H. B. Scher, and T. Jeoh. 2022. Microencapsulation of bromelain from pineapple extract powder by industrially scalable complex coacervation. Lwt-Food Science and Technology 167: 113775. doi: 10.1016/j.lwt.2022.113775.
  • Tie, S. S., and M. Q. Tan. 2022. Current advances in multifunctional nanocarriers based on marine polysaccharides for colon delivery of food polyphenols. Journal of Agricultural and Food Chemistry 70 (4):903–15. doi: 10.1021/acs.jafc.1c05012.
  • Tolve, R., N. Condelli, M. C. Caruso, F. Genovese, G. C. Di Renzo, G. Mauriello, and F. Galgano. 2019. Preparation and characterization of microencapsulated phytosterols for the formulation of functional foods: Scale up from laboratory to semi-technical production. Food Research International (Ottawa, Ont.) 116:1274–81. doi: 10.1016/j.foodres.2018.10.016.
  • Torge, A., P. Grutzmacher, F. Mucklich, and M. Schneider. 2017. The influence of mannitol on morphology and disintegration of spray-dried nano-embedded microparticles. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences 104:171–9. doi: 10.1016/j.ejps.2017.04.003.
  • Turan, F. T., A. Cengiz, and T. Kahyaoglu. 2015. Evaluation of ultrasonic nozzle with spray-drying as a novel method for the microencapsulation of blueberry’s bioactive compounds. Innovative Food Science & Emerging Technologies 32:136–45. doi: 10.1016/j.ifset.2015.09.011.
  • Turan, F. T., A. Cengiz, D. Sandikci, M. Dervisoglu, and T. Kahyaoglu. 2016. Influence of an ultrasonic nozzle in spray-drying and storage on the properties of blueberry powder and microcapsules. Journal of the Science of Food and Agriculture 96 (12):4062–76. doi: 10.1002/jsfa.7605.
  • Van Der Verren, M., V. Smeets, A. Vander Straeten, C. Dupont-Gillain, and D. P. Debecker. 2021. Hybrid chemoenzymatic heterogeneous catalyst prepared in one step from zeolite nanocrystals and enzyme-polyelectrolyte complexes. Nanoscale Advances 3 (6):1646–55. doi: 10.1039/d0na00834f.
  • Vass, P., E. Szab, A. Domokos, E. Hirsch, D. Galata, B. Farkas, B. Demuth, S. K. Andersen, T. Vigh, G. Verreck, et al. 2020. Scale-up of electrospinning technology: Applications in the pharmaceutical industry. Wiley Interdisciplinary Reviews-Nanomedicine and Nanobiotechnology 12: 1611. doi: 10.1002/wnan.1611.
  • Vasudevan, U. M., A. K. Jaiswal, S. Krishna, and A. Pandey. 2019. Thermostable phytase in feed and fuel industries. Bioresource Technology 278:400–7. doi: 10.1016/j.biortech.2019.01.065.
  • Velazquez-De Lucio, B. S., E. M. Hernandez-Dominguez, M. Villa-Garcia, G. Diaz-Godinez, V. Mandujano-Gonzalez, B. Mendoza-Mendoza, and J. Alvarez-Cervantes. 2021. Exogenous enzymes as zootechnical additives in animal feed: A review. Catalysts 11: 851. doi: 10.3390/catal11070851.
  • Walzel, P. 2011. Influence of the spray method on product quality and morphology in spray drying. Chemical Engineering & Technology 34:1039–48. doi: 10.1002/ceat.201100051.
  • Wang, Y. P., M. Milewska, H. Foster, R. Chapman, and M. H. Stenzel. 2021. The core-shell structure, not sugar, drives the thermal stabilization of single-enzyme nanoparticles. Biomacromolecules 22 (11):4569–81. doi: 10.1021/acs.biomac.1c00871.
  • Wawrzyniak, P., M. Jaskulski, M. Piatkowski, M. Sobulska, I. Zbicinski, and S. Egan. 2020. Experimental detergent drying analysis in a counter-current spray dryer with swirling air flow. Drying Technology 38:108–16. doi: 10.1080/07373937.2019.1626878.
  • Weng, Y. L., S. Ranaweera, D. Zou, A. Cameron, X. J. Chen, H. Song, and C. X. Zhao. 2022. Alginate particles for enzyme immobilization using spray drying. Journal of Agricultural and Food Chemistry 70 (23):7139–47. doi: 10.1021/acs.jafc.2c02298.
  • Weng, Y. L., S. Ranaweera, D. Zou, A. P. Cameron, X. J. Chen, H. Song, and C. X. Zhao. 2023. Improved enzyme thermal stability, loading and bioavailability using alginate encapsulation. Food Hydrocolloids 137: 108385. doi: 10.1016/j.foodhyd.2022.108385.
  • Wittner, M. O., H. P. Karbstein, and V. Gaukel. 2020. Energy efficient spray drying by increased feed dry matter content: Investigations on the applicability of Air-Core-Liquid-Ring atomization on pilot scale. Drying Technology 38:1323–31. doi: 10.1080/07373937.2019.1635616.
  • Yamamoto, S., and Y. Sano. 1992. Drying of enzymes: Enzyme retention during drying of a single droplet. Chemical Engineering Science 47:177–83. doi: 10.1016/0009-2509(92)80211-t.
  • Yang, W. Z., K. A. Beauchemin, and L. M. Rode. 1999. Effects of an enzyme feed additive on extent of digestion and milk production of lactating dairy cows. Journal of Dairy Science 82 (2):391–403. doi: 10.3168/jds.S0022-0302(99)75245-8.
  • Zbicinski, I. 2017. Modeling and scaling up of industrial spray dryers: A review. Journal of Chemical Engineering of Japan 50:757–67. doi: 10.1252/jcej.16we350.
  • Zemolin, G. P., M. Gazoni, G. L. Zabot, S. M. Golunski, V. Astolfi, V. Dal Pra, E. L. Foletto, L. Meili, M. B. Da Rosa, C. D. Rosa, et al. 2012. Immobilization of inulinase obtained by solid-state fermentation using spray-drying technology. Biocatalysis and Biotransformation 30:409–16. doi: 10.3109/10242422.2012.715635.
  • Zhang, Y., and Q. X. Zhong. 2018. Freeze-dried capsules prepared from emulsions with encapsulated lactase as a potential delivery system to control lactose hydrolysis in milk. Food Chemistry 241:397–402. doi: 10.1016/j.foodchem.2017.09.004.
  • Zhao, L. L., S. W. Zhang, J. Lu, and J. P. Lv. 2020. Effects of heat treatment and stabilizing salts supplementation on the physicochemical properties, protein structure and salts balance of goat milk. Lwt-Food Science and Technology 132:109878. doi: 10.1016/j.lwt.2020.109878.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.