442
Views
0
CrossRef citations to date
0
Altmetric
Review

Anticancer activity of broccoli, its organosulfur and polyphenolic compounds

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Abdalla, M. A., S. Sulieman, and K. H. Muhling. 2020. Regulation of selenium/sulfur interactions to enhance chemopreventive effects: Lessons to learn from brassicaceae. Molecules 25 (24):5846. doi: 10.3390/molecules25245846.
  • Abharzanjani, F., M. Afshar, M. Hemmati, and M. Moossavi. 2017. Short-term high dose of quercetin and resveratrol alters aging markers in human kidney cells. International Journal of Preventive Medicine 8:64. doi: 10.4103/ijpvm.IJPVM_139_17.
  • Abukhabta, S., S. Khalil Ghawi, K. A. Karatzas, D. Charalampopoulos, G. McDougall, J. W. Allwood, S. Verrall, S. Lavery, C. Latimer, L. K. Pourshahidi, et al. 2021. Sulforaphane-enriched extracts from glucoraphanin-rich broccoli exert antimicrobial activity against gut pathogens in vitro and innovative cooking methods increase in vivo intestinal delivery of sulforaphane. European Journal of Nutrition 60 (3):1263–76. doi: 10.1007/s00394-020-02322-0.
  • Adwas, A. A., A. A. Elkhoely, A. M. Kabel, M. N. Abdel-Rahman, and A. A. Eissa. 2016. Anti-cancer and cardioprotective effects of indol-3-carbinol in doxorubicin-treated mice. Journal of Infection and Chemotherapy : official Journal of the Japan Society of Chemotherapy 22 (1):36–43. doi: 10.1016/j.jiac.2015.10.001.
  • Agerbirk, N., M. De Vos, J. H. Kim, and G. Jander. 2009. Indole glucosinolate breakdown and its biological effects. Phytochemistry Reviews 8 (1):101–20. doi: 10.1007/s11101-008-9098-0.
  • Alonso-Castro, A. J., E. Ortiz-Sánchez, F. Domínguez, V. Arana-Argáez, M. d C. Juárez-Vázquez, M. Chávez, C. Carranza-Álvarez, O. Gaspar-Ramírez, G. Espinosa-Reyes, G. López-Toledo, et al. 2012. Antitumor and immunomodulatory effects of Justicia spicigera Schltdl (Acanthaceae). Journal of Ethnopharmacology 141 (3):888–94. doi: 10.1016/j.jep.2012.03.036.
  • Alonso-Castro, A. J., E. Ortiz-Sánchez, A. García-Regalado, G. Ruiz, J. M. Núñez-Martínez, I. González-Sánchez, V. Quintanar-Jurado, E. Morales-Sánchez, F. Dominguez, G. López-Toledo, et al. 2013. Kaempferitrin induces apoptosis via intrinsic pathway in HeLa cells and exerts antitumor effects. Journal of Ethnopharmacology 145 (2):476–89. doi: 10.1016/j.jep.2012.11.016.
  • Alumkal, J. J., R. Slottke, J. Schwartzman, G. Cherala, M. Munar, J. N. Graff, T. M. Beer, C. W. Ryan, D. R. Koop, A. Gibbs, et al. 2015. A phase II study of sulforaphane-rich broccoli sprout extracts in men with recurrent prostate cancer. Investigational New Drugs 33 (2):480–9. doi: 10.1007/s10637-014-0189-z.
  • Anand, A., A. Sugumaran, and D. Narayanasamy. 2019. Brain targeted delivery of anticancer drugs: Prospective approach using solid lipid nanoparticles. IET Nanobiotechnology 13 (4):353–62. doi: 10.1049/iet-nbt.2018.5322.
  • Ansar, S., H. Tabassum, N. S. M. Aladwan, M. Naiman Ali, B. Almaarik, S. AlMahrouqi, M. Abudawood, N. Banu, and R. Alsubki. 2020. Eco friendly silver nanoparticles synthesis by Brassica oleracea and its antibacterial, anticancer and antioxidant properties. Scientific Reports 10 (1):18564. doi: 10.1038/s41598-020-74371-8.
  • Ansari, I., A. A. Ahmad, M. A. Imran, M. Saeed, and I. Ahmad. 2021. Organosulphur compounds induce apoptosis and cell cycle arrest in cervical cancer cells via downregulation of HPV E6 and E7 oncogenes. Anti-Cancer Agents in Medicinal Chemistry 21 (3):393–405. doi: 10.2174/1871520620999200818154456.
  • Armah, C. N., M. H. Traka, J. R. Dainty, M. Defernez, A. Janssens, W. Leung, J. F. Doleman, J. F. Potter, and R. F. Mithen. 2013. A diet rich in high-glucoraphanin broccoli interacts with genotype to reduce discordance in plasma metabolite profiles by modulating mitochondrial function. The American Journal of Clinical Nutrition 98 (3):712–22. doi: 10.3945/ajcn.113.065235.
  • Arora, I., S. Li, M. R. Crowley, Y. Li, and T. O. Tollefsbol. 2022. Genome-wide analysis on transcriptome and methylome in prevention of mammary tumor induced by early life combined botanicals. Cells 12 (1):14. doi: 10.3390/cells12010014.
  • Arora, I., M. Sharma, S. Li, M. Crowley, D. K. Crossman, Y. Li, and T. O. Tollefsbol. 2022. An integrated analysis of the effects of maternal broccoli sprouts exposure on transcriptome and methylome in prevention of offspring mammary cancer. PloS One 17 (3):e0264858. doi: 10.1371/journal.pone.0264858.
  • Ashari, K.-S., M.-R. Abdullah-Zawawi, S. Harun, and Z.-A. Mohamed-Hussein. 2018. Reconstruction of the transcriptional regulatory network in arabidopsis thaliana aliphatic glucosinolate biosynthetic pathway. Sains Malaysiana 47 (12):2993–3002. doi: 10.17576/jsm-2018-4712-08.
  • Ashoush, Y. A. M., A. M. F. Ali, M. M. Abozid, and M. S. M. Salama. 2017. Comparative study between celery leaves and broccoli flowers for their chemical composition and amino acids as well as phenolic and flavonoid compounds. Menoufia Journal of Agricultural Biotechnology 2 (2):1–13. doi: 10.21608/mjab.2017.175909.
  • Ashrafizadeh, M., S. Tavakol, Z. Ahmadi, S. Roomiani, R. Mohammadinejad, and S. Samarghandian. 2020. Therapeutic effects of kaempferol affecting autophagy and endoplasmic reticulum stress. Phytotherapy Research 34 (5):911–23. doi: 10.1002/ptr.6577.
  • Atwell, L. L., Z. Zhang, M. Mori, P. Farris, J. T. Vetto, A. M. Naik, K. Y. Oh, P. Thuillier, E. Ho, and J. Shannon. 2015. Sulforaphane bioavailability and chemopreventive activity in women scheduled for breast biopsy. Cancer Prevention Research (Philadelphia, PA) 8 (12):1184–91. doi: 10.1158/1940-6207.CAPR-15-0119.
  • Aumeeruddy, M. Z., and M. F. Mahomoodally. 2019. Combating breast cancer using combination therapy with 3 phytochemicals: Piperine, sulforaphane, and thymoquinone. Cancer 125 (10):1600–11. doi: 10.1002/cncr.32022.
  • Axelsson, A. S., E. Tubbs, B. Mecham, S. Chacko, H. A. Nenonen, Y. Tang, J. W. Fahey, J. M. J. Derry, C. B. Wollheim, N. Wierup, et al. 2017. Sulforaphane reduces hepatic glucose production and improves glucose control in patients with type 2 diabetes. Science Translational Medicine 9 (394). doi: 10.1126/scitranslmed.aah4477.
  • Baenas, N., I. Gómez-Jodar, D. A. Moreno, C. García-Viguera, and P. M. Periago. 2017. Broccoli and radish sprouts are safe and rich in bioactive phytochemicals. Postharvest Biology and Technology 127:60–7. doi: 10.1016/j.postharvbio.2017.01.010.
  • Bakke, A. J., C. A. Stubbs, E. H. McDowell, K. J. Moding, S. L. Johnson, and J. E. Hayes. 2018. Mary Poppins was right: Adding small amounts of sugar or salt reduces the bitterness of vegetables. Appetite 126:90–101. doi: 10.1016/j.appet.2018.03.015.
  • Banerjee, S., D. Kong, Z. Wang, B. Bao, G. G. Hillman, and F. H. Sarkar. 2011. Attenuation of multi-targeted proliferation-linked signaling by 3,3’-diindolylmethane (DIM): from bench to clinic. Mutation Research 728 (1–2):47–66. doi: 10.1016/j.mrrev.2011.06.001.
  • Barba, F. J., N. Nikmaram, S. Roohinejad, A. Khelfa, Z. Zhu, and M. Koubaa. 2016. Bioavailability of glucosinolates and their breakdown products: Impact of processing. Frontiers in Nutrition 3. doi: 10.3389/fnut.2016.00024.
  • Beaver, L. M., C. V. Lӧhr, J. D. Clarke, S. T. Glasser, G. W. Watson, C. P. Wong, Z. Zhang, D. E. Williams, R. H. Dashwood, J. Shannon, et al. 2018. Broccoli sprouts delay prostate cancer formation and decrease prostate cancer severity with a concurrent decrease in HDAC3 protein expression in transgenic adenocarcinoma of the mouse prostate (TRAMP) mice. Current Developments in Nutrition 2 (3):nzy002. doi: 10.1093/cdn/nzy002.
  • Bhandari, S. R., J. Rhee, C. S. Choi, J. S. Jo, Y. K. Shin, and J. G. Lee. 2020. Profiling of individual desulfo-glucosinolate content in cabbage head. Molecules 25 (8):1860. doi: 10.3390/molecules25081860.
  • Bhattacharjee, S., and R. H. Dashwood. 2020. Epigenetic regulation of NRF2/KEAP1 by phytochemicals. Antioxidants 9 (9):865. doi: 10.3390/antiox9090865.
  • Bilia, A. R., V. Piazzini, C. Guccione, L. Risaliti, M. Asprea, G. Capecchi, and M. C. Bergonzi. 2017. Improving on nature: The role of nanomedicine in the development of clinical natural drugs. Planta Medica 83 (5):366–81. doi: 10.1055/s-0043-102949.
  • Bischoff, S. C., and M. Care. 2008. Quercetin: Potentials in the prevention and therapy of disease. Current Opinion in Clinical Nutrition and Metabolic Care 11 (6):733–40. doi: 10.1097/MCO.0b013e32831394b8.
  • Bjørklund, G., M. Dadar, N. Martins, S. Chirumbolo, B. H. Goh, K. Smetanina, and R. Lysiuk. 2018. Brief challenges on medicinal plants: An eye-opening look at ageing-related disorders. Basic & Clinical Pharmacology & Toxicology 122 (6): 539–58 . doi: 10.1111/bcpt.12972.
  • Bjorklund, G., M. S. Rahaman, M. Shanaida, R. Lysiuk, P. Oliynyk, L. Lenchyk, S. Chirumbolo, C. T. Chasapis, and M. Peana. 2022. Natural dietary compounds in the treatment of arsenic toxicity. Molecules 27 (15):4871. doi: 10.3390/molecules27154871.
  • Bjorklund, G., M. Shanaida, R. Lysiuk, H. Antonyak, I. Klishch, V. Shanaida, and M. Peana. 2022. Selenium: An antioxidant with a critical role in anti-aging. Molecules 27 (19):6613. doi: 10.3390/molecules27196613.
  • Borowski, J., A. Szajdek, E. J. Borowska, E. Ciska, and H. Zieliński. 2008. Content of selected bioactive components and antioxidant properties of broccoli (Brassica oleracea L.). European Food Research and Technology 226 (3):459–65. doi: 10.1007/s00217-006-0557-9.
  • Bose, C., I. Alves, P. Singh, P. T. Palade, E. Carvalho, E. Børsheim, S.-R. Jun, A. Cheema, M. Boerma, S. Awasthi, et al. 2020. Sulforaphane prevents age-associated cardiac and muscular dysfunction through Nrf2 signaling. Aging Cell 19 (11):e13261. doi: 10.1111/acel.13261.
  • Brown, A. F., G. G. Yousef, E. H. Jeffery, B. P. Klein, M. A. Wallig, M. M. Kushad, and J. A. Juvik. 2002. Glucosinolate profiles in broccoli: Variation in levels and implications in breeding for cancer chemoprotection. Journal of the American Society for Horticultural Science 127 (5):807–13. doi: 10.21273/JASHS.127.5.807.
  • Budnowski, J., L. Hanske, F. Schumacher, H. Glatt, S. Platz, S. Rohn, and M. Blaut. 2015. Glucosinolates are mainly absorbed intact in germfree and human microbiota-associated mice. Journal of Agricultural and Food Chemistry 63 (38):8418–28. doi: 10.1021/acs.jafc.5b02948.
  • Bule, M., A. Abdurahman, S. Nikfar, M. Abdollahi, and M. Amini. 2019. Antidiabetic effect of quercetin: A systematic review and meta-analysis of animal studies. Food Chemical Toxicology.
  • Burnett, J. P., G. Lim, Y. Li, R. B. Shah, R. Lim, H. J. Paholak, S. P. McDermott, L. Sun, Y. Tsume, S. Bai, et al. 2017. Sulforaphane enhances the anticancer activity of taxanes against triple negative breast cancer by killing cancer stem cells. Cancer Letters 394:52–64. doi: 10.1016/j.canlet.2017.02.023.
  • Busbee, P. B., L. Menzel, H. Alrafas, N. Dopkins, W. Becker, K. Miranda, C. Tang, S. Chatterjee, U. Singh, M. Nagarkatti, et al. 2020. Indole-3-carbinol prevents colitis and associated microbial dysbiosis in an IL-22–dependent manner. JCI Insight 5 (1). doi: 10.1172/jci.insight.127551.
  • Calderon-Montano, J. M., E. Burgos-Morón, C. Pérez-Guerrero, and M. López-Lázaro. 2011. A review on the dietary flavonoid kaempferol. Mini Reviews in Medicinal Chemistry 11 (4):298–344.
  • Cámara-Martos, F., S. Obregón-Cano, O. Mesa-Plata, M. E. Cartea-González, and A. de Haro-Bailón. 2021. Quantification and in vitro bioaccessibility of glucosinolates and trace elements in Brassicaceae leafy vegetables. Food Chemistry 339:127860. doi: 10.1016/j.foodchem.2020.127860.
  • Capuano, E., M. Dekker, R. Verkerk, and T. Oliviero. 2017. Food as pharma? The case of glucosinolates. Current Pharmaceutical Design 23 (19):2697–721. doi: 10.2174/1381612823666170120160832.
  • Chaika, N., O. Koshovyi, A. Raal, I. Kireyev, A. Zupanets, and V. Odyntsova. 2020. Phytochemical profile and pharmacological activity of the dry extract from Arctostaphylos uva-ursi leaves modified with phenylalanine. ScienceRise: Pharmaceutical Science 28:74–84. doi: 10.15587/2519-4852.2020.222511.
  • Charron, C. S., B. T. Vinyard, S. A. Ross, H. E. Seifried, E. H. Jeffery, and J. A. Novotny. 2018. Absorption and metabolism of isothiocyanates formed from broccoli glucosinolates: Effects of BMI and daily consumption in a randomised clinical trial. The British Journal of Nutrition 120 (12):1370–9. doi: 10.1017/S0007114518002921.
  • Chen, Y., M. H. Wang, J. Y. Zhu, C. F. Xie, X. T. Li, J. S. Wu, S. S. Geng, H. Y. Han, and C. Y. Zhong. 2020. TAp63α targeting of Lgr5 mediates colorectal cancer stem cell properties and sulforaphane inhibition. Oncogenesis 9 (10):89. doi: 10.1038/s41389-020-00273-z.
  • Chirumbolo, S., G. Bjørklund, R. Lysiuk, A. Vella, L. Lenchyk, and T. Upyr. 2018. Targeting cancer with phytochemicals via their fine tuning of the cell survival signaling pathways. International Journal of Molecular Sciences 19 (11):3568. doi: 10.3390/ijms19113568.
  • Choi, E. J., P. Zhang, and H. Kwon. 2014. Determination of goitrogenic metabolites in the serum of male wistar rat fed structurally different glucosinolates. Toxicological Research 30 (2):109–16. doi: 10.5487/TR.2014.30.2.109.
  • Choudhary, N., R. Gupta, and L. K. Bhatt. 2020. Anti-rheumatic activity of Phenethyl isothiocyanate via inhibition of histone deacetylase-1. Chemico-Biological Interactions 324:109095. doi: 10.1016/j.cbi.2020.109095.
  • Chu, X., S. Zhao, M. Cui, L. Lu, J. Zhang, Q. Meng, and S. Fan. 2016. Study on radioprotection of indole-3-carbinol acid condensation products. International Journal of Biomedical Engineering 39 (3):144–8.
  • ClinicalTrials.gov. 2023. https://clinicaltrials.gov/ct2/results?cond=cancer&term=&cntry=&state=&city=&dist=. U.S. National Library of Medicine.
  • Connolly, E. L., C. P. Bondonno, M. Sim, S. Radavelli-Bagatini, K. D. Croft, M. C. Boyce, A. P. James, K. Clark, R. Anokye, N. P. Bondonno, et al. 2020. A randomised controlled crossover trial investigating the short-term effects of different types of vegetables on vascular and metabolic function in middle-aged and older adults with mildly elevated blood pressure: The VEgetableS for vaScular hEaLth (VESSEL) study protocol. Nutrition Journal 19 (1):41. doi: 10.1186/s12937-020-00559-3.
  • Conzatti, A., F. C. Fróes, I. D. Schweigert Perry, and C. G. Souza. 2014. Clinical and molecular evidence of the consumption of broccoli, glucoraphanin and sulforaphane in humans. Nutricion Hospitalaria 31 (2):559–69. doi: 10.3305/nh.2015.31.2.7685.
  • Cornblatt, B. S., L. Ye, A. T. Dinkova-Kostova, M. Erb, J. W. Fahey, N. K. Singh, M.-S A. Chen, T. Stierer, E. Garrett-Mayer, P. Argani, et al. 2007. Preclinical and clinical evaluation of sulforaphane for chemoprevention in the breast. Carcinogenesis 28 (7):1485–90. doi: 10.1093/carcin/bgm049.
  • Dabeek, W. M., and M. V. N. Marra. 2019. Dietary Quercetin and Kaempferol: Bioavailability and potential cardiovascular-related bioactivity in humans. Nutrients 11 (10):2288. doi: 10.3390/nu11102288.
  • Danafar, H., A. Sharafi, S. Kheiri, and H. Kheiri Manjili. 2018. Co -delivery of sulforaphane and curcumin with PEGylated iron oxide-gold core shell nanoparticles for delivery to breast cancer cell line. Iran Journal of Pharmaceutical Research 17 (2):480–94.
  • Dar, S., J. Chhina, I. Mert, D. Chitale, T. Buekers, H. Kaur, S. Giri, A. Munkarah, and R. Rattan. 2017. Bioenergetic adaptations in chemoresistant ovarian cancer cells. Scientific Reports 7 (1):8760. doi: 10.1038/s41598-017-09206-0.
  • De Gianni, E., and C. Fimognari. 2015. Anticancer mechanism of sulfur-containing compounds. The Enzymes 37:167–92. doi: 10.1016/bs.enz.2015.05.003.
  • Doorn, H., G. Kruk, G. Holst, N. Raaijmakers-Ruijs, E. Postma, B. Groeneweg, and W. H. F. Jongen. 1998. The glucosinolates sinigrin and progoitrin are important determinants for taste preference and bitterness of brussels sprouts. Journal of the Science of Food and Agriculture 78 (1):30–8. doi: 10.1002/(sici)1097-0010(199809)78:1 < 30::aid-jsfa79 > 3.0.co;2-n.
  • Duffy, V. B., J. E. Hayes, A. C. Davidson, J. R. Kidd, K. K. Kidd, and L. M. Bartoshuk. 2010. Vegetable intake in college-aged adults is explained by oral sensory phenotypes and TAS2R38 genotype. Chemosensory Perception 3 (3–4):137–48. doi: 10.1007/s12078-010-9079-8.
  • Eghbalpour, F., M. Aghaei, M. Ebrahimi, M. R. Tahsili, M. Golalipour, S. Mohammadi, and Y. Yazdani. 2020. Effect of indole-3-carbinol on transcriptional profiling of wound-healing genes in macrophages of systemic lupus erythematosus patients: An RNA sequencing assay. Lupus 29 (8):954–63. doi: 10.1177/0961203320929746.
  • Egner, P. A., J. G. Chen, J. B. Wang, Y. Wu, Y. Sun, J. H. Lu, J. Zhu, Y. H. Zhang, Y. S. Chen, M. D. Friesen, et al. 2011. Bioavailability of Sulforaphane from two broccoli sprout beverages: Results of a short-term, cross-over clinical trial in Qidong, China. Cancer Prevention Research (Philadelphia, PA) 4 (3):384–95. doi: 10.1158/1940-6207.CAPR-10-0296.
  • Elackattu, A. P., L. Feng, and Z. Wang. 2009. A controlled safety study of diindolylmethane in the immature rat model. The Laryngoscope 119 (9):1803–8. doi: 10.1002/lary.20526.
  • Elkashty, O. A., and S. D. Tran. 2020. Broccoli extract increases drug-mediated cytotoxicity towards cancer stem cells of head and neck squamous cell carcinoma. British Journal of Cancer 123 (9):1395–403. doi: 10.1038/s41416-020-1025-1.
  • Eve, A. A., X. Liu, Y. Wang, M. J. Miller, E. H. Jeffery, and Z. Madak-Erdogan. 2020. Biomarkers of broccoli consumption: Implications for glutathione metabolism and liver health. Nutrients 12 (9):2514. doi: 10.3390/nu12092514.
  • Ezzati, M., B. Yousefi, K. Velaei, and A. Safa. 2020. A review on anti-cancer properties of Quercetin in breast cancer. Life Sciences 248:117463. doi: 10.1016/j.lfs.2020.117463.
  • Fahey, J. W., W. D. Holtzclaw, S. L. Wehage, K. L. Wade, K. K. Stephenson, and P. Talalay. 2015. Sulforaphane bioavailability from glucoraphanin-rich broccoli: Control by active endogenous myrosinase. PloS One 10 (11):e0140963. doi: 10.1371/journal.pone.0140963.
  • Faridvand, Y., P. Haddadi, H. R. Nejabati, S. Ghaffari, E. Zamani-Gharehchamani, S. Nozari, M. Nouri, and A. Jodati. 2020. Sulforaphane modulates CX3CL1/CX3CR1 axis and inflammation in palmitic acid-induced cell injury in C2C12 skeletal muscle cells. Molecular Biology Reports 47 (10):7971–7. doi: 10.1007/s11033-020-05875-9.
  • Farnham, M., K. Stephenson, and J. Fahey. 2005. Glucoraphanin level in broccoli seed is largely determined by genotype. HortScience 40 (1):50–3. doi: 10.21273/HORTSCI.40.1.50.
  • Favela-González, K. M., A. Y. Hernández-Almanza, and N. M. De la Fuente-Salcido. 2020. The value of bioactive compounds of Cruciferous vegetables (Brassica) as antimicrobials and antioxidants: A review. Journal of Food Biochemistry 44 (10). doi: 10.1111/jfbc.13414.
  • Feng, Y., M. Albiol Tapia, K. Okada, N. B. Castaneda Lazo, K. Chapman-Novakofski, C. Phillips, and S. Y. Lee. 2018. Consumer acceptance comparison between seasoned and unseasoned vegetables. Journal of Food Science 83 (2):446–53. doi: 10.1111/1750-3841.14027.
  • Ferguson, L., and R. Schlothauer. 2012. The potential role of nutritional genomics tools in validating high health foods for cancer control: Broccoli as example. Molecular Nutrition & Food Research 56 (1):126–46. doi: 10.1002/mnfr.201100507.
  • Ferreira, P. M. P., L. A. R. Rodrigues, L. P. de Alencar Carnib, P. V. de Lima Sousa, L. M. Nolasco Lugo, N. M. F. Nunes, J. do Nascimento Silva, L. da Silva Araûjo, and K. de Macêdo Gonçalves Frota. 2018. Cruciferous vegetables as antioxidative, chemopreventive and antineoplasic functional foods: Preclinical and clinical evidences of sulforaphane against prostate cancers. Current Pharmaceutical Design 24 (40):4779–93. doi: 10.2174/1381612825666190116124233.
  • Finley, J. W. 2003. Reduction of cancer risk by consumption of selenium-enriched plants: Enrichment of broccoli with selenium increases the anticarcinogenic properties of broccoli. Journal of Medicinal Food 6 (1):19–26. doi: 10.1089/109662003765184714.
  • Finley, J. W. 2005. Proposed criteria for assessing the efficacy of cancer reduction by plant foods enriched in carotenoids, glucosinolates, polyphenols and selenocompounds. Annals of Botany 95 (7):1075–96. doi: 10.1093/aob/mci123.
  • Fujioka, N., C. E. Ainslie-Waldman, P. Upadhyaya, S. G. Carmella, V. A. Fritz, C. Rohwer, Y. Fan, D. Rauch, C. Le, D. K. Hatsukami, et al. 2014. Urinary 3,3’-diindolylmethane: A biomarker of glucobrassicin exposure and indole-3-carbinol uptake in humans. Cancer Epidemiology, Biomarkers & Prevention: A Publication of the American Association for Cancer Research, Cosponsored by the American Society of Preventive Oncology 23 (2):282–7. doi: 10.1158/1055-9965.EPI-13-0645.
  • Fujioka, N., B. W. Ransom, S. G. Carmella, P. Upadhyaya, B. R. Lindgren, A. Roper-Batker, D. K. Hatsukami, V. A. Fritz, C. Rohwer, and S. S. Hecht. 2016. Harnessing the power of Cruciferous vegetables: Developing a biomarker for brassica vegetable consumption using urinary 3,3’-diindolylmethane. Cancer Prevention Research (Philadelphia, PA) 9 (10):788–93. doi: 10.1158/1940-6207.CAPR-16-0136.
  • Gao, X., J. Liu, K. B. Cho, S. Kedika, and B. Guo. 2020. Chemopreventive agent 3,3’-diindolylmethane inhibits MDM2 in colorectal cancer cells. International Journal of Molecular Sciences 21 (13). doi: 10.3390/ijms21134642.
  • Gasmi, A., P. K. Mujawdiya, R. Lysiuk, M. Shanaida, M. Peana, A. Gasmi Benahmed, N. Beley, N. Kovalska, and G. Bjorklund. 2022. Quercetin in the prevention and treatment of coronavirus infections: A focus on SARS-CoV-2. Pharmaceuticals (Basel) 15 (9). doi: 10.3390/ph15091049.
  • Gasmi, A., P. K. Mujawdiya, S. Noor, R. Lysiuk, R. Darmohray, S. Piscopo, L. Lenchyk, et al. 2022. Polyphenols in metabolic diseases. Molecules 27 (19). doi: 10.3390/molecules27196280.
  • Gasmi, A., S. Noor, A. Menzel, A. Doşa, L. Pivina, and G. Bjørklund. 2021. Obesity and insulin resistance: Associations with chronic inflammation, genetic and epigenetic factors. Current Medicinal Chemistry 28 (4):800–26. doi: 10.2174/0929867327666200824112056.
  • Georgikou, C., L. Buglioni, M. Bremerich, N. Roubicek, L. Yin, W. Gross, C. Sticht, C. Bolm, and I. Herr. 2020. Novel broccoli sulforaphane-based analogues inhibit the progression of pancreatic cancer without side effects. Biomolecules 10 (5). doi: 10.3390/biom10050769.
  • Ghazi, T., T. Arumugam, A. Foolchand, and A. A. Chuturgoon. 2020. The impact of natural dietary compounds and food-borne mycotoxins on DNA methylation and cancer. Cells 9 (9). doi: 10.3390/cells9092004.
  • Greco, S., M. S. Islam, A. Zannotti, G. Delli Carpini, S. R. Giannubilo, A. Ciavattini, F. Petraglia, and P. Ciarmela. 2020. Quercetin and indole-3-carbinol inhibit extracellular matrix expression in human primary uterine leiomyoma cells. Reproductive BioMedicine Online. doi: 10.1016/j.rbmo.2020.01.006.
  • Gu, H. F., X. Y. Mao, and M. Du. 2022. Metabolism, absorption, and anti-cancer effects of sulforaphane: An update. Critical Reviews in Food Science and Nutrition 62 (13):3437–52. doi: 10.1080/10408398.2020.1865871.
  • Gupta, R., L. K. Bhatt, and M. Momin. 2019. Potent antitumor activity of Laccaic acid and Phenethyl isothiocyanate combination in colorectal cancer via dual inhibition of DNA methyltransferase-1 and Histone deacetylase-1. Toxicology and Applied Pharmacology 377:114631. doi: 10.1016/j.taap.2019.114631.
  • Guzmán-Navarro, G., M. B. d. León, I. Martín-Estal, R. C.-D. Durán, L. Villarreal-Alvarado, A. Vaquera-Vázquez, T. Cuevas-Cerda, K. Garza-García, L. E. Cuervo-Pérez, Á. Barbosa-Quintana, et al. 2021. Prenatal indole-3-carbinol administration activates aryl hydrocarbon receptor-responsive genes and attenuates lung injury in a bronchopulmonary dysplasia model. Experimental Biology and Medicine (Maywood, NJ) 246 (6):695–706. doi: 10.1177/1535370220963789.
  • Haack, M., M. Löwinger, D. Lippmann, A. Kipp, E. Pagnotta, R. Iori, B. H. Monien, H. Glatt, M. N. Brauer, L. A. Wessjohann, et al. 2010. Breakdown products of neoglucobrassicin inhibit activation of Nrf2 target genes mediated by myrosinase-derived glucoraphanin hydrolysis products. Biological Chemistry 391 (11):1281–93. doi: 10.1515/BC.2010.134.
  • Hać, A., J. Brokowska, E. Rintz, M. Bartkowski, G. Węgrzyn, and A. Herman-Antosiewicz. 2020. Mechanism of selective anticancer activity of isothiocyanates relies on differences in DNA damage repair between cancer and healthy cells. European Journal of Nutrition 59 (4):1421–32. doi: 10.1007/s00394-019-01995-6.
  • Hajra, S., A. Basu, S. Singha Roy, A. R. Patra, and S. Bhattacharya. 2017. Attenuation of doxorubicin-induced cardiotoxicity and genotoxicity by an indole-based natural compound 3,3’-diindolylmethane (DIM) through activation of Nrf2/ARE signaling pathways and inhibiting apoptosis. Free Radical Research 51 (9–10):812–27. doi: 10.1080/10715762.2017.1381694.
  • Hanahan, D., and R. A. Weinberg. 2011. Hallmarks of cancer: The next generation. Cell 144 (5):646–74. doi: 10.1016/j.cell.2011.02.013.
  • Hanlon, N., N. Coldham, A. Gielbert, M. J. Sauer, and C. Ioannides. 2009. Repeated intake of broccoli does not lead to higher plasma levels of sulforaphane in human volunteers. Cancer Letters 284 (1):15–20. doi: 10.1016/j.canlet.2009.04.004.
  • Hayes, J. D., M. O. Kelleher, and I. M. Eggleston. 2008. The cancer chemopreventive actions of phytochemicals derived from glucosinolates. European Journal of Nutrition 47 (2):73–88. doi: 10.1007/s00394-008-2009-8.
  • Hofer, S., S. Geisler, R. Lisandrelli, H. Nguyen Ngoc, M. Ganzera, H. Schennach, D. Fuchs, J. E. Fuchs, J. M Gostner, and K. Kurz. 2020. Pharmacological targets of kaempferol within inflammatory pathways—A hint towards the central role of tryptophan metabolism. Antioxidants 9 (2):180. doi: 10.3390/antiox9020180.
  • Hossain, S., Z. Liu, and R. J. Wood. 2020. Histone deacetylase activity and vitamin D-dependent gene expressions in relation to sulforaphane in human breast cancer cells. Journal of Food Biochemistry 44 (2):e13114. doi: 10.1111/jfbc.13114.
  • Huang, B., S. Lei, D. Wang, Y. Sun, and J. Yin. 2020. Sulforaphane exerts anticancer effects on human liver cancer cells via induction of apoptosis and inhibition of migration and invasion by targeting MAPK7 signalling pathway. J Buon 25 (2):959–64.
  • Hwangbo, H., S. Y. Kim, H. Lee, S.-H. Park, S. H. Hong, C. Park, G.-Y. Kim, S.-H. Leem, J. W. Hyun, J. Cheong, et al. 2020. Auranofin enhances sulforaphane-mediated apoptosis in hepatocellular carcinoma Hep3B cells through inactivation of the PI3K/Akt signaling pathway. Biomolecules & Therapeutics 28 (5):443–55. doi: 10.4062/biomolther.2020.122.
  • Hwang, E. S., G. M. Bornhorst, P. I. Oteiza, and A. E. Mitchell. 2019. Assessing the fate and bioavailability of glucosinolates in kale (Brassica oleracea) using simulated human digestion and Caco-2 cell uptake models. Journal of Agricultural and Food Chemistry 67 (34):9492–500. doi: 10.1021/acs.jafc.9b03329.
  • Hwang, E. S., and G. H. Kim. 2013. Effects of various heating methods on glucosinolate, carotenoid and tocopherol concentrations in broccoli. International Journal of Food Sciences and Nutrition 64 (1):103–11. doi: 10.3109/09637486.2012.704904.
  • Hwang, I. M., B. Park, Y. M. Dang, S. Y. Kim, and H. Y. Seo. 2019. Simultaneous direct determination of 15 glucosinolates in eight Brassica species by UHPLC-Q-Orbitrap-MS. Food Chemistry 282:127–33. doi: 10.1016/j.foodchem.2018.12.036.
  • Ilahy, R., I. Tlili, Z. Pék, A. Montefusco, M. W. Siddiqui, F. Homa, C. Hdider, T. R’Him, H. Lajos, and M. S. Lenucci. 2020. Pre- and post-harvest factors affecting glucosinolate content in broccoli. Frontiers in Nutrition 7:147. doi: 10.3389/fnut.2020.00147.
  • Imran, M., B. Salehi, J. Sharifi-Rad, T. Aslam Gondal, F. Saeed, A. Imran, M. Shahbaz, et al. 2019. Kaempferol: A key emphasis to its anticancer potential. Molecules 24 (12). doi: 10.3390/molecules24122277.
  • Isabella, S., S. Mirunalini, and K. Pandiyan. 2018. 3,3’-diindolylmethane encapsulated chitosan nanoparticles accelerates inflammatory markers, ER/PR, glycoprotein and mast cells population during chemical carcinogen induced mammary cancer in rats. Indian Journal of Clinical Biochemistry: IJCB 33 (4):397–405. doi: 10.1007/s12291-017-0701-2.
  • Ishida, M., M. Hara, N. Fukino, T. Kakizaki, and Y. Morimitsu. 2014. Glucosinolate metabolism, functionality and breeding for the improvement of Brassicaceae vegetables. Breeding Science 64 (1):48–59. doi: 10.1270/jsbbs.64.48.
  • Jabbarzadeh Kaboli, P., M. Afzalipour Khoshkbejari, M. Mohammadi, A. Abiri, R. Mokhtarian, R. Vazifemand, S. Amanollahi, S. Yazdi Sani, M. Li, Y. Zhao, et al. 2020. Targets and mechanisms of sulforaphane derivatives obtained from Cruciferous plants with special focus on breast cancer - contradictory effects and future perspectives. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 121:109635. doi: 10.1016/j.biopha.2019.109635.
  • Jeyashree, T. M., S. Poompavai, M. Begum Smf, Gowrisree, S. Hemalatha, E. Sieni, and R. Sundararajan. 2019. Cancer-fighting phytochemicals: Another look. Journal of Nanomedicine & Biotherapeutic Discovery 9 (1):162. doi: 10.4172/2155-983X.1000162.
  • Jie, M., W. M. Cheung, V. Yu, Y. Zhou, P. H. Tong, and J. W. Ho. 2014. Anti-proliferative activities of sinigrin on carcinogen-induced hepatotoxicity in rats. PloS One 9 (10):e110145. doi: 10.1371/journal.pone.0110145.
  • Jones, R. B., J. D. Faragher, and S. Winkler. 2006. A review of the influence of postharvest treatments on quality and glucosinolate content in broccoli (Brassica oleracea var. italica) heads. Postharvest Biology and Technology 41 (1):1–8. doi: 10.1016/j.postharvbio.2006.03.003.
  • Juengel, E., H. H. H. Erb, A. Haferkamp, J. Rutz, F. K. Chun, and R. A. Blaheta. 2018. Relevance of the natural HDAC inhibitor sulforaphane as a chemopreventive agent in urologic tumors. Cancer Letters 435:121–6. doi: 10.1016/j.canlet.2018.07.017.
  • Juge, N., R. F. Mithen, and M. Traka. 2007. Molecular basis for chemoprevention by sulforaphane: A comprehensive review. Cellular and Molecular Life Sciences: CMLS 64 (9):1105–27. doi: 10.1007/s00018-007-6484-5.
  • Kaczmarek, J. L., X. Liu, C. S. Charron, J. A. Novotny, E. H. Jeffery, H. E. Seifried, S. A. Ross, M. J. Miller, K. S. Swanson, and H. D. Holscher. 2019. Broccoli consumption affects the human gastrointestinal microbiota. The Journal of Nutritional Biochemistry 63:27–34. doi: 10.1016/j.jnutbio.2018.09.015.
  • Kaiser, A. E., M. Baniasadi, D. Giansiracusa, M. Giansiracusa, M. Garcia, Z. Fryda, T. L. Wong, and A. Bishayee. 2021. Sulforaphane: A broccoli bioactive phytocompound with cancer preventive potential. Cancers (Basel) 13 (19):4796. doi: 10.3390/cancers13194796.
  • Kamal, M. M., S. Akter, C. N. Lin, and S. Nazzal. 2020. Sulforaphane as an anticancer molecule: Mechanisms of action, synergistic effects, enhancement of drug safety, and delivery systems. Archives of Pharmacal Research 43 (4):371–84. doi: 10.1007/s12272-020-01225-2.
  • Kanematsu, S., K. Yoshizawa, N. Uehara, H. Miki, T. Sasaki, M. Kuro, Y. C. Lai, A. Kimura, T. Yuri, and A. Tsubura. 2011. Sulforaphane inhibits the growth of KPL-1 human breast cancer cells in vitro and suppresses the growth and metastasis of orthotopically transplanted KPL-1 cells in female athymic mice. Oncology Reports 26 (3):603–8. doi: 10.3892/or.2011.1311.
  • Katz, E., S. Nisani, and D. A. Chamovitz. 2018. Indole-3-carbinol: a plant hormone combatting cancer. FResearch 7 (689). doi: 10.12688/f1000research.14127.1
  • Kellingray, L., G. Le Gall, J. F. Doleman, A. Narbad, and R. F. Mithen. 2021. Effects of in vitro metabolism of a broccoli leachate, glucosinolates and S-methylcysteine sulphoxide on the human faecal microbiome. European Journal of Nutrition 60 (4):2141–54. doi: 10.1007/s00394-020-02405-y.
  • Kim, S. H., K. A. Hwang, and K. C. Choi. 2016. Treatment with kaempferol suppresses breast cancer cell growth caused by estrogen and triclosan in cellular and xenograft breast cancer models. The Journal of Nutritional Biochemistry 28:70–82. doi: 10.1016/j.jnutbio.2015.09.027.
  • Kim, D. H., D. Y. Kang, N. Sp, E. S. Jo, A. Rugamba, K. J. Jang, and Y. M. Yang. 2020. Methylsulfonylmethane induces cell cycle arrest and apoptosis, and suppresses the stemness potential of HT-29 cells. Anticancer Research 40 (9):5191–200. doi: 10.21873/anticanres.14522.
  • Kim, J. K., and S. U. Park. 2020. Recent studies on kaempferol and its biological and pharmacological activities. EXCLI Journal 19:627–34.
  • Klomparens, E. A., and Y. Ding. 2019. The neuroprotective mechanisms and effects of sulforaphane. Brain Circulation 5 (2):74–83. doi: 10.4103/bc.bc_7_19.
  • Koh, E., K. M. S. Wimalasiri, A. W. Chassy, and A. E. Mitchell. and analysis. 2009. Content of ascorbic acid, quercetin, kaempferol and total phenolics in commercial broccoli. Journal of Food Composition 22 (7–8):637–43.
  • Koshovyi, O., S. Granica, J. Piwowarski, O. Stremoukhov, Y. Kostenko, G. Kravchenko, O. Krasilnikova, and A. Zagayko. 2021. Highbush Blueberry (Vaccinium corymbosum L.) leaves extract and its modified arginine preparation for the management of metabolic syndrome-chemical analysis and bioactivity in rat model. Nutrients 13. doi: 10.3390/nu13082870.
  • Kubczak, M., A. Szustka, and M. Rogalinska. 2021. Molecular targets of natural compounds with anti-cancer properties. International Journal of Molecular Science 22 (24). doi: 10.3390/ijms222413659.
  • Kumar, S., S. Sharma, V. Kumar, R. Sharma, A. Minhas, and R. Boddu. 2022. Chapter 20 - Cruciferous vegetables: A mine of phytonutrients for functional and nutraceutical enrichment. In Current advances for development of functional foods modulating inflammation and oxidative stress, ed. Blanca Hernández-Ledesma and Cristina Martínez-Villaluenga, 401–26. Academic Press;Elsevier.
  • Kumari, A., S. Bhawal, S. Kapila, H. Yadav, and R. Kapila. 2022. Health-promoting role of dietary bioactive compounds through epigenetic modulations: A novel prophylactic and therapeutic approach. Critical Reviews in Food Science and Nutrition 62 (3):619–39. doi: 10.1080/10408398.2020.1825286.
  • Kuran, D., A. Pogorzelska, and K. Wiktorska. 2020. Breast cancer prevention-is there a future for sulforaphane and its analogs? Nutrients 12 (6). doi: 10.3390/nu12061559.
  • Langston-Cox, A., D. Anderson, D. J. Creek, K. Palmer, E. M. Wallace, and S. A. Marshall. 2020. Measuring sulforaphane and its metabolites in human plasma: A high throughput method. Molecules 25 (4). doi: 10.3390/molecules25040829.
  • Leoni, O., R. Iori, S. Palmieri, E. Esposito, E. Menegatti, R. Cortesi, and C. Nastruzzi. 1997. Myrosinase-generated isothiocyanate from glucosinolates: Isolation, characterization and in vitro antiproliferative studies. Bioorganic & Medicinal Chemistry 5 (9):1799–806. doi: 10.1016/s0968-0896(97)00112-0.
  • Liao, C. L., S. F. Peng, J. C. Chen, P. Y. Chen, A. C. Huang, J. C. Lien, F. S. Chueh, T. A. Chiang, P. P. Wu, and K. I. Lin. 2021. Allyl isothiocyanate induces DNA damage and impairs DNA repair in human breast cancer MCF-7 cells. Anticancer Research 41 (9):4343–51. doi: 10.21873/anticanres.15239.
  • Li, Y., P. Buckhaults, S. Li, and T. Tollefsbol. 2018. Temporal efficacy of a sulforaphane-based broccoli sprout diet in prevention of breast cancer through modulation of epigenetic mechanisms. Cancer Prevention Research (Philadelphia, PA) 11 (8):451–64. doi: 10.1158/1940-6207.CAPR-17-0423.
  • Licznerska, B., H. Szaefer, and V. Krajka-Kuźniak. 2021. R-sulforaphane modulates the expression profile of AhR, ERα, Nrf2, NQO1, and GSTP in human breast cell lines. Molecular and Cellular Biochemistry 476 (2):525–33. doi: 10.1007/s11010-020-03913-5.
  • Li, Z., H. Guo, J. Li, T. Ma, S. Zhou, Z. Zhang, L. Miao, and L. Cai. 2020. Sulforaphane prevents type 2 diabetes-induced nephropathy via AMPK-mediated activation of lipid metabolic pathways and Nrf2 antioxidative function. Clinical Science (London, England: 1979) 134 (18):2469–87. doi: 10.1042/CS20191088.
  • Li, F., M. A. Hullar, S. A. Beresford, and J. W. Lampe. 2011. Variation of glucoraphanin metabolism in vivo and ex vivo by human gut bacteria. The British Journal of Nutrition 106 (3):408–16. doi: 10.1017/S0007114511000274.
  • Liou, C. S., S. J. Sirk, C. A. C. Diaz, A. P. Klein, C. R. Fischer, S. K. Higginbottom, A. Erez, M. S. Donia, J. L. Sonnenburg, and E. S. Sattely. 2020. A metabolic pathway for activation of dietary glucosinolates by a human gut symbiont. Cell 180 (4):717–28 e19. doi: 10.1016/j.cell.2020.01.023.
  • Liu, P., M. Behray, Q. Wang, W. Wang, Z. Zhou, Y. Chao, and Y. Bao. 2018. Anti-cancer activities of allyl isothiocyanate and its conjugated silicon quantum dots. Scientific Reports 8 (1):1084. doi: 10.1038/s41598-018-19353-7.
  • Liu, P., G. Luo, M. Dodson, C. J. Schmidlin, Y. Wei, B. Kerimoglu, A. Ooi, E. Chapman, J. G. Garcia, and D. D. Zhang. 2021. The NRF2-LOC344887 signaling axis suppresses pulmonary fibrosis. Redox Biology 38:101766. doi: 10.1016/j.redox.2020.101766.
  • Liu, C.-M., C.-Y. Peng, Y.-W. Liao, M.-Y. Lu, M.-L. Tsai, J.-C. Yeh, C.-H. Yu, and C.-C. Yu. 2017. Sulforaphane targets cancer stemness and tumor initiating properties in oral squamous cell carcinomas via miR-200c induction. Journal of the Formosan Medical Association = Taiwan Yi Zhi 116 (1):41–8. doi: 10.1016/j.jfma.2016.01.004.
  • Liu, Y., M. Rossi, X. Liang, H. Zhang, L. Zou, and C. N. Ong. 2020. An integrated metabolomics study of glucosinolate metabolism in different brassicaceae genera. Metabolites 10 (8). doi: 10.3390/metabo10080313.
  • Liu, M., L. Zhang, S. L. Ser, J. R. Cumming, and K.-M. Ku. 2018. Comparative phytonutrient analysis of broccoli by-products: The potentials for broccoli by-product utilization. Molecules 23 (4):900.
  • Livingstone, T. L., S. Saha, F. Bernuzzi, G. M. Savva, P. Troncoso-Rey, M. H. Traka, R. D. Mills, R. Y. Ball, and R. F. Mithen. 2022. Accumulation of sulforaphane and alliin in human prostate tissue. Nutrients 14 (16). doi: 10.3390/nu14163263.
  • Li, J., Y. Zhou, Y. Yan, Z. Zheng, Y. Hu, and W. Wu. 2020. Sulforaphane-cysteine downregulates CDK4/CDK6 and inhibits tubulin polymerization contributing to cell cycle arrest and apoptosis in human glioblastoma cells. Aging 12 (17):16837–51. doi: 10.18632/aging.103537.
  • Lozanovski, V. J., P. Houben, U. Hinz, T. Hackert, I. Herr, and P. Schemmer. 2014. Pilot study evaluating broccoli sprouts in advanced pancreatic cancer (POUDER trial) - study protocol for a randomized controlled trial. Trials 15:204. doi: 10.1186/1745-6215-15-204.
  • Lu, Y., X. Pang, and T. Yang. 2020. Microwave cooking increases sulforaphane level in broccoli. Food Science & Nutrition 8 (4):2052–58. doi: 10.1002/fsn3.1493.
  • Lv, J., S. Bao, T. Liu, L. Wei, D. Wang, W. Ye, N. Wang, S. Song, J. Li, M. Chudhary, et al. 2020. Sulforaphane delays diabetes-induced retinal photoreceptor cell degeneration. Cell and Tissue Research 382 (3):477–86. doi: 10.1007/s00441-020-03267-w.
  • Maina, S., G. Misinzo, G. Bakari, and H. Y. Kim. 2020. Human, animal and plant health benefits of glucosinolates and strategies for enhanced bioactivity: A systematic review. Molecules 25 (16). doi: 10.3390/molecules25163682.
  • Mandrich, L., and E. Caputo. 2020. Brassicaceae-derived anticancer agents: Towards a green approach to beat cancer. Nutrients 12 (3). doi: 10.3390/nu12030868.
  • Mangla, B., S. Javed, M. H. Sultan, P. Kumar, K. Kohli, A. Najmi, H. A. Alhazmi, M. Al Bratty, and W. Ahsan. 2021. Sulforaphane: A review of its therapeutic potentials, advances in its nanodelivery, recent patents, and clinical trials. Phytotherapy Research: PTR 35 (10):5440–58. doi: 10.1002/ptr.7176.
  • Mangla, B., Y. R. Neupane, A. Singh, P. Kumar, S. Shafi, and K. Kohli. 2020. Lipid-nanopotentiated combinatorial delivery of tamoxifen and sulforaphane. Nanomedicine (London, England) 15 (26):2563–83. doi: 10.2217/nnm-2020-0277.
  • Maruthanila, V. L., J. Poornima, and S. Mirunalini. 2014. Attenuation of Carcinogenesis and the Mechanism Underlying by the Influence of Indole-3-carbinol and its metabolite 3,3’-diindolylmethane: A therapeutic marvel. Advances in Pharmacological Sciences 2014:832161. doi: 10.1155/2014/832161.
  • Mastuo, T., Y. Miyata, T. Yuno, Y. Mukae, A. Otsubo, K. Mitsunari, K. Ohba, and H. Sakai. 2020. Molecular mechanisms of the anti-cancer effects of isothiocyanates from Cruciferous vegetables in bladder cancer. Molecules 25 (3):575. doi: 10.3390/molecules25030575.
  • Matusheski, N. V., and E. H. Jeffery. 2001. Comparison of the bioactivity of two glucoraphanin hydrolysis products found in broccoli, sulforaphane and sulforaphane nitrile. Journal of Agricultural and Food Chemistry 49 (12):5743–9. doi: 10.1021/jf010809a.
  • Mazumder, A., A. Dwivedi, and J. Du Plessis. 2016. Sinigrin and its therapeutic benefits. Molecules (Basel, Switzerland) 21 (4):416. doi: 10.3390/molecules21040416.
  • McDanell, R., A. E. McLean, A. B. Hanley, R. K. Heaney, and G. R. Fenwick. 1988. Chemical and biological properties of indole glucosinolates (glucobrassicins): A review. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 26 (1):59–70. doi: 10.1016/0278-6915(88)90042-7.
  • Megna, B. W., P. R. Carney, M. Nukaya, P. Geiger, and G. D. Kennedy. 2016. Indole-3-carbinol induces tumor cell death: Function follows form. Journal of Surgical Research 204 (1):47–54. doi: 10.1016/j.jss.2016.04.021.
  • Miao, H., J. Wang, C. Cai, J. Chang, Y. Zhao, and Q. Wang. 2017. Accumulation of glucosinolates in broccoli. In Glucosinolates, ed. Jean-Michel Mérillon and Kishan Gopal Ramawat, 133–62. Cham: Springer International Publishing.
  • Miean, K. H., and S. Mohamed. 2001. Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. Journal of Agricultural and Food Chemistry 49 (6):3106–12. doi: 10.1021/jf000892m.
  • Miękus, N., K. Marszałek, M. Podlacha, A. Iqbal, C. Puchalski, and A. H. Świergiel. 2020. Health benefits of plant-derived sulfur compounds, glucosinolates, and organosulfur compounds. Molecules 25 (17):3804. doi: 10.3390/molecules25173804.
  • Mitsiogianni, M., G. Koutsidis, N. Mavroudis, D.T. Trafalis, S. Botaitis, R. Franco, V. Zoumpourlis, T. Amery, A. Galanis, A. Pappa, et al. 2019. The role of isothiocyanates as cancer chemo-preventive, chemo-therapeutic and anti-melanoma agents. Antioxidants (Basel) 8 (4):106. doi: 10.3390/antiox8040106.
  • Mitsiogianni, M., D. T. Trafalis, R. Franco, V. Zoumpourlis, A. Pappa, and M. I. Panayiotidis. 2021. Sulforaphane and iberin are potent epigenetic modulators of histone acetylation and methylation in malignant melanoma. European Journal of Nutrition 60 (1):147–58. doi: 10.1007/s00394-020-02227-y.
  • Mohamed, S. I. A., I. Jantan, and M. A. Haque. 2017. Naturally occurring immunomodulators with antitumor activity: An insight on their mechanisms of action. International Immunopharmacology 50:291–304. doi: 10.1016/j.intimp.2017.07.010.
  • Mohd Nor, N. D., C. Houston-Price, K. Harvey, and L. Methven. 2021. The effects of taste sensitivity and repeated taste exposure on children’s intake and liking of turnip (Brassica rapa subsp. rapa); a bitter Brassica vegetable. Appetite 157:104991. doi: 10.1016/j.appet.2020.104991.
  • Munakarmi, S., L. Chand, H. B. Shin, K. Y. Jang, and Y. J. Jeong. 2020. Indole-3-carbinol derivative DIM mitigates carbon tetrachloride-induced acute liver injury in mice by inhibiting inflammatory response. Apoptosis and regulating oxidative stress. International Journal of Molecular Science 21 (6). doi: 10.3390/ijms21062048.
  • Nandini, D. B., R. S. Rao, B. S. Deepak, and P. B. Reddy. 2020. Sulforaphane in broccoli: The green chemoprevention!! Role in cancer prevention and therapy. Journal of Oral and Maxillofacial Pathology: JOMFP 24 (2):405. doi: 10.4103/jomfp.JOMFP_126_19.
  • Narbad, A., and J. T. Rossiter. 2018. Gut glucosinolate metabolism and isothiocyanate production. Molecular Nutrition & Food Research 62 (18):e1700991. doi: 10.1002/mnfr.201700991.
  • NCT00982319. 2023. Study to evaluate the effect of sulforaphane in broccoli sprout extract on breast tissue. https://clinicaltrials.gov/ct2/show/NCT00982319: U.S. National Library of Medicine.
  • NCT01108003. 2023. Broccoli sprout extract in treating patients with transitional cell bladder cancer undergoing surgery. https://clinicaltrials.gov/ct2/show/NCT01108003: U.S. National Library of Medicine.
  • NCT01228084. 2023. Sulforaphane in treating patients with recurrent prostate cancer. https://clinicaltrials.gov/ct2/show/NCT01228084: U.S. National Library of Medicine.
  • NCT01753908. 2023. Broccoli sprout extract in treating patients with breast cancer. https://clinicaltrials.gov/ct2/show/NCT01753908: U.S. National Library of Medicine.
  • NCT02404428. 2023. Utilizing MRI to study the effect of sulforaphane on prostate cancer (ESCAPE-ING). https://clinicaltrials.gov/ct2/show/NCT02404428: U.S. National Library of Medicine.
  • NCT03182959. 2023. Broccoli sprout extract in preventing recurrence in patients with tobacco-related head and neck squamous cell cancer. https://clinicaltrials.gov/ct2/show/NCT03182959: U.S. National Library of Medicine.
  • NCT03232138. 2023. Clinical trial of lung cancer chemoprevention with sulforaphane in former smokers. https://clinicaltrials.gov/ct2/show/NCT03232138: U.S. National Library of Medicine.
  • NCT03665922. 2023. Biomarkers of sulforaphane/broccoli sprout extract in prostate cancer. https://clinicaltrials.gov/ct2/show/NCT03665922: U.S. National Library of Medicine.
  • Ngo, S. N. T., and D. B. Williams. 2021. Protective effect of isothiocyanates from Cruciferous vegetables on breast cancer: Epidemiological and preclinical perspectives. Anti-Cancer Agents in Medicinal Chemistry 21 (11):1413–30. doi: 10.2174/1871520620666200924104550.
  • Nguyen, H. P., V. B. Kumar, V. K. Ponnusamy, T. Mai, T. N. Phuong, B. Kathirvel, and A. Pugazhendhi. 2021. Phytochemicals intended for anticancer effects at preclinical levels to clinical practice: Assessment of formulations at nanoscale for non-small cell lung cancer (NSCLC) therapy. Process Biochemistry 104:55–75. doi: 10.1016/j.procbio.2021.02.004.
  • Nguyen, V. P. T., J. Stewart, M. Lopez, I. Ioannou, and F. Allais. 2020. Glucosinolates: Natural occurrence, biosynthesis, accessibility, isolation, structures, and biological activities. Molecules 25 (19):4537. doi: 10.3390/molecules25194537.
  • Nikulin, S. V., B. Y. Alekseev, N. S. Sergeeva, P. A. Karalkin, E. K. Nezhurina, V. A. Kirsanova, I. K. Sviridova, S. A. Akhmedova, N. N. Volchenko, L. V. Bolotina, et al. 2020. Breast cancer organoid model allowed to reveal potentially beneficial combinations of 3,3’-diindolylmethane and chemotherapy drugs. Biochimie 179:217–27. doi: 10.1016/j.biochi.2020.10.007.
  • Nugrahedi, P. Y., T. Oliviero, J. K. Heising, M. Dekker, and R. Verkerk. 2017. Stir-frying of chinese cabbage and pakchoi retains health-promoting glucosinolates. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 72 (4):439–44. doi: 10.1007/s11130-017-0646-x.
  • Nugrahedi, P. Y., R. Verkerk, B. Widianarko, and M. Dekker. 2015. A mechanistic perspective on process-induced changes in glucosinolate content in Brassica vegetables: A review. Critical Reviews in Food Science and Nutrition 55 (6):823–38. doi: 10.1080/10408398.2012.688076.
  • Ogunlade, B., S. Adelakun, and K. Iteire. 2020. Sulforaphane response on aluminum-induced oxidative stress, alterations in sperm characterization and testicular histomorphometry in Wistar rats. International Journal of Reproductive Biomedicine 18 (8):611–24. doi: 10.18502/ijrm.v13i8.7503.
  • Palliyaguru, D. L., L. Yang, D. V. Chartoumpekis, S. G. Wendell, M. Fazzari, J. J. Skoko, Y. Liao, S. Oesterreich, G. K. Michalopoulos, and T. W. Kensler. 2020. Sulforaphane diminishes the formation of mammary tumors in rats exposed to 17β-estradiol. Nutrients 12 (8):2282. doi: 10.3390/nu12082282.
  • Palomera-Sanchez, Z., G. W. Watson, C. P. Wong, L. M. Beaver, D. E. Williams, R. H. Dashwood, and E. Ho. 2017. The phytochemical 3, 3′-diindolylmethane decreases expression of AR-controlled DNA damage repair genes through repressive chromatin modifications and is associated with DNA damage in prostate cancer cells. The Journal of Nutritional Biochemistry 47:113–9. doi: 10.1016/j.jnutbio.2017.05.005.
  • Pani, S., A. Sahoo, A. Patra, and P. R. Debata. 2021. Phytocompounds curcumin, quercetin, indole-3-carbinol, and resveratrol modulate lactate-pyruvate level along with cytotoxic activity in HeLa cervical cancer cells. Biotechnology and Applied Biochemistry 68 (6):1396–402. doi: 10.1002/bab.2061.
  • Park, M.-H., M. Valan Arasu, N.-Y. Park, Y.-J. Choi, S.-W. Lee, N. Al-Dhabi, J. Kim, and S.-J. Kim. 2013. Variation of glucoraphanin and glucobrassicin: Anticancer components in Brassica during processing. Food Science and Technology (Campinas) 33 (4):624–31. doi: 10.1590/S0101-20612013000400005.
  • Paśko, P., M. Tyszka-Czochara, A. Galanty, J. Gdula-Argasińska, P. Żmudzki, H. Bartoń, P. Zagrodzki, and S. Gorinstein. 2018. Comparative study of predominant phytochemical compounds and proapoptotic potential of broccoli sprouts and florets. Plant Foods for Human Nutrition 73 (2):95–100. doi: 10.1007/s11130-018-0665-2.
  • Patridge, E. V., P. C. Gareiss, M. S. Kinch, and D. W. Hoyer. 2015. An analysis of original research contributions toward FDA-approved drugs. Drug Discovery Today 20 (10):1182–7. doi: 10.1016/j.drudis.2015.06.006.
  • Pawlik, A., A. Wiczk, A. Kaczyńska, J. Antosiewicz, and A. Herman-Antosiewicz. 2013. Sulforaphane inhibits growth of phenotypically different breast cancer cells. European Journal of Nutrition 52 (8):1949–58. doi: 10.1007/s00394-013-0499-5.
  • Peluso, I., A. Raguzzini, and M. Serafini. 2013. Effect of flavonoids on circulating levels of TNF-alpha and IL-6 in humans: A systematic review and meta-analysis. Molecular Nutrition & Food Research 57 (5):784–801. doi: 10.1002/mnfr.201200721.
  • Penta, D., P. Tripathi, D. Rajarajan, J. Natesh, P. Mondal, and S. M. Meeran. 2022. Diindolylmethane promotes metabolic crisis and enhances the efficacy of centchroman in breast cancer: A (1)H NMR-based approach. ACS Omega 7 (47):43147–60. doi: 10.1021/acsomega.2c05832.
  • Possenti, M., S. Baima, A. Raffo, A. Durazzo, A. M. Giusti, and F. Natella. 2017. Glucosinolates in food. In Glucosinolates, ed. Jean-Michel Mérillon and Kishan Gopal Ramawat, 87–132. Cham: Springer International Publishing.
  • Prieto, M. A., C. J. López, and J. Simal-Gandara. 2019. Glucosinolates: Molecular structure, breakdown, genetic, bioavailability, properties and healthy and adverse effects. Advances in Food and Nutrition Research 90:305–50. doi: 10.1016/bs.afnr.2019.02.008.
  • Qattan, M., M. Khan, S. Alharbi, A. Verma, F. Al-Saeed, A. Abduallah, and A. Areefy. 2022. Therapeutic importance of kaempferol in the treatment of cancer through the modulation of cell signalling pathways. Molecules 27 (24):8864. doi: 10.3390/molecules27248864.
  • Quirit, J. G., S. N. Lavrenov, K. Poindexter, J. Xu, C. Kyauk, K. A. Durkin, I. Aronchik, T. Tomasiak, Y. A. Solomatin, M. N. Preobrazhenskaya, et al. 2017. Indole-3-carbinol (I3C) analogues are potent small molecule inhibitors of NEDD4-1 ubiquitin ligase activity that disrupt proliferation of human melanoma cells. Biochemical Pharmacology 127:13–27. doi: 10.1016/j.bcp.2016.12.007.
  • Rangkadilok, N., M. E. Nicolas, R. N. Bennett, D. R. Eagling, R. R. Premier, and P. W. Taylor. 2004. The effect of sulfur fertilizer on glucoraphanin levels in broccoli (B. oleracea L. var. italica) at different growth stages. Journal of Agricultural and Food Chemistry 52 (9):2632–9. doi: 10.1021/jf030655u.
  • Renna, M., A. M. Stellacci, F. Corbo, and P. Santamaria. 2020. The use of a nutrient quality score is effective to assess the overall nutritional value of three. Foods 9 (9):1226. doi: 10.3390/foods9091226.
  • Renner, I. E., and V. A. Fritz. 2020. Using Near-infrared reflectance spectroscopy (NIRS) to predict glucobrassicin concentrations in cabbage and brussels sprout leaf tissue. Plant Methods 16:136. doi: 10.1186/s13007-020-00681-7.
  • Revelou, P. K., M. G. Kokotou, and V. Constantinou-Kokotou. 2020. Determination of indole-type phytonutrients in Cruciferous vegetables. Natural Product Research 34 (17):2554–7. doi: 10.1080/14786419.2018.1543680.
  • Ríos, J. J., A. Agudelo, D. A. Moreno, and M. Carvajal. 2020. Growing broccoli under salinity: the influence of cultivar and season on glucosinolates content. Plant Physiology and Biochemistry: Scientia Agricola. 77 (6). doi:10.1590/1678-992x-2019-0028.
  • Román, J., A. Castillo, L. Cottet, and A. Mahn. 2018. Kinetic and structural study of broccoli myrosinase and its interaction with different glucosinolates. Food Chemistry 254:87–94. doi: 10.1016/j.foodchem.2018.01.179.
  • Rong, Y., L. Huang, K. Yi, H. Chen, S. Liu, W. Zhang, C. Yuan, X. Song, and F. Wang. 2020. Co-administration of sulforaphane and doxorubicin attenuates breast cancer growth by preventing the accumulation of myeloid-derived suppressor cells. Cancer Letters 493:189–96. doi: 10.1016/j.canlet.2020.08.041.
  • Royston, K. J., B. Paul, S. Nozell, R. Rajbhandari, and T. O. Tollefsbol. 2018. Withaferin A and sulforaphane regulate breast cancer cell cycle progression through epigenetic mechanisms. Experimental Cell Research 368 (1):67–74. doi: 10.1016/j.yexcr.2018.04.015.
  • Rupa, E. J., L. Arunkumar, Y. Han, J. P. Kang, J. C. Ahn, S. K. Jung, M. Kim, J. Y. Kim, D. C. Yang, and G. J. Lee. 2020. Extract-mediated ZnO nanoparticles loaded with indole-3-carbinol for enhancement of anticancer efficacy in the A549 human lung carcinoma cell line. Materials (Basel) 13 (14):3197. doi: 10.3390/ma13143197.
  • Russo, M., C. Spagnuolo, G. L. Russo, K. Skalicka-Woźniak, M. Daglia, E. Sobarzo-Sánchez, S. F. Nabavi, and S. M. Nabavi. 2018. Nrf2 targeting by sulforaphane: A potential therapy for cancer treatment. Critical Reviews in Food Science and Nutrition 58 (8):1391–405. doi: 10.1080/10408398.2016.1259983.
  • Rybarczyk-Plonska, A., S. F. Hagen, G. I. A. Borge, G. B. Bengtsson, M. K. Hansen, and A.-B. Wold. 2016. Glucosinolates in broccoli (Brassica oleracea L. var. italica) as affected by postharvest temperature and radiation treatments. Postharvest Biology and Technology 116:16–25. doi: 10.1016/j.postharvbio.2015.12.010.
  • Saavedra, Z., E. Jordan-Alejandre, J. Puente-Rivera, and M. Silva. 2022. Molecular pathways related to sulforaphane as adjuvant treatment: A nanomedicine perspective in breast cancer. Medicina 58 (10):1377. doi: 10.3390/medicina58101377.
  • Samanta, S. K., P. Choudhury, P. P. Sarma, B. Gogoi, N. Gogoi, and R. Devi. 2022. Dietary phytochemicals/nutrients as promising protector of breast cancer development: A comprehensive analysis. Pharmacological Reports: PR 74 (4):583–601. doi: 10.1007/s43440-022-00373-0.
  • Samini, M. 2020. Quercetin effects on respiratory diseases. Research Journal of Pharmacy and Technology 13 (4):2019–23. doi: 10.5958/0974-360X.2020.00363.7.
  • Santos, P. W., A. R. T. Machado, R. De Grandis, D. L. Ribeiro, K. Tuttis, M. Morselli, A. F. Aissa, M. Pellegrini, and L. M. G. Antunes. 2020. Effects of sulforaphane on the oxidative response, apoptosis, and the transcriptional profile of human stomach mucosa cells in vitro. Mutation Research. Genetic Toxicology and Environmental Mutagenesis 854–855:503201. doi: 10.1016/j.mrgentox.2020.503201.
  • Sarvan, I., E. Kramer, H. Bouwmeester, M. Dekker, and R. Verkerk. 2017. Sulforaphane formation and bioaccessibility are more affected by steaming time than meal composition during in vitro digestion of broccoli. Food Chemistry 214:580–6. doi: 10.1016/j.foodchem.2016.07.111.
  • Savio, A. L., G. N. da Silva, and D. M. Salvadori. 2015. Inhibition of bladder cancer cell proliferation by allyl isothiocyanate (mustard essential oil). Mutation Research 771:29–35. doi: 10.1016/j.mrfmmm.2014.11.004.
  • Schäfer, J., L. Stanojlovic, B. Trierweiler, and M. Bunzel. 2017. Storage related changes of cell wall based dietary fiber components of broccoli (Brassica oleracea var. italica) stems. Food Research International 93:43–51. doi: 10.1016/j.foodres.2016.12.025.
  • Shankar, S., S. Ganapathy, and R. K. Srivastava. 2020. Editor’s note: Sulforaphane enhances the therapeutic potential of TRAIL in prostate cancer orthotopic model through regulation of apoptosis, metastasis, and angiogenesis. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research 26 (1):312. doi: 10.1158/1078-0432.CCR-19-3596.
  • Sharma, M., and T. O. Tollefsbol. 2022. Combinatorial epigenetic mechanisms of sulforaphane, genistein and sodium butyrate in breast cancer inhibition. Experimental Cell Research 416 (1):113160. doi: 10.1016/j.yexcr.2022.113160.
  • Shi, G.-J., Y. Li, Q.-H. Cao, H.-X. Wu, X.-Y. Tang, X.-H. Gao, J.-Q. Yu, Z. Chen, and Y. Yang. 2019. In vitro and in vivo evidence that quercetin protects against diabetes and its complications: A systematic review of the literature. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 109:1085–99. doi: 10.1016/j.biopha.2018.10.130.
  • Shimoda, H., M. Hirano, S. Takeda, and S. Hitoe. 2018. Glucosinolates and isothiocyanates from broccoli seed extract suppress protein glycation and carbonylation. Functional Foods in Health and Disease 8 (1):35–48. doi: 10.31989/ffhd.v8i1.391.
  • Shinkovenko, I. L., N. V. Kashpur, T. V. Ilyina, A. M. Kovalyova, O. V. Goryacha, O. M. Koshovyi, E. L. Toryanyk, and O. V. Kryvoruchko. 2018. The immunomodulatory activity of the extracts and complexes of biologically active compounds of Galium verum L. herb. Ceska Slov Farm 67 (1):25–9.
  • Siegel, R. L., K. D. Miller, H. E. Fuchs, and A. Jemal. 2022. Cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72 (1):7–33. doi: 10.3322/caac.21708.
  • Simões, B. M., A. Santiago-Gómez, C. Chiodo, T. Moreira, D. Conole, S. Lovell, D. Alferez, R. Eyre, K. Spence, A. Sarmiento-Castro, et al. 2020. Targeting STAT3 signaling using stabilised sulforaphane (SFX-01) inhibits endocrine resistant stem-like cells in ER-positive breast cancer. Oncogene 39 (25):4896–908. doi: 10.1038/s41388-020-1335-z.
  • Singh, D., R. Arora, A. Bhatia, H. Singh, B. Singh, and S. Arora. 2020. Molecular targets in cancer prevention by 4-(methylthio)butyl isothiocyanate - A comprehensive review. Life Sciences 241:117061. doi: 10.1016/j.lfs.2019.117061.
  • Sinha, S., S. Sharma, A. Sharma, J. Vora, and N. Shrivastava. 2021. Sulforaphane-Cisplatin Combination inhibits the stemness and metastatic potential of TNBCs via down regulation of Sirtuins-mediated EMT signaling axis. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology 84:153492. doi: 10.1016/j.phymed.2021.153492.
  • Soni, K., A. Mujtaba, M. H. Akhter, A. Zafar, and K. Kohli. 2020. Optimisation of ethosomal nanogel for topical nano-CUR and sulphoraphane delivery in effective skin cancer therapy. Journal of Microencapsulation 37 (2):91–108. doi: 10.1080/02652048.2019.1701114.
  • Soni, K., M. Rizwanullah, and K. Kohli. 2018. Development and optimization of sulforaphane-loaded nanostructured lipid carriers by the Box-Behnken design for improved oral efficacy against cancer: In vitro, ex vivo and in vivo assessments. Artificial Cells, Nanomedicine, and Biotechnology 46 (sup1):15–31. doi: 10.1080/21691401.2017.1408124.
  • Srivastava, S. K., and S. V. Singh. 2004. Cell cycle arrest, apoptosis induction and inhibition of nuclear factor kappa B activation in anti-proliferative activity of benzyl isothiocyanate against human pancreatic cancer cells. Carcinogenesis 25 (9):1701–9. doi: 10.1093/carcin/bgh179.
  • Steevens, J., L. J. Schouten, R. A. Goldbohm, and P. A. van den Brandt. 2011. Vegetables and fruits consumption and risk of esophageal and gastric cancer subtypes in the Netherlands Cohort Study. International Journal of Cancer 129 (11):2681–93. doi: 10.1002/ijc.25928.
  • Sturm, C., and A. E. Wagner. 2017. Brassica-derived plant bioactives as modulators of chemopreventive and inflammatory signaling pathways. International Journal of Molecular Sciences 18 (9):1890. doi: 10.3390/ijms18091890.
  • Sun, J., C. S. Charron, J. A. Novotny, B. Peng, L. Yu, and P. Chen. 2020. Profiling glucosinolate metabolites in human urine and plasma after broccoli consumption using non-targeted and targeted metabolomic analyses. Food Chemistry 309:125660. doi: 10.1016/j.foodchem.2019.125660.
  • Sun, B., Y.-X. Tian, Q. Chen, Y. Zhang, Y. Luo, Y. Wang, M.-Y. Li, R.-G. Gong, X.-R. Wang, F. Zhang, et al. 2019. Variations in the glucosinolates of the individual edible parts of three stem mustards (Brassica juncea). Royal Society Open Science 6 (2):182054. doi: 10.1098/rsos.182054.
  • Suraweera, T. L., H. P. V. Rupasinghe, G. Dellaire, and Z. Xu. 2020. Regulation of Nrf2/ARE pathway by dietary flavonoids: A friend or foe for cancer management? Antioxidants 9 (10):973. doi: 10.3390/antiox9100973.
  • Taylor-Harding, B., H. Agadjanian, H. Nassanian, S. Kwon, X. Guo, C. Miller, B. Y. Karlan, S. Orsulic, and C. S. Walsh. 2012. Indole-3-carbinol synergistically sensitises ovarian cancer cells to bortezomib treatment. British Journal of Cancer 106 (2):333–43. doi: 10.1038/bjc.2011.546.
  • Textor, S., and J. Gershenzon. 2009. Herbivore induction of the glucosinolate–myrosinase defense system: Major trends, biochemical bases and ecological significance. Phytochemistry Reviews 8 (1):149–70. doi: 10.1007/s11101-008-9117-1.
  • Thomas, R., M. Williams, H. Sharma, A. Chaudry, and P. Bellamy. 2014. A double-blind, placebo-controlled randomised trial evaluating the effect of a polyphenol-rich whole food supplement on PSA progression in men with prostate cancer–the U.K. NCRN Pomi-T study. Prostate Cancer and Prostatic Diseases 17 (2):180–6. doi: 10.1038/pcan.2014.6.
  • Tian, S., X. Liu, P. Lei, X. Zhang, and Y. Shan. 2018. Microbiota: A mediator to transform glucosinolate precursors in Cruciferous vegetables to the active isothiocyanates. Journal of the Science of Food and Agriculture 98 (4):1255–60. doi: 10.1002/jsfa.8654.
  • Traka, M. H., A. Melchini, J. Coode-Bate, O. Al Kadhi, S. Saha, M. Defernez, P. Troncoso-Rey, H. Kibblewhite, C. M. O’Neill, F. Bernuzzi, et al. 2019. Transcriptional changes in prostate of men on active surveillance after a 12-mo glucoraphanin-rich broccoli intervention-results from the Effect of Sulforaphane on prostate CAncer PrEvention (ESCAPE) randomized controlled trial. The American Journal of Clinical Nutrition 109 (4):1133–44. doi: 10.1093/ajcn/nqz012.
  • Tříska, J., J. Balík, M. Houška, P. Novotná, M. Magner, N. Vrchotová, P. Híc, L. Jílek, K. Thorová, P. Šnurkovič, et al. 2021. Factors influencing sulforaphane content in broccoli sprouts and subsequent sulforaphane extraction. Foods 10 (8):1927. doi: 10.3390/foods10081927.
  • Upadhyaya, P., A. T. Zarth, N. Fujioka, V. A. Fritz, and S. S. Hecht. 2018. Identification and analysis of a mercapturic acid conjugate of indole-3-methyl isothiocyanate in the urine of humans who consumed Cruciferous vegetables. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 1072:341–6. doi: 10.1016/j.jchromb.2017.12.001.
  • Vanduchova, A., P. Anzenbacher, and E. Anzenbacherova. 2019. Isothiocyanate from broccoli, sulforaphane, and its properties. Journal of Medicinal Food 22 (2):121–6. doi: 10.1089/jmf.2018.0024.
  • Vecchio, R., C. Cavallo, G. Cicia, and T. Del Giudice. 2019. Are (All) consumers averse to bitter taste? Nutrients 11 (2):323. doi: 10.3390/nu11020323.
  • Vermeulen, M., I. W. Klöpping-Ketelaars, R. van den Berg, and W. H. Vaes. 2008. Bioavailability and kinetics of sulforaphane in humans after consumption of cooked versus raw broccoli. Journal ofAgricultural and Food Chemistry 56 (22):10505–09. doi: 10.1021/jf801989e.
  • Vo, Q. V., C. Trenerry, S. Rochfort, J. Wadeson, C. Leyton, and A. B. Hughes. 2014. Synthesis and anti-inflammatory activity of indole glucosinolates. Bioorganic & Medicinal Chemistry 22 (2):856–64. doi: 10.1016/j.bmc.2013.12.003.
  • Wang, T. T., N. W. Schoene, J. A. Milner, and Y. S. Kim. 2012. Broccoli-derived phytochemicals indole-3-carbinol and 3,3’-diindolylmethane exerts concentration-dependent pleiotropic effects on prostate cancer cells: Comparison with other cancer preventive phytochemicals. Molecular Carcinogenesis 51 (3):244–56. doi: 10.1002/mc.20774.
  • Wang, Z., C. Tu, R. Pratt, T. Khoury, J. Qu, J. W. Fahey, S. E. McCann, Y. Zhang, Y. Wu, A. D. Hutson, et al. 2022. A presurgical-window intervention trial of isothiocyanate-rich broccoli sprout extract in patients with breast cancer. Molecular Nutrition & Food Research 66 (12):e2101094. doi: 10.1002/mnfr.202101094.
  • Wang, J., H. Yu, Z. Zhao, X. Sheng, Y. Shen, and H. Gu. 2019. Natural variation of glucosinolates and their breakdown products in broccoli. Journal of Agricultural and Food Chemistry 67 (45):12528–37. doi: 10.1021/acs.jafc.9b06533.
  • Warpsinski, G., M. J. Smith, S. Srivastava, T. P. Keeley, R. C. M. Siow, P. A. Fraser, and G. E. Mann. 2020. Nrf2-regulated redox signaling in brain endothelial cells adapted to physiological oxygen levels: Consequences for sulforaphane mediated protection against hypoxia-reoxygenation. Redox Biology 37:101708. doi: 10.1016/j.redox.2020.101708.
  • Wieczorek, M. N., M. Walczak, M. Skrzypczak-Zielińska, and H. H. Jeleń. 2018. Bitter taste of Brassica vegetables: The role of genetic factors, receptors, isothiocyanates, glucosinolates, and flavor context. Critical Reviews in Food Science and Nutrition 58 (18):3130–40. doi: 10.1080/10408398.2017.1353478.
  • Wirth, M. D., E. A. Murphy, T. G. Hurley, and J. R. Hébert. 2017. Effect of Cruciferous vegetable intake on oxidative stress biomarkers: Differences by breast cancer status. Cancer Investigation 35 (4):277–87. doi: 10.1080/07357907.2017.1289218.
  • Wu, G., Y. Yan, Y. Zhou, Y. Duan, S. Zeng, X. Wang, W. Lin, C. Ou, J. Zhou, and Z. Xu. 2020. Sulforaphane: Expected to become a novel antitumor compound. Oncology Research 28 (4):439–46. doi: 10.3727/096504020X15828892654385.
  • Wu, X., Q. H. Zhou, and K. Xu. 2009. Are isothiocyanates potential anti-cancer drugs? Acta Pharmacologica Sinica 30 (5):501–12. doi: 10.1038/aps.2009.50.
  • Xie, V. K., Z. Li, Y. Yan, Z. Jia, X. Zuo, Z. Ju, J. Wang, J. Du, D. Xie, K. Xie, et al. 2017. DNA-Methyltransferase 1 induces dedifferentiation of pancreatic cancer cells through silencing of kruppel-like factor 4 expression. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research 23 (18):5585–97. doi: 10.1158/1078-0432.CCR-17-0387.
  • Yagishita, Y., J. W. Fahey, A. T. Dinkova-Kostova, and T. W. Kensler. 2019. Broccoli or sulforaphane: Is it the source or dose that matters? Molecules 24 (19):3593. doi: 10.3390/molecules24193593.
  • Yanaka, A., J. W. Fahey, A. Fukumoto, M. Nakayama, S. Inoue, S. Zhang, M. Tauchi, H. Suzuki, I. Hyodo, and M. Yamamoto. 2009. Dietary sulforaphane-rich broccoli sprouts reduce colonization and attenuate gastritis in Helicobacter pylori-infected mice and humans. Cancer Prevention Research (Philadelphia, PA) 2 (4):353–60. doi: 10.1158/1940-6207.CAPR-08-0192.
  • Yarmohammadi, F., R. Rezaee, and G. Karimi. 2021. Natural compounds against doxorubicin-induced cardiotoxicity: A review on the involvement of Nrf2/ARE signaling pathway. Phytotherapy Research: PTR 35 (3):1163–75. doi: 10.1002/ptr.6882.
  • Yu, T. T., M. Y. Chang, Y. J. Hsieh, and C. J. Chang. 2020. Suppression of multiple processes relevant to cancer progression by benzyl isothiocyanate may result from the inhibition of Aurora A kinase activity. Food & Function 11 (10):9010–9. doi: 10.1039/d0fo01565b.
  • Yuan, J. M. 2021. Randomized clinical trial of lung cancer chemoprevention with sulforaphane in former smokers. Pittsburgh: University of Pittsburgh at Pittsburgh.
  • Yuan, G. F., B. Sun, J. Yuan, and Q. M. Wang. 2009. Effects of different cooking methods on health-promoting compounds of broccoli. Journal of Zhejiang University. Science. B 10 (8):580–8. doi: 10.1631/jzus.B0920051.
  • Zhang, Z., M. Garzotto, E. W. Davis, M. Mori, W. A. Stoller, P. E. Farris, C. P. Wong, L. M. Beaver, G. V. Thomas, D. E. Williams, et al. 2020. Sulforaphane bioavailability and chemopreventive activity in men presenting for biopsy of the prostate gland: A randomized controlled trial. Nutrition and Cancer 72 (1):74–87. doi: 10.1080/01635581.2019.1619783.
  • Zhang, Y., A. Gilmour, Y. H. Ahn, L. de la Vega, and A. T. Dinkova-Kostova. 2021. The isothiocyanate sulforaphane inhibits mTOR in an NRF2-independent manner. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology 86:153062. doi: 10.1016/j.phymed.2019.153062.
  • Zhang, G., C. Jin, Y. Zhu, F. Fu, G. Wang, and S. Li. 2020. Sulforaphene inhibits the progression of osteosarcoma via regulating FSTL1/NF-kappaB pathway. Life Sciences 263:118485. doi: 10.1016/j.lfs.2020.118485.
  • Zhang, Y., Q. Lu, N. Li, M. Xu, T. Miyamoto, and J. Liu. 2022. Sulforaphane suppresses metastasis of triple-negative breast cancer cells by targeting the RAF/MEK/ERK pathway. NPJ Breast Cancer 8 (1):40. doi: 10.1038/s41523-022-00402-4.
  • Zhang, Y., L. Tang, and V. Gonzalez. 2003. Selected isothiocyanates rapidly induce growth inhibition of cancer cells. Molecular Cancer Therapeutics 2 (10):1045–52.
  • Zhang, X. D., K. X. Zhao, and Z. M. Yang. 2018. Identification of genomic ATP binding cassette (ABC) transporter genes and Cd-responsive ABCs in Brassica napus. Gene 664:139–51. doi: 10.1016/j.gene.2018.04.060.
  • Zhou, Y., Y. Wang, S. Wu, Y. Yan, Y. Hu, Z. Zheng, J. Li, and W. Wu. 2020. Sulforaphane-cysteine inhibited migration and invasion via enhancing mitophagosome fusion to lysosome in human glioblastoma cells. Cell Death & Disease 11 (9):819. doi: 10.1038/s41419-020-03024-5.
  • Zhu, L. P., J. P. Wang, X. M. Ding, S. P. Bai, Q. F. Zeng, Z. W. Su, Y. Xuan, and K. Y. Zhang. 2018. The deposition and elimination of glucosinolate metabolites derived from rapeseed meal in eggs of laying hens. Journal of Agricultural and Food Chemistry 66 (6):1560–8. doi: 10.1021/acs.jafc.7b05782.
  • Zuluaga, D. L., N. S. Graham, A. Klinder, A. E. E. van Ommen Kloeke, A. R. Marcotrigiano, C. Wagstaff, R. Verkerk, G. Sonnante, and M. G. M. Aarts. 2019. Overexpression of the MYB29 transcription factor affects aliphatic glucosinolate synthesis in Brassica oleracea. Plant Molecular Biology 101 (1–2):65–79. doi: 10.1007/s11103-019-00890-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.