333
Views
0
CrossRef citations to date
0
Altmetric
Review

Basic constituents, bioactive compounds and health-promoting benefits of wine skin pomace: A comprehensive review

, , , , &

References

  • Al-Awwadi, N. A., A. Caroline, B. Aurélie, D. Sandrine, C. Jean-Paul, L. Nathalie, A. Jacqueline, T. Pierre-Louis, and C. Gérard. 2005. Extracts enriched in different polyphenolic families normalize increased cardiac NADPH oxidase expression while having differential effects on insulin resistance, hypertension, and cardiac hypertrophy in high-fructose-fed rats. Journal of Agricultural and Food Chemistry 53 (1):151–7. doi: 10.1021/jf048919f.
  • Allcca-Alca, E. E., N. C. León-Calvo, O. M. Luque-Vilca, M. Martínez-Cifuentes, J. R. Pérez-Correa, M. S. Mariotti-Celis, and N. L. Huamán-Castilla. 2021. Hot pressurized liquid extraction of polyphenols from the skin and seeds of Vitis vinifera L. Cv. negra criolla pomace a peruvian native pisco industry waste. Agronomy 11 (5):866. doi: 10.3390/agronomy11050866.
  • Álvarez, E., B. K. Rodiño-Janeiro, M. Jerez, R. Ucieda-Somoza, M. J. Núñez, and J. R. González-Juanatey. 2012. Procyanidins from grape pomace are suitable inhibitors of human endothelial NADPH oxidase. Journal of Cellular Biochemistry 113 (4):1386–96. doi: 10.1002/jcb.24011.
  • Amiot, M. J., C. Riva, and A. Vinet. 2016. Effects of dietary polyphenols on metabolic syndrome features in humans: A systematic review. Obesity Reviews: An Official Journal of the International Association for the Study of Obesity 17 (7):573–86. doi: 10.1111/obr.12409.
  • Annunziata, G., M. Maisto, C. Schisano, R. Ciampaglia, V. Narciso, G. Tenore, and E. Novellino. 2019. Effects of grape pomace polyphenolic extract (Taurisolo®) in reducing TMAO serum levels in humans: Preliminary results from a randomized, placebo-controlled, cross-over study. Nutrients 11 (1):139. doi: 10.3390/nu11010139.
  • Antonić, B., S. Jančíková, D. Dordević, and B. Tremlová. 2020. Grape pomace valorization: A systematic review and meta-analysis. Foods 9 (11):1627. doi: 10.3390/foods9111627.
  • Apolinar-Valiente, R., I. Romero-Cascales, E. Gómez-Plaza, J. M. López-Roca, and J. M. Ros-García. 2015a. Cell wall compounds of red grapes skins and their grape marcs from three different winemaking techniques. Food Chemistry 187:89–97. doi: 10.1016/j.foodchem.2015.04.042.
  • Apolinar-Valiente, R., I. Romero-Cascales, E. Gómez-Plaza, J. M. López-Roca, and J. M. Ros-García. 2015b. The composition of cell walls from grape marcs is affected by grape origin and enological technique. Food Chemistry 167:370–7. doi: 10.1016/j.foodchem.2014.07.030.
  • Arnous, A., and A. S. Meyer. 2009. Quantitative prediction of cell wall polysaccharide composition in grape (Vitis vinifera L.) and Apple (Malus Domestica) skins from acid hydrolysis monosaccharide profiles. Journal of Agricultural and Food Chemistry 57 (9):3611–9. doi: 10.1021/jf900780r.
  • Ben Aziz, M., F. Garcia, L. Mouls, H. Fulcrand, and H. Hajjaj. 2019. Proanthocyanidins and anthocyanins contents, chromatic and antioxidant properties of red grape pomaces from Morocco. Journal of Food Measurement and Characterization 13 (3):2051–61. doi: 10.1007/s11694-019-00126-3.
  • Beres, C., G. N. S. Costa, I. Cabezudo, N. K. da Silva-James, A. S. C. Teles, A. P. G. Cruz, C. Mellinger-Silva, R. V. Tonon, L. M. C. Cabral, and S. P. Freitas. 2017. Towards integral utilization of grape pomace from winemaking process: A review. Waste Management (New York, N.Y.) 68:581–94. doi: 10.1016/j.wasman.2017.07.017.
  • Beres, C., S. P. Freitas, R. Godoy, D. C. R. de Oliveira, R. Deliza, M. Iacomini, C. Mellinger-Silva, and L. M. C. Cabral. 2019. Antioxidant dietary fibre from grape pomace flour or extract: Does it make any difference on the nutritional and functional value? Journal of Functional Foods 56:276–85. doi: 10.1016/j.jff.2019.03.014.
  • Beres, C., F. F. Simas-Tosin, I. Cabezudo, S. P. Freitas, M. Iacomini, C. Mellinger-Silva, and L. M. C. Cabral. 2016. Antioxidant dietary fibre recovery from Brazilian pinot noir grape pomace. Food Chemistry 201:145–52. doi: 10.1016/j.foodchem.2016.01.039.
  • Biasi, F., G. Leonarduzzi, P. I. Oteiza, and G. Poli. 2013. Inflammatory bowel disease: Mechanisms, redox considerations, and therapeutic targets. Antioxidants & Redox Signaling 19 (14):1711–47. doi: 10.1089/ars.2012.4530.
  • Bordiga, M., F. Travaglia, and M. Locatelli. 2019. Valorisation of grape pomace: An approach that is increasingly reaching its maturity - A review. International Journal of Food Science and Technology 54 (4):933–42. doi: 10.1111/ijfs.14118.
  • Boussenna, A., J. Cholet, N. Goncalves-Mendes, J. Joubert-Zakeyh, D. Fraisse, M. P. Vasson, O. Texier, and C. Felgines. 2016. Polyphenol-rich grape pomace extracts protect against dextran sulfate sodium-induced colitis in rats: Protective effects of grape pomace extracts against colitis in rats. Journal of the Science of Food and Agriculture 96 (4):1260–8. doi: 10.1002/jsfa.7214.
  • Brenes, A., A. Viveros, S. Chamorro, and I. Arija. 2016. Use of polyphenol-rich grape by-products in monogastric nutrition. A review. Animal Feed Science and Technology 211:1–17. doi: 10.1016/j.anifeedsci.2015.09.016.
  • Calabriso, N., M. Massaro, E. Scoditti, M. Pellegrino, I. Ingrosso, G. Giovinazzo, and M. Carluccio. 2016. Red grape skin polyphenols blunt matrix metalloproteinase-2 and -9 activity and expression in cell models of vascular inflammation: Protective role in degenerative and inflammatory diseases. Molecules 21 (9):1147. doi: 10.3390/molecules21091147.
  • Calabriso, N., E. Scoditti, M. Massaro, M. Pellegrino, C. Storelli, I. Ingrosso, G. Giovinazzo, and M. A. Carluccio. 2016. Multiple anti-inflammatory and anti-atherosclerotic properties of red wine polyphenolic extracts: Differential role of hydroxycinnamic acids, flavonols and stilbenes on endothelial inflammatory gene expression. European Journal of Nutrition 55 (2):477–89. doi: 10.1007/s00394-015-0865-6.
  • Castillo-Pichardo, L., M. M. Martínez-Montemayor, J. E. Martínez, K. M. Wall, L. A. Cubano, and S. Dharmawardhane. 2009. Inhibition of mammary tumor growth and metastases to bone and liver by dietary grape polyphenols. Clinical & Experimental Metastasis 26 (6):505–16. doi: 10.1007/s10585-009-9250-2.
  • Chamorro, S., C. Romero, A. Brenes, F. Sánchez-Patán, B. Bartolomé, A. Viveros, and I. Arija. 2019. Impact of a sustained consumption of grape extract on digestion, gut microbial metabolism and intestinal barrier in broiler chickens. Food & Function 10 (3):1444–54. doi: 10.1039/c8fo02465k.
  • Chen, M., L. Yi, Y. Zhang, X. Zhou, L. Ran, J. Yang, J. D. Zhu, Q. Y. Zhang, and M. T. Mi. 2016. Resveratrol attenuates trimethylamine- N-oxide (TMAO)-induced atherosclerosis by regulating TMAO synthesis and bile acid metabolism via remodeling of the gut microbiota. mBio 7 (2):e02210-15–e02215. doi: 10.1128/mbio.02210-15.
  • Chowdhary, P., A. Gupta, E. Gnansounou, A. Pandey, and P. Chaturvedi. 2021. Current trends and possibilities for exploitation of grape pomace as a potential source for value addition. Environmental Pollution (Barking, Essex : 1987) 278:116796. doi: 10.1016/j.envpol.2021.116796.
  • Cosme, F., J. M. Ricardo-Da-Silva, and O. Laureano. 2009. Tannin profiles of Vitis vinifera L. Cv. red grapes growing in Lisbon and from their monovarietal wines. Food Chemistry 112 (1):197–204. doi: 10.1016/j.foodchem.2008.05.058.
  • Cushnie, T. P. T., V. E. S. Hamilton, D. G. Chapman, P. W. Taylor, and A. J. Lamb. 2007. Aggregation of Staphylococcus aureus following treatment with the antibacterial flavonol galangin: Aggregation of S. Aureus by galangin. Journal of Applied Microbiology 103 (5):1562–7. doi: 10.1111/j.1365-2672.2007.03393.x.
  • Daglia, M. 2012. Polyphenols as antimicrobial agents. Current Opinion in Biotechnology 23 (2):174–81. doi: 10.1016/j.copbio.2011.08.007.
  • Dahl, W. J., and M. L. Stewart. 2015. Position of the academy of nutrition and dietetics: Health implications of dietary fiber. Journal of the Academy of Nutrition and Dietetics 115 (11):1861–70. doi: 10.1016/j.jand.2015.09.003.
  • De Andrade, R. B., B. A. S. Machado, G. D. A. Barreto, R. Q. Nascimento, L. C. Corrêa, I. L. Leal, P. Tavares, E. D. S. Ferreira, and M. A. Umsza-Guez. 2021. Syrah grape skin residues has potential as source of antioxidant and anti-microbial bioactive compounds. Biology 10 (12):1262. doi: 10.3390/biology10121262.
  • De Sales, N., L. Silva da Costa, T. Carneiro, D. Minuzzo, F. Oliveira, L. Cabral, A. Torres, and T. El-Bacha. 2018. Anthocyanin-rich grape pomace extract (Vitis vinifera L.) from wine industry affects mitochondrial bioenergetics and glucose metabolism in human hepatocarcinoma HepG2 cells. Molecules 23 (3):611. doi: 10.3390/molecules23030611.
  • Decendit, A., M. Mamani-Matsuda, V. Aumont, P. Waffo-Teguo, D. Moynet, K. Boniface, E. Richard, S. Krisa, J. Rambert, J. M. Mérillon, et al. 2013. Malvidin-3-O-β glucoside, major grape anthocyanin, inhibits human macrophage-derived inflammatory mediators and decreases clinical scores in arthritic rats. Biochemical Pharmacology 86 (10):1461–7. doi: 10.1016/j.bcp.2013.06.010.
  • Del Pino-García, R., M. L. González-SanJosé, M. D. Rivero-Pérez, J. García-Lomillo, and P. Muñiz. 2017. The effects of heat treatment on the phenolic composition and antioxidant capacity of red wine pomace seasonings. Food Chemistry 221:1723–32. doi: 10.1016/j.foodchem.2016.10.113.
  • Del Pino-García, R., M. D. Rivero-Pérez, M. L. González-SanJosé, M. Ortega-Heras, J. G. Lomillo, and P. Muñiz. 2017. Chemopreventive potential of powdered red wine pomace seasonings against colorectal cancer in HT-29 cells. Journal of Agricultural and Food Chemistry 65 (1):66–73. doi: 10.1021/acs.jafc.6b04561.
  • Deng, Q., M. H. Penner, and Y. Zhao. 2011. Chemical composition of dietary fiber and polyphenols of five different varieties of wine grape pomace skins. Food Research International 44 (9):2712–20. doi: 10.1016/j.foodres.2011.05.026.
  • Domínguez-Rodríguez, G., M. L. Marina, and M. Plaza. 2017. Strategies for the extraction and analysis of non-extractable polyphenols from plants. Journal of Chromatography. A 1514:1–15. doi: 10.1016/j.chroma.2017.07.066.
  • Ferreira, S. M., and L. Santos. 2022. A potential valorization strategy of wine industry by-products and their application in cosmetics—case study: Grape pomace and grapeseed. Molecules 27 (3):969. doi: 10.3390/molecules27030969.
  • Ferrer-Gallego, R., and P. Silva. 2022. The wine industry by-products: Applications for food industry and health benefits. Antioxidants 11 (10):2025. doi: 10.3390/antiox11102025.
  • FAOSTAT. Production/yield quantities of grapes in world + (Total) 2011-2020). 2020. 2021. Accessed July 13, https://www.fao.org/faostat/en/#data/QCL/visualize/.
  • Favre, G., I. Hermosín-Gutiérrez, D. Piccardo, S. Gómez-Alonso, and G. González-Neves. 2019. Selectivity of pigments extraction from grapes and their partial retention in the pomace during red-winemaking. Food Chemistry 277:391–7. doi: 10.1016/j.foodchem.2018.10.085.
  • Fernández-Fernández, A. M., E. Dellacassa, T. Nardin, R. Larcher, C. Ibañez, D. Terán, A. Gámbaro, and A. Medrano-Fernandez. and M.D. del Castillo. 2022. Tannat grape skin: A feasible ingredient for the formulation of snacks with potential for reducing the risk of diabetes. Nutrients 14 (3):419. doi: 10.3390/nu14030419.
  • Gasparrini, M., T. Y. Forbes-Hernandez, D. Cianciosi, J. L. Quiles, B. Mezzetti, J. Xiao, F. Giampieri, and M. Battino. 2021. The efficacy of berries against Lipopolysaccharide-induced inflammation: A review. Trends in Food Science & Technology 117:74–91. doi: 10.1016/j.tifs.2021.01.015.
  • Gerardi, C., L. D’amico, D. Migoni, A. Santino, A. Salomone, M. A. Carluccio, and G. Giovinazzo. 2020. Strategies for reuse of skins separated from grape pomace as ingredient of functional beverages. Frontiers in Bioengineering and Biotechnology 8:645. doi: 10.3389/fbioe.2020.00645.
  • Gerardi, C., L. Pinto, F. Baruzzi, and G. Giovinazzo. 2021. Comparison of antibacterial and antioxidant properties of red (Cv. Negramaro) and White (Cv. Fiano) skin pomace extracts. Molecules 26 (19):5918. doi: 10.3390/molecules26195918.
  • Gerardi, G., M. Cavia-Saiz, R. del Pino-García, M. D. Rivero-Pérez, M. L. González-SanJosé, and P. Muñiz. 2020. Wine pomace product ameliorates hypertensive and diabetic aorta vascular remodeling through antioxidant and anti-inflammatory actions. Journal of Functional Foods 66:103794. doi: 10.1016/j.jff.2020.103794.
  • Ghafouri-Fard, S., Z. Bahroudi, H. Shoorei, B. M. Hussen, S. F. Talebi, S. G. Baig, M. Taheri, and S. A. Ayatollahi. 2022. Disease-associated regulation of gene expression by resveratrol: Special focus on the PI3K/AKT signaling pathway. Cancer Cell International 22 (1):298. doi: 10.1186/s12935-022-02719-3.
  • Gil-Sánchez, I., C. Cueva, M. Sanz-Buenhombre, A. Guadarrama, M. V. Moreno-Arribas, and B. Bartolomé. 2018. Dynamic gastrointestinal digestion of grape pomace extracts: Bioaccessible phenolic metabolites and impact on human gut microbiota. Journal of Food Composition and Analysis 68:41–52. doi: 10.1016/j.jfca.2017.05.005.
  • Giordano, M. E., I. Ingrosso, T. Schettino, R. Caricato, G. Giovinazzo, and M. G. Lionetto. 2016. Intracellular antioxidant activity of grape skin polyphenolic extracts in rat superficial colonocytes: In situ detection by confocal fluorescence microscopy. Frontiers in Physiology 7:177. doi: 10.3389/fphys.2016.00177.
  • Goulao, L. F., J. C. Fernandes, P. Lopes, and S. Amncio. 2012. Tackling the cell wall of the grape berry. In The biochemistry of the grape berry, ed. H. Gerós, M.M. Chaves and S. Delro, 172–93. Sharjah: Bentham Science Publishers.
  • Gülcü, M., N. Uslu, M. M. Özcan, F. Gökmen, M. M. Özcan, T. Banjanin, S. Gezgin, N. Dursun, Ü. Geçgel, D. A. Ceylan, et al. 2019. The investigation of bioactive compounds of wine, grape juice and boiled grape juice wastes. Journal of Food Processing and Preservation 43 (1):e13850. doi: 10.1111/jfpp.13850.
  • Handa, O., Y. Naito, and T. Yoshikawa. 2011. Redox biology and gastric carcinogenesis: The role of Helicobacter pylori. Redox Report : communications in Free Radical Research 16 (1):1–7. doi: 10.1179/174329211x12968219310756.
  • Hassan, Y. I., V. Kosir, X. Yin, K. Ross, and M. S. Diarra. 2019. Grape pomace as a promising antimicrobial alternative in feed: A critical review. Journal of Agricultural and Food Chemistry 67 (35):9705–18. doi: 10.1021/acs.jafc.9b02861.
  • Ilyas, T., P. Chowdhary, D. Chaurasia, E. Gnansounou, A. Pandey, and P. Chaturvedi. 2021. Sustainable green processing of grape pomace for the production of value-added products: An overview. Environmental Technology & Innovation 23:101592. doi: 10.1016/j.eti.2021.101592.
  • Jackson, R. S. 2014a. 3 - Grapevine structure and function. In Wine science (Fourth Edition), ed. R.S. Jackson, 69–141. Salt Lake City: Academic Press.
  • Jackson, R. S. 2014b. 6 - Chemical constituents of grapes and wine. In Wine science (Fourth Edition), ed. R.S. Jackson, 347–426. Salt Lake City: Academic Press.
  • Jiménez, J. P., J. Serrano, M. Tabernero, S. Arranz, M. E. Díaz-Rubio, L. García-Diz, I. Goñi, and F. Saura-Calixto. 2008. Effects of grape antioxidant dietary fiber in cardiovascular disease risk factors. Nutrition (Burbank, Los Angeles County, Calif.) 24 (7-8):646–53. doi: 10.1016/j.nut.2008.03.012.
  • Jin, Q., J. O’Hair, A. C. Stewart, S. F. O’Keefe, A. P. Neilson, Y. T. Kim, M. McGuire, A. Lee, G. Wilder, and H. Huang. 2019. Compositional characterization of different industrial white and red grape pomaces in Virginia and the potential valorization of the major components. Foods 8 (12):667. doi: 10.3390/foods8120667.
  • Kalli, E., I. Lappa, P. Bouchagier, P. A. Tarantilis, and E. Skotti. 2018. Novel application and industrial exploitation of winery by-products. Bioresources and Bioprocessing 5 (1):46. doi: 10.1186/s40643-018-0232-6.
  • Kammerer, D., A. Claus, R. Carle, and A. Schieber. 2004. Polyphenol screening of pomace from red and white grape varieties (Vitis vinifera L.) by HPLC-DAD-MS/MS. Journal of Agricultural and Food Chemistry 52 (14):4360–7. doi: 10.1021/jf049613b.
  • Katalinić, V., S. S. Možina, D. Skroza, I. Generalić, H. Abramovič, M. Miloš, I. Ljubenkov, S. Piskernik, I. Pezo, and P. Terpinc. 2010. Polyphenolic profile, antioxidant properties and antimicrobial activity of grape skin extracts of 14 Vitis vinifera varieties grown in Dalmatia (Croatia). Food Chemistry 119 (2):715–23. doi: 10.1016/j.foodchem.2009.07.019.
  • Kutil, Z., V. Temml, D. Maghradze, M. Pribylova, M. Dvorakova, D. Schuster, T. Vanek, and P. Landa. 2014. Impact of wines and wine constituents on cyclooxygenase-1, cyclooxygenase-2, and 5-lipoxygenase catalytic activity. Mediators of Inflammation 2014:178931–8. doi: 10.1155/2014/178931.
  • Ky, I., B. Lorrain, N. Kolbas, A. Crozier, and P. L. Teissedre. 2014. Wine by-products: Phenolic characterization and antioxidant activity evaluation of grapes and grape pomaces from six different french grape varieties. Molecules (Basel, Switzerland) 19 (1):482–506. doi: 10.3390/molecules19010482.
  • Ky, I., and P. L. Teissedre. 2015. Characterisation of mediterranean grape pomace seed and skin extracts: Polyphenolic content and antioxidant activity. Molecules (Basel, Switzerland) 20 (2):2190–207. doi: 10.3390/molecules20022190.
  • Lecas, M., and J. M. Brillouet. 1994. Cell wall composition of grape berry skins. Phytochemistry 35 (5):1241–3. doi: 10.1016/s0031-9422(00)94828-3.
  • Li, J., S. Zhang, M. Zhang, and B. Sun. 2019. Novel approach for extraction of grape skin antioxidants by accelerated solvent extraction: Box–Behnken design optimization. Journal of Food Science and Technology 56 (11):4879–90. doi: 10.1007/s13197-019-03958-5.
  • Liang, Z., B. Wu, P. Fan, C. Yang, W. Duan, X. Zheng, C. Liu, and S. Li. 2008. Anthocyanin composition and content in grape berry skin in Vitis germplasm. Food Chemistry 111 (4):837–44. doi: 10.1016/j.foodchem.2008.04.069.
  • López-Oliva, M. E., A. Agis-Torres, I. Goñi, and E. Muñoz-Martínez. 2010. Grape antioxidant dietary fibre reduced apoptosis and induced a pro-reducing shift in the glutathione redox state of the rat proximal colonic mucosa. The British Journal of Nutrition 103 (8):1110–7. doi: 10.1017/s0007114509992996.
  • Früh Ba Uerová, M., L. Ervenka, T. Hájek, R. N. Salek, and F. Buňka. 2020. Antioxidant properties of processed cheese spread after freeze-dried and oven-dried grape skin powder addition. Potravinarstvo 14:230–8. doi: 10.5219/1310.
  • Machado, N. F. L., and R. Domínguez-Perles. 2017. Addressing facts and gaps in the phenolics chemistry of winery by-products. Molecules 22 (2):48. doi: 10.3390/molecules22020286.
  • Makki, K., E. C. Deehan, J. Walter, and F. Bäckhed. 2018. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host & Microbe 23 (6):705–15. doi: 10.1016/j.chom.2018.05.012.
  • Marchiani, R., M. Bertolino, S. Belviso, M. Giordano, D. Ghirardello, L. Torri, M. Piochi, and G. Zeppa. 2016. Yogurt enrichment with grape pomace: Effect of grape cultivar on physicochemical, microbiological and sensory properties: Grape skin flour and yogurt quality. Journal of Food Quality 39 (2):77–89. doi: 10.1111/jfq.12181.
  • Mateos-Martín, M. L., J. Pérez-Jiménez, E. Fuguet, and J. L. Torres. 2012. Non-extractable proanthocyanidins from grapes are a source of bioavailable (Epi)catechin and derived metabolites in rats. The British Journal of Nutrition 108 (2):290–7. doi: 10.1017/S0007114511005678.
  • Mattivi, F., U. Vrhovsek, D. Masuero, and D. Trainotti. 2009. Differences in the amount and structure of extractable skin and seed tannins amongst red grape varieties. Australian Journal of Grape and Wine Research 15 (1):27–35. doi: 10/bsp3xv.
  • Maurer, L. H., C. B. B. Cazarin, A. Quatrin, N. M. Minuzzi, E. L. Costa, J. Morari, L. A. Velloso, R. F. Leal, E. Rodrigues, V. C. Bochi, et al. 2019. Grape peel powder promotes intestinal barrier homeostasis in acute TNBS-colitis: A major role for dietary fiber and fiber-bound polyphenols. Food Research International (Ottawa, Ont.) 123:425–39. doi: 10.1016/j.foodres.2019.04.068.
  • Mazza, G., and F. J. Francis. 1995. Anthocyanins in grapes and grape products. Critical Reviews in Food Science and Nutrition 35 (4):341–71. doi: 10.1080/10408399509527704.
  • Meini, M. R., I. Cabezudo, C. E. Boschetti, and D. Romanini. 2019. Recovery of phenolic antioxidants from syrah grape pomace through the optimization of an enzymatic extraction process. Food Chemistry 283:257–64. doi: 10.1016/j.foodchem.2019.01.037.
  • Milinčić, D. D., N. S. Stanisavljević, A. Ž. Kostić, S. S. Bajić, M. O. Kojić, U. M. Gašić, M. B. Barać, S. P. Stanojević, ŽL. Tešić, and M. B. Pešić. 2021. Phenolic compounds and biopotential of grape pomace extracts from prokupac red grape variety. LWT 138:110739. doi: 10.1016/j.lwt.2020.110739.
  • Moharram, H. A., and M. M. Youssef. 2014. Methods for determining the antioxidant activity: A review. Alexandria Journal of Food Science and Technology 11 (1):31–42. doi: 10.12816/0025348.
  • Mollica, A., G. Scioli, A. D. Valle, A. Cichelli, E. Novellino, M. Bauer, W. Kamysz, E. J. Llorent-Martínez, M. L. Fernández-de Córdova, R. Castillo-López, et al. 2021. Phenolic analysis and in vitro biological activity of red wine, pomace and grape seeds oil derived from Vitis vinifera L. Cv. Montepulciano D’Abruzzo. Antioxidants 10 (11):1704. doi: 10.3390/antiox10111704.
  • Murphy, N., T. Norat, P. Ferrari, M. Jenab, B. Bueno-de-Mesquita, G. Skeie, C. C. Dahm, K. Overvad, A. Olsen, A. Tjønneland, et al. 2012. Dietary fibre intake and risks of cancers of the colon and rectum in the European prospective investigation into cancer and nutrition (EPIC). PLoS One 7 (6):e39361. doi: 10.1371/journal.pone.0039361.
  • Nerantzis, E. T., and P. Tataridis. 2006. Integrated enology- utilization of winery by-products into high added value products. E-Journal of Science and Technology 1:79–89.
  • Nishiumi, S., R. Mukai, T. Ichiyanagi, and H. Ashida. 2012. Suppression of lipopolysaccharide and galactosamine-induced hepatic inflammation by red grape pomace. Journal of Agricultural and Food Chemistry 60 (36):9315–20. doi: 10.1021/jf302298n.
  • Nogales-Bueno, J., B. Baca-Bocanegra, A. Rooney, J. M. Hernández-Hierro, F. J. Heredia, and H. J. Byrne. 2017. Linking ATR-FTIR and Raman features to phenolic extractability and other attributes in grape skin. Talanta 167:44–50. doi: 10.1016/j.talanta.2017.02.008.
  • Oliveira, J., M. Alhinho da Silva, N. Teixeira, V. De Freitas, and E. Salas. 2015. Screening of anthocyanins and anthocyanin-derived pigments in red wine grape pomace using LC/DAD-MS and MALDI-TOF techniques. Journal of Agricultural and Food Chemistry 63 (35):7636–44. doi: 10.1021/acs.jafc.5b00256.
  • Paixão, J., T. C. P. Dinis, and L. M. Almeida. 2012. Malvidin-3-glucoside protects endothelial cells up-regulating endothelial NO synthase and inhibiting peroxynitrite-induced NF-KB activation. Chemico-Biological Interactions 199 (3):192–200. doi: 10.1016/j.cbi.2012.08.013.
  • Peixoto, C. M., M. I. Dias, M. J. Alves, R. C. Calhelha, L. Barros, S. P. Pinho, and I. Ferreira. 2018. Grape pomace as a source of phenolic compounds and diverse bioactive properties. Food Chemistry 253:132–8. doi: 10.1016/j.foodchem.2018.01.163.
  • Pérez-Jiménez, J., M. E. Díaz-Rubio, and F. Saura-Calixto. 2013. Non-extractable polyphenols, a major dietary antioxidant: Occurrence, metabolic fate and health effects. Nutrition Research Reviews 26 (2):118–29. doi: 10.1017/S0954422413000097.
  • Pérez-Jiménez, J., and F. Saura-Calixto. 2015. Macromolecular antioxidants or non-extractable polyphenols in fruit and vegetables: Intake in four European countries. Food Research International (Ottawa, Ont.) 74:315–23. doi: 10.1016/j.foodres.2015.05.007.
  • Pérez-Ramírez, I. F., R. Reynoso-Camacho, F. Saura-Calixto, and J. Pérez-Jiménez. 2018. Comprehensive characterization of extractable and nonextractable phenolic compounds by high-performance liquid chromatography–electrospray ionization–quadrupole time-of-flight of a grape/pomegranate pomace dietary supplement. Journal of Agricultural and Food Chemistry 66 (3):661–73. doi: 10.1021/acs.jafc.7b05901.
  • Pinelo, M., A. Arnous, and A. S. Meyer. 2006. Upgrading of grape skins: Significance of plant cell-wall structural components and extraction techniques for phenol release. Trends in Food Science & Technology 17 (11):579–90. doi: 10.1016/j.tifs.2006.05.003.
  • Putnik, P. 2017. Influence of acidity and extraction time on the recovery of flavonoids from grape skin pomace optimized by response surface methodology. Chemical and Biochemical Engineering Quarterly Journal 30 (4):455–64. doi: 10.15255/cabeq.2016.914.
  • Quirós-Sauceda, A. E., H. Palafox-Carlos, S. G. Sáyago-Ayerdi, J. F. Ayala-Zavala, L. A. Bello-Perez, E. Álvarez-Parrilla, L. A. de la Rosa, A. F. González-Córdova, and G. A. González-Aguilar. 2014. Dietary fiber and phenolic compounds as functional ingredients: interaction and possible effect after ingestion. Food & Function 5 (6):1063–72. doi: 10.1039/C4FO00073K.
  • Ramos, S. 2008. Cancer chemoprevention and chemotherapy: Dietary polyphenols and signalling pathways. Molecular Nutrition & Food Research 52 (5):507–26. doi: 10.1002/mnfr.200700326.
  • Raphael, W., and L. Sordillo. 2013. Dietary polyunsaturated fatty acids and inflammation: The role of phospholipid biosynthesis. International Journal of Molecular Sciences 14 (10):21167–88. doi: 10.3390/ijms141021167.
  • Rastogi, Y. R., A. K. Saini, V. K. Thakur, and R. V. Saini. 2020. New insights into molecular links between microbiota and gastrointestinal cancers: A literature review. International Journal of Molecular Sciences 21 (9):3212. doi: 10.3390/ijms21093212.
  • Rivas, M. Á., R. Casquete, M. de Guía Córdoba, S. Ruíz-Moyano, M. J. Benito, F. Pérez-Nevado, and A. Martín. 2021. Chemical composition and functional properties of dietary fibre concentrates from winemaking by-products: skins, stems and lees. Foods 10 (7):1510. doi: 10.3390/foods10071510.
  • Rockenbach, I. I., L. V. Gonzaga, V. M. Rizelio, A. Gonçalves, M. I. Genovese, and R. Fett. 2011. Phenolic compounds and antioxidant activity of seed and skin extracts of red grape (Vitis vinifera and Vitis labrusca) pomace from Brazilian winemaking. Food Research International 44 (4):897–901. doi: 10.1016/j.foodres.2011.01.049.
  • Romero, C., M. Nardoia, I. Arija, A. Viveros, A. I. Rey, M. Prodanov, and S. Chamorro. 2021. Feeding Broiler chickens with grape seed and skin meals to enhance α- and γ-tocopherol content and meat oxidative stability. Antioxidants 10 (5):699. doi: 10.3390/antiox10050699.
  • Rousserie, P., A. Rabot, and L. Geny-Denis. 2019. From flavanols biosynthesis to wine tannins: What place for grape seeds? Journal of Agricultural and Food Chemistry 67 (5):1325–43. doi: 10/gp89gh.
  • Salehi, B., S. Vlaisavljevic, C. O. Adetunji, J. B. Adetunji, D. Kregiel, H. Antolak, E. Pawlikowska, Y. Uprety, K. S. Mileski, H. P. Devkota, et al. 2019. Plants of the genus vitis: Phenolic compounds, anticancer properties and clinical relevance. Trends in Food Science & Technology 91:362–79. doi: 10.1016/j.tifs.2019.07.042.
  • Sánchez-Tena, S., D. Lizárraga, A. Miranda, M. P. Vinardell, F. García-García, J. Dopazo, J. L. Torres, F. Saura-Calixto, G. Capellà, and M. Cascante. 2013. Grape antioxidant dietary fiber inhibits intestinal polyposis in ApcMin/+ mice: Relation to cell cycle and immune response. Carcinogenesis 34 (8):1881–8. doi: 10.1093/carcin/bgt140.
  • Santos, L. F. D., S. T. Lopes, M. T. Nazari, B. Biduski, V. Z. Pinto, J. S. D. Santos, T. E. Bertolin, and L. R. D. Santos. 2022. Fruit pomace as a promising source to obtain biocompounds with antibacterial activity. Critical Reviews in Food Science and Nutrition 1–13. doi: 10.1080/10408398.2022.2103510.
  • Saura-Calixto, F. 1998. Antioxidant dietary fiber product: A new concept and a potential food ingredient. Journal of Agricultural and Food Chemistry 46 (10):4303–6. doi: 10.1021/jf9803841.
  • Saura-Calixto, F. 2011. Dietary fiber as a carrier of dietary antioxidants: An essential physiological function. Journal of Agricultural and Food Chemistry 59 (1):43–9. doi: 10.1021/jf1036596.
  • Saura-Calixto, F., J. Pérez-Jiménez, S. Touriño, J. Serrano, E. Fuguet, J. L. Torres, and I. Goñi. 2010. Proanthocyanidin metabolites associated with dietary fibre from in vitro colonic fermentation and proanthocyanidin metabolites in human plasma. Molecular Nutrition & Food Research 54 (7):939–46. doi: 10.1002/mnfr.200900276.
  • Scharlau, D., A. Borowicki, N. Habermann, T. Hofmann, S. Klenow, C. Miene, U. Munjal, K. Stein, and M. Glei. 2009. Mechanisms of primary cancer prevention by butyrate and other products formed during gut flora-mediated fermentation of dietary fibre. Mutation Research 682 (1):39–53. doi: 10.1016/j.mrrev.2009.04.001.
  • Scheppach, W., H. P. Bartram, and F. Richter. 1995. Role of short-chain fatty acids in the prevention of colorectal cancer. European Journal of Cancer 31 (7–8):1077–80. doi: 10.1016/0959-8049(95)00165-f.
  • Schlachterman, A., F. Valle, K. M. Wall, N. G. Azios, L. Castillo, L. Morell, A. V. Washington, L. A. Cubano, and S. F. Dharmawardhane. 2008. Combined resveratrol, quercetin, and catechin treatment reduces breast tumor growth in a nude mouse model. Translational Oncology 1 (1):19–27. doi: 10.1593/tlo.07100.
  • Silva, A., V. Silva, G. Igrejas, I. Gaivão, A. Aires, N. Klibi, M. L. E. Dapkevicius, P. Valentão, V. Falco, and P. Poeta. 2021. Valorization of winemaking by-products as a novel source of antibacterial properties: New strategies to fight antibiotic resistance. Molecules 26 (8):2331. doi: 10.3390/molecules26082331.
  • Silva, C. F. G., V. Fattori, C. R. Tonetti, M. A. S. Ribeiro, R. L. N. Matos, J. B. Carra, E. C. Meurer, E. Y. Hirooka, J. A. Rafael, S. R. Georgetti, et al. 2022. Hydroethanolic extract of grape peel from Vitis labrusca winemaking waste: Antinociceptive and anti-inflammatory activities. Food Technology and Biotechnology 60 (1):21–8. doi: 10.17113/ftb.60.01.22.7080.
  • Sirohi, R., A. Tarafdar, S. Singh, T. Negi, V. K. Gaur, E. Gnansounou, and B. Bharathiraja. 2020. Green processing and biotechnological potential of grape pomace: Current trends and opportunities for sustainable biorefinery. Bioresource Technology 314:123771. doi: 10.1016/j.biortech.2020.123771.
  • Spinei, M., and M. Oroian. 2021. The potential of grape pomace varieties as a dietary source of pectic substances. Foods 10 (4):867. doi: 10.3390/foods10040867.
  • Sri Harsha, P. S. C., C. Gardana, P. Simonetti, G. Spigno, and V. Lavelli. 2013. Characterization of phenolics, in vitro reducing capacity and anti-glycation activity of red grape skins recovered from winemaking by-products. Bioresource Technology 140:263–8. doi: 10.1016/j.biortech.2013.04.092.
  • Steinmetz, K. A., and J. D. Potter. 1991. Vegetables, fruit, and cancer. I. Epidemiology. Cancer Causes & Control : CCC 2 (5):325–57. doi: 10.1007/bf00051672.
  • Teixeira, A., N. Baenas, R. Dominguez-Perles, A. Barros, E. Rosa, D. Moreno, and C. Garcia-Viguera. 2014. Natural bioactive compounds from winery by-products as health promoters: A review. International Journal of Molecular Sciences 15 (9):15638–78. doi: 10.3390/ijms150915638.
  • Touriño, S., E. Fuguet, O. Jáuregui, F. Saura-Calixto, M. Cascante, and J. L. Torres. 2008. High-resolution liquid chromatography/electrospray ionization time-of-flight mass spectrometry combined with liquid chromatography/electrospray ionization tandem mass spectrometry to identify polyphenols from grape antioxidant dietary fiber. Rapid Communications in Mass Spectrometry : RCM 22 (22):3489–500. doi: 10.1002/rcm.3756.
  • Touriño, S., J. Pérez-Jiménez, M. L. Mateos-Martín, E. Fuguet, M. P. Vinardell, M. Cascante, and J. L. Torres. 2011. Metabolites in contact with the rat digestive tract after ingestion of a phenolic-rich dietary fiber matrix. Journal of Agricultural and Food Chemistry 59 (11):5955–63. doi: 10.1021/jf200159f.
  • Tseng, A., and Y. Zhao. 2012. Effect of different drying methods and storage time on the retention of bioactive compounds and antibacterial activity of wine grape pomace (Pinot Noir and Merlot). Journal of Food Science 77 (9):H192–201. doi: 10.1111/j.1750-3841.2012.02840.x.
  • Tseng, A., and Y. Zhao. 2013. Wine grape pomace as antioxidant dietary fibre for enhancing nutritional value and improving storability of yogurt and salad dressing. Food Chemistry 138 (1):356–65. doi: 10.1016/j.foodchem.2012.09.148.
  • Turati, F., M. Rossi, C. Pelucchi, F. Levi, and C. L. Vecchia. 2015. Fruit and vegetables and cancer risk: A review of southern European studies. British Journal of Nutrition 113 (S2):S102–S110. doi: 10.1017/s0007114515000148.
  • Valls, J., S. Agnolet, F. Haas, I. Struffi, F. Ciesa, P. Robatscher, and M. Oberhuber. 2017. Valorization of lagrein grape pomace as a source of phenolic compounds: Analysis of the contents of anthocyanins, flavanols and antioxidant activity. European Food Research and Technology 243 (12):2211–24. doi: 10.1007/s00217-017-2923-1.
  • Van Duynhoven, J., E. E. Vaughan, D. M. Jacobs, R. A. Kemperman, E. J. J. van Velzen, G. Gross, L. C. Roger, S. Possemiers, A. K. Smilde, J. Doré, et al. 2011. Metabolic fate of polyphenols in the human superorganism. Proceedings of the National Academy of Sciences 108 (Supplement. 1):4531–8. doi: 10.1073/pnas.1000098107.
  • Vernhet, A., S. Carrillo, A. Rattier, A. Verbaere, V. Cheynier, and J. M. Nguela. 2020. Fate of anthocyanins and proanthocyanidins during the alcoholic fermentation of thermovinified red musts by different Saccharomyces cerevisiae strains. Journal of Agricultural and Food Chemistry 68 (11):3615–25. doi: 10.1021/acs.jafc.0c00413.
  • Vuolo, M. M., V. S. Lima, and M. Junior. 2019. Phenolic compounds: Structure, classification, and antioxidant power - ScienceDirect. In Bioactive Compounds, ed. R. S. C. Maira, 33–50. Sawston: Woodhead Publishing.
  • Wasilewski, T., Z. Hordyjewicz-Baran, M. Zarębska, N. Stanek, E. Zajszły-Turko, M. Tomaka, T. Bujak, and Z. Nizioł-Łukaszewska. 2022. Sustainable green processing of grape pomace using micellar extraction for the production of value-added hygiene cosmetics. Molecules 27 (8):2444. doi: 10.3390/molecules27082444.
  • Wolfe, K. L., and R. H. Liu. 2007. Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements. Journal of Agricultural and Food Chemistry 55 (22):8896–907. doi: 10.1021/jf0715166.
  • Xavier Machado, T. O., I. B. M. Portugal, C. V. S. Padilha, F. F. Padilha, and M. S. Lima. 2021. New trends in the use of enzymes for the recovery of polyphenols in grape byproducts. Journal of Food Biochemistry 45 (5):e13712. doi: 10.1111/jfbc.13712.
  • Xu, Y., S. Burton, C. Kim, and E. Sismour. 2016. Phenolic compounds, antioxidant, and antibacterial properties of pomace extracts from four Virginia‐grown grape varieties. Food Science & Nutrition 4 (1):125–33. doi: 10.1002/fsn3.264.
  • Yang, C., K. Shang, C. Lin, X. Shi, H. Wang, and H. Li. 2021. Processing technologies, phytochemical constituents, and biological activities of grape seed oil (GSO): A review. Trends in Food Science & Technology 116:1074–83. doi: 10.1016/j.tifs.2021.09.011.
  • Yi, W., J. Fischer, and C. C. Akoh. 2005. Study of anticancer activities of muscadine grape phenolics in vitro. Journal of Agricultural and Food Chemistry 53 (22):8804–12. doi: 10.1021/jf0515328.
  • Yu, J., and M. Ahmedna. 2013. Functional components of grape pomace: Their composition, biological properties and potential applications. International Journal of Food Science and Technology 48 (2):221–37. doi: 10.1111/j.1365-2621.2012.03197.x.
  • Zeng, H., S. Hamlin, B. Safratowich, W. H. Cheng, and L. Johnson. 2020. Superior inhibitory efficacy of butyrate over propionate and acetate against human colon cancer cell proliferation via cell cycle arrest and apoptosis. Nutrition Research (New York, N.Y.) 83:63–72. doi: 10.1016/j.nutres.2020.08.009.
  • Zhang, L., M. Zhu, T. Shi, C. Guo, Y. Huang, Y. Chen, and M. Xie. 2017. Recovery of dietary fiber and polyphenol from grape juice pomace and evaluation of their functional properties and polyphenol compositions. Food & Function 8 (1):341–51. doi: 10.1039/C6FO01423B.
  • Zhang, Y. J., R. Y. Gan, S. Li, Y. Zhou, A. N. Li, D. P. Xu, and H. B. Li. 2015. Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules (Basel, Switzerland) 20 (12):21138–56. doi: 10.3390/molecules201219753.
  • Zhang, Y., S. Wu, Y. Qin, J. Liu, J. Liu, Q. Wang, F. Ren, and H. Zhang. 2018. Interaction of phenolic acids and their derivatives with human serum albumin: Structure–affinity relationships and effects on antioxidant activity. Food Chemistry 240:1072–80. doi: 10.1016/j.foodchem.2017.07.100.
  • Zhao, D., H. Yi, and N. Sang. 2022. Arsenic intake-induced gastric toxicity is blocked by grape skin extract by modulating inflammation and oxidative stress in a mouse model. Ecotoxicology and Environmental Safety 233:113305. doi: 10.1016/j.ecoenv.2022.113305.
  • Zhao, L., F. Zhang, X. Ding, G. Wu, Y. Y. Lam, X. Wang, H. Fu, X. Xue, C. Lu, J. Ma, et al. 2018. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science (New York, N.Y.) 359 (6380):1151–6. doi: 10.1126/science.aao5774.
  • Zhu, F., B. Du, L. Zheng, and J. Li. 2015. Advance on the bioactivity and potential applications of dietary fibre from grape pomace. Food Chemistry 186:207–12. doi: 10.1016/j.foodchem.2014.07.057.
  • Zoetendal, E. G., C. T. Collier, S. Koike, R. I. Mackie, and H. R. Gaskins. 2004. Molecular ecological analysis of the gastrointestinal microbiota: A review. The Journal of Nutrition 134 (2):465–72. doi: 10.1093/jn/134.2.465.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.