589
Views
0
CrossRef citations to date
0
Altmetric
Review

Food nanoemulsions: how simulated gastrointestinal digestion models, nanoemulsion, and food matrix properties affect bioaccessibility of encapsulated bioactive compounds

, , , , &

References

  • Ahmed, K., Y. Li, D. J. McClements, and H. Xiao. 2012. Nanoemulsion- and emulsion-based delivery systems for curcumin: Encapsulation and release properties. Food Chemistry 132 (2):799–807. doi: 10.1016/j.foodchem.2011.11.039.
  • AlBasher, G., M. M. Abdel-Daim, R. Almeer, K. A. Ibrahim, R. Z. Hamza, S. Bungau, and L. Aleya. 2020. Synergistic antioxidant effects of resveratrol and curcumin against fipronil-triggered oxidative damage in male albino rats. Environmental Science and Pollution Research International 27 (6):6505–14. doi: 10.1007/s11356-019-07344-8.
  • Albuquerque, B. R., S. Heleno, M. Oliveira, L. Barros, and I. Ferreira. 2020. Phenolic compounds: Current industrial applications, limitations and future challenges. Food & Function 12 (1):14–29. doi: 10.1039/d0fo02324h
  • Andrade, J., A. J. Wright, and M. Corredig. 2018. In vitro digestion behavior of water-in-oil-in-water emulsions with gelled oil-water inner phases. Food Research International 105:41–51. doi: 10.1016/j.foodres.2017.10.070.
  • Araiza-Calahorra, A., M. Akhtar, and A. Sarkar. 2018. Recent advances in emulsion-based delivery approaches for curcumin: From encapsulation to bioaccessibility. Trends in Food Science & Technology 71:155–69. doi: 10.1016/j.tifs.2017.11.009.
  • Aswathanarayan, J. B., and R. R. Vittal. 2019. Nanoemulsions and their potential applications in food industry. Frontiers in Sustainable Food Systems 3 (95). doi: 10.3389/fsufs.2019.00095.
  • Bauer, E., S. Jakob, and R. Mosenthin. 2005. Principles of physiology of lipid digestion. Asian-Australasian Journal of Animal Sciences 18 (2):282–95. doi: 10.5713/ajas.2005.282.
  • Brodkorb, A., L. Egger, M. Alminger, P. Alvito, R. Assunção, S. Ballance, T. Bohn, C. Bourlieu-Lacanal, R. Boutrou, F. Carrière, et al. 2019. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nature Protocols 14 (4):991–1014. doi: 10.1038/s41596-018-0119-1.
  • Cerda-Opazo, P., M. Gotteland, F. A. Oyarzun-Ampuero, and L. Garcia. 2021. Design, development and evaluation of nanoemulsion containing avocado peel extract with anticancer potential: A novel biological active ingredient to enrich food. Food Hydrocolloids 111:106370. doi: 10.1016/j.foodhyd.2020.106370.
  • Cerpnjak, K., A. Zvonar, M. Gašperlin, and F. Vrečer. 2013. Lipid-based systems as a promising approach for enhancing the bioavailability of poorly water-soluble drugs. ACTA Pharmaceutica Sciencia 63 (4):427–45. doi: 10.2478/acph-2013-0040.
  • Cervantes-Paz, B., Ornelas-Paz, J. D. J. Pérez-Martínez, J. D. Reyes-Hernández, J. Zamudio-Flores, P. B. Rios-Velasco, C. Ibarra-Junquera, V, and Ruiz-Cruz, S. 2016. Effect of pectin concentration and properties on digestive events involved on micellarization of free and esterified carotenoids. Food Hydrocolloids 60:580–8. doi: 10.1016/j.foodhyd.2016.04.038.
  • Chaijan, M., K. Srirattanachot, M. Nisoa, L.-Z. Cheong, and W. Panpipat. 2021. Role of antioxidants on physicochemical properties and in vitro bioaccessibility of β-carotene loaded nanoemulsion under thermal and cold plasma discharge accelerated tests. Food Chemistry 339:128157. doi: 10.1016/j.foodchem.2020.128157.
  • Chaudhari, A. K., V. Kumar Singh, S. Das, N., and Kishore Dubey, Deepika. 2022. Fabrication, characterization, and bioactivity assessment of chitosan nanoemulsion containing allspice essential oil to mitigate Aspergillus flavus contamination and aflatoxin B1 production in maize. Food Chemistry 372:131221. doi: 10.1016/j.foodchem.2021.131221.
  • Chaudhari, A. K., Singh, V. K. Das, S. Deepika, Prasad, J. Dwivedy, A. K, and Dubey, N. K. 2020. Improvement of in vitro and in situ antifungal, AFB1 inhibitory and antioxidant activity of Origanum majorana L. essential oil through nanoemulsion and recommending as novel food preservative. Food and Chemical Toxicology 143:111536. doi: 10.1016/j.fct.2020.111536.
  • Chen, J., and L. Hu. 2020. Nanoscale delivery system for nutraceuticals: Preparation, application, characterization, safety, and future trends. Food Engineering Reviews 12 (1):14–31. doi: 10.1007/s12393-019-09208-w.
  • Chen, L., W. Yokoyama, R. Liang, and F. Zhong. 2020. Enzymatic degradation and bioaccessibility of protein encapsulated β-carotene nano-emulsions during in vitro gastro-intestinal digestion. Food Hydrocolloids 100:105177. doi: 10.1016/j.foodhyd.2019.105177.
  • Choi, S. J., and D. J. McClements. 2020. Nanoemulsions as delivery systems for lipophilic nutraceuticals: Strategies for improving their formulation, stability, functionality and bioavailability. Food Science and Biotechnology 29 (2):149–68. doi: 10.1007/s10068-019-00731-4.
  • Christensen, J., K. Schultz, B. Mollgaard, H. G. Kristensen, and A. Mullertz. 2004. Solubilisation of poorly water-soluble drugs during in vitro lipolysis of medium- and long-chain triacylglycerols. European Journal of Pharmaceutical Sciences 23 (3):287–96. doi: 10.1016/j.ejps.2004.08.003.
  • Čolić, S. D., I. V. Bakić, D. Č. Dabić Zagorac, M. M. Natić, A. T. Smailagić, M. V. Pergal, M. B. Pešić, D. D. Milinčić, B. B. Rabrenović, and M. M. Fotirić Akšić. 2021. Chemical fingerprint and kernel quality assessment in different grafting combinations of almond under stress condition. Scientia Horticulturae-Amsterdam 275:109705. doi: 10.1016/j.scienta.2020.109705.
  • Das., S., V. K. Singh, A. K. Chaudhari, A. K. Dwivedy, N. K., and Dubey, Deepika. 2022. Co-encapsulation of Pimpinella anisum and Coriandrum sativum essential oils based synergistic formulation through binary mixture: Physico-chemical characterization, appraisal of antifungal mechanism of action, and application as natural food preservative. Pesticide Biochemistry and Physiology 184:105066. doi: 10.1016/j.pestbp.2022.105066.
  • Deepika, C., A. K. Singh, A. Das, S, and Dubey, N. K. 2021. Nanoencapsulated Petroselinum crispum essential oil: Characterization and practical efficacy against fungal and aflatoxin contamination of stored chia seeds. Food Bioscience 42:101117. doi: 10.1016/j.fbio.2021.101117.
  • Dickinson, E. 2011. Double Emulsions Stabilized by Food Biopolymers. Food Biophysics, 6 (1):1–11. doi: 10.1007/s11483-010-9188-6.
  • Dima, C., E. Assadpour, S. Dima, and S. M. Jafari. 2020a. Bioactive-loaded nanocarriers for functional foods: From designing to bioavailability. Current Opinion in Food Science 33:21–9. doi: 10.1016/j.cofs.2019.11.006.
  • Dima, C., E. Assadpour, S. Dima, and S. M. Jafari. 2020b. Bioavailability of nutraceuticals: Role of the food matrix, processing conditions, the gastrointestinal tract, and nanodelivery systems. Comprehensive Reviews in Food Science and Food Safety 19 (3):954–94. doi: 10.1111/1541-4337.12547.
  • Eom, D. W., J. H. Lee, Y. J. Kim, G. S. Hwang, S. N. Kim, J. H. Kwak, G. J. Cheon, K. H. Kim, H. J. Jang, J. Ham, et al. 2015. Synergistic effect of curcumin on epigallocatechin gallate-induced anticancer action in PC3 prostate cancer cells. BMB Reports 48 (8):461–6. doi: 10.5483/bmbrep.2015.48.8.216.
  • Esfanjani, F., A. Assadpour, E. Jafari, and S. Mahdi. 2018. Improving the bioavailability of phenolic compounds by loading them within lipid-based nanocarriers. Trends in Food Science & Technology 76:56–66. doi: 10.1016/j.tifs.2018.04.002.
  • Gao, Y., Q. Liu, Z. Wang, X. Zhuansun, J. Chen, Z. Zhang, J. Feng, and S. M. Jafari. 2021. Cinnamaldehyde nanoemulsions; physical stability, antibacterial properties/mechanisms, and biosafety. Journal of Food Measurement and Characterization 15 (6):5326–36. doi: 10.1007/s11694-021-01110-6.
  • Gasa-Falcon, A., I. Odriozola-Serrano, G. Oms-Oliu, and O. Martín-Belloso. 2017. Influence of mandarin fiber addition on physico-chemical properties of nanoemulsions containing β-carotene under simulated gastrointestinal digestion conditions. LWT 84:331–7. doi: 10.1016/j.lwt.2017.05.070.
  • Golfomitsou, I., E. Mitsou, A. Xenakis, and V. Papadimitriou. 2018. Development of food grade O/W nanoemulsions as carriers of vitamin D for the fortification of emulsion based food matrices: A structural and activity study. Journal of Molecular Liquids 268:734–42. doi: 10.1016/j.molliq.2018.07.109.
  • Gomes, A., A. L. R. Costa, D. D. Cardoso, G. Náthia-Neves, M. A. A. Meireles, and R. L. Cunha. 2021. Interactions of β-carotene with WPI/Tween 80 mixture and oil phase: Effect on the behavior of O/W emulsions during in vitro digestion. Food Chemistry 341:128155. doi: 10.1016/j.foodchem.2020.128155.
  • Gonçalves, A., B. N. Estevinho, and F. Rocha. 2021. Methodologies for simulation of gastrointestinal digestion of different controlled delivery systems and further uptake of encapsulated bioactive compounds. Trends in Food Science & Technology 114:510–20. doi: 10.1016/j.tifs.2021.06.007.
  • Gonçalves, N. D., Pena, F. D. L. Sartoratto, A. Derlamelina, C. Duarte, M. C. T. Antunes, A. E. C, and Prata, A. S. 2017. Encapsulated thyme (Thymus vulgaris) essential oil used as a natural preservative in bakery product. Food Research International 96:154–60. doi: 10.1016/j.foodres.2017.03.006.
  • Gonçalves, R. F. S., J. T. Martins, L. Abrunhosa, A. A. Vicente, and A. C. Pinheiro. 2021. Nanoemulsions for enhancement of curcumin bioavailability and their safety evaluation: effect of emulsifier type. Nanomaterials (Basel, Switzerland) 11 (3):815. doi: 10.3390/nano11030815.
  • Han, B., B. Yu, L. Liu, Y. Xiu, and H. Wang. 2019. Experimental investigation of the strong stability, antibacterial and anti-inflammatory effect and high bioabsorbability of a perilla oil or linseed oil nanoemulsion system. RSC Advances 9 (44):25739–49. doi: 10.1039/c9ra03595h.
  • Haratifar, S., and M. Corredig. 2014. Interactions between tea catechins and casein micelles and their impact on renneting functionality. Food Chemistry 143:27–32. doi: 10.1016/j.foodchem.2013.07.092.
  • Harwansh, R. K., R. Deshmukh, and M. A. Rahman. 2019. Nanoemulsion: Promising nanocarrier system for delivery of herbal bioactives. Journal of Drug Delivery Science and Technology 51:224–33. doi: 10.1016/j.jddst.2019.03.006.
  • Hong, S. J., C. V. Garcia, S. J. Park, G. H. Shin, and J. T. Kim. 2019. Retardation of curcumin degradation under various storage conditions via turmeric extract-loaded nanoemulsion system. LWT 100:175–82. doi: 10.1016/j.lwt.2018.10.056.
  • Jiang, T., W. Liao, and C. Charcosset. 2020. Recent advances in encapsulation of curcumin in nanoemulsions: A review of encapsulation technologies, bioaccessibility and applications. Food Research International 132:109035. doi: 10.1016/j.foodres.2020.109035.
  • Kaimainen, M., S. Marze, E. Järvenpää, M. Anton, and R. Huopalahti. 2015. Encapsulation of betalain into w/o/w double emulsion and release during in vitro intestinal lipid digestion. LWT – Food Science and Technology 60 (2, Part 1):899–904. doi: 10.1016/j.lwt.2014.10.016.
  • Kan, X., Y. Yan, L. Ran, L. Lu, J. Mi, Z. Zhang, X. Li, X. Zeng, and Y. Cao. 2020. Evaluation of bioaccessibility of zeaxanthin dipalmitate from the fruits of Lycium barbarum in oil-in-water emulsions. Food Hydrocolloids 105:105781. doi: 10.1016/j.foodhyd.2020.105781.
  • Kokina, M., A. Salević, A. Kalušević, S. Lević, M. Pantić, D. Pljevljakušić, K. Šavikin, M. Shamtsyan, M. Nikšić, and V. Nedović. 2019. Characterization, antioxidant and antibacterial activity of essential oils and their encapsulation into biodegradable material followed by freeze drying. Food Technology and Biotechnology, 57 (2):282–9. doi: 10.17113/ftb.57.02.19.5957.
  • Kolarević, T., D. D. Milinčić, T. Vujović, U. M. Gašić, L. Prokić, A. Ž. Kostić, R. Cerović, S. P. Stanojevic, Ž. L. Tešić, and M. B. Pešić. 2021. Phenolic compounds and antioxidant properties of field-grown and in vitro leaves, and calluses in blackberry and blueberry. Horticulturae 7 (11):420. https://www.mdpi.com/2311-7524/7/11/420.
  • Kolasinac, S., Z. Dajic Stevanovic, S. Kilibarda, and A. Kostić. 2021. Carotenoids: new applications of “old.” Pigments Phyton 90:1041–62. doi: 10.32604/phyton.2021.015996.
  • Kostić, A. Ž., U. M. Gašić, M. B. Pešić, S. P. Stanojević, M. B. Barać, M. P. Mačukanović-Jocić, S. N. Avramov, and Ž. L. Tešić. 2019. Phytochemical analysis and total antioxidant capacity of rhizome, above-ground vegetative parts and flower of three iris species. Chemistry & Biodiversity 16 (3):e1800565. doi: 10.1002/cbdv.201800565.
  • Kostić, A. Ž., M. P. Mačukanović-Jocić, D. D. Milinčić, J. D. Petrović, U. M. Gašić, N. N. Gligorijević, S. V. Jarić, M. D. Soković, Ž. L. Tešić, and M. B. Pešić. 2022. Hieracium waldsteinii (Asteraceae) and Onosma stellulata (Boraginaceae) as a source of antioxidant and antimicrobial agents. Chemistry & Biodiversity 19 (4):e202200069. doi: 10.1002/cbdv.202200069.
  • Kostić, A. Ž., Milinčić, D. D. Barać, M. B. A. Shariati, M. Tešić, Ž. L, and Pešić, M. B. 2020. The application of pollen as a functional food and feed ingredient-The present and perspectives. Biomolecules 10 (1):84. doi: 10.3390/biom10010084.
  • Kostić, A. Ž., D. D. Milinčić, U. M. Gašić, N. Nedić, S. P. Stanojević, Ž. L. Tešić, and M. B. Pešić. 2019. Polyphenolic profile and antioxidant properties of bee-collected pollen from sunflower (Helianthus annuus L.) plant. LWT 112:108244. doi: 10.1016/j.lwt.2019.06.011.
  • Kostić, A. Ž., D. D. Milinčić, N. Nedić, U. M. Gašić, B. Špirović Trifunović, D. Vojt, Ž. L. Tešić, and M. B. Pešić. 2021. Phytochemical profile and antioxidant properties of bee-collected artichoke (Cynara scolymus). Pollen. Antioxidants 10 (7):1091. https://www.mdpi.com/2076-3921/10/7/1091.
  • Kostić, A. Ž., D. D. Milinčić, N. S. Stanisavljević, U. M. Gašić, S. Lević, M. O. Kojić, Ž. Lj Tešić, V. Nedović, M. B. Barać, and M. B. Pešić. 2021. Polyphenol bioaccessibility and antioxidant properties of in vitro digested spray-dried thermally-treated skimmed goat milk enriched with pollen. Food Chemistry 351:129310. doi: 10.1016/j.foodchem.2021.129310.
  • Li, G., Z. Zhang, H. Liu, and L. Hu. 2021. Nanoemulsion-based delivery approaches for nutraceuticals: Fabrication, application, characterization, biological fate, potential toxicity and future trends. Food & Function 12 (5):1933–53. doi: 10.1039/d0fo02686g.
  • Li, T., F. Li, X. Liu, J. Liu, and D. Li. 2019. Synergistic anti-inflammatory effects of quercetin and catechin via inhibiting activation of TLR4-MyD88-mediated NF-κB and MAPK signaling pathways. Phytotherapy Research 33 (3):756–67. doi: 10.1002/ptr.6268.
  • Li, Y., and D. J. McClements. 2011. Inhibition of lipase-catalyzed hydrolysis of emulsified triglyceride oils by low-molecular weight surfactants under simulated gastrointestinal conditions. European Journal of Pharmaceutics and Biopharmaceutics 79 (2):423–31. doi: 10.1016/j.ejpb.2011.03.019.
  • Li, Z-h., M. Cai, K. Yang, and P-l Sun. 2019. Kinetic study of d-limonene release from finger citron essential oil loaded nanoemulsions during simulated digestion in vitro. Journal of Functional Foods 58:67–73. doi: 10.1016/j.jff.2019.04.056.
  • Liang, R., C. F. Shoemaker, X. Yang, F. Zhong, and Q. Huang. 2013. Stability and bioaccessibility of β-carotene in nanoemulsions stabilized by modified starches. Journal of Agricultural and Food Chemistry 61 (6):1249–57. doi: 10.1021/jf303967f.
  • Lin, Q., R. Liang, P. A. Williams, and F. Zhong. 2018. Factors affecting the bioaccessibility of β-carotene in lipid-based microcapsules: Digestive conditions, the composition, structure and physical state of microcapsules. Food Hydrocolloids 77:187–203. doi: 10.1016/j.foodhyd.2017.09.034.
  • Liu, F., C. Ma, R. Zhang, Y. Gao, and D. Julian McClements. 2017. Controlling the potential gastrointestinal fate of β-carotene emulsions using interfacial engineering: Impact of coating lipid droplets with polyphenol-protein-carbohydrate conjugate. Food Chemistry 221:395–403. doi: 10.1016/j.foodchem.2016.10.057.
  • Liu, Q., Z. Wang, A. Mukhamadiev, J. Feng, Y. Gao, X. Zhuansun, R. Han, Y. Chong, and S. M. Jafari. 2022. Formulation optimization and characterization of carvacrol-loaded nanoemulsions: In vitro antibacterial activity/mechanism and safety evaluation. Industrial Crops and Products 181:114816. doi: 10.1016/j.indcrop.2022.114816.
  • Liu, W., A. Ye, F. Han, and J. Han. 2019. Advances and challenges in liposome digestion: Surface interaction, biological fate, and GIT modeling. Advances in Colloid and Interface Science 263:52–67. doi: 10.1016/j.cis.2018.11.007.
  • Liu, X., J. Bi, H. Xiao, and D. J. McClements. 2015. Increasing carotenoid bioaccessibility from yellow peppers using excipient emulsions: impact of lipid type and thermal processing. Journal of Agricultural and Food Chemistry 63 (38):8534–43. doi: 10.1021/acs.jafc.5b04217.
  • Liu, X., J. Bi, H. Xiao, and D. J. McClements. 2016. Enhancement of nutraceutical bioavailability using excipient nanoemulsions: role of lipid digestion products on bioaccessibility of carotenoids and phenolics from mangoes. Journal of Food Science 81 (3):N754–761. doi: 10.1111/1750-3841.13227.
  • Liu, Y., C. Liu, S. Zhang, J. Li, H. Zheng, H. Jin, and J. Xu. 2021. Comparison of different protein emulsifiers on physicochemical properties of β-carotene-loaded nanoemulsion: Effect on formation, stability, and in vitro digestion. Nanomaterials (Basel, Switzerland) 11 (1):167. doi: 10.3390/nano11010167.
  • Luo, Y., Y. Liu, H. Guo, and H. Fu. 2020. Evaluation of the bioaccessibility of carotenoid esters from Lycium barbarum L. in nano-emulsions: A kinetic approach. Food Research International 136:109611. doi: 10.1016/j.foodres.2020.109611.
  • Ma, X., T. Yan, S. Miao, L. Mao, and D. Liu. 2022. In Vitro digestion and storage stability of β-carotene-loaded nanoemulsion stabilized by soy protein isolate (SPI)-citrus pectin (CP) complex/conjugate prepared with ultrasound. Foods 11 (16):2410. doi: 10.3390/foods11162410.
  • Mackie, A., and A. Macierzanka. 2010. Colloidal aspects of protein digestion. Current Opinion in Colloid & Interface Science 15 (1):102–8. doi: 10.1016/j.cocis.2009.11.005.
  • Malaki Nik, A., A. J. Wright, and M. Corredig. 2011. Micellization of beta-carotene from soy-protein stabilized oil-in-water emulsions under in vitro conditions of lipolysis. Journal of the American Oil Chemists’ Society 88 (9):1397–407. doi: 10.1007/s11746-011-1806-z.
  • Manach, C., A. Scalbert, C. Morand, C. Rémésy, and L. Jiménez. 2004. Polyphenols: Food sources and bioavailability. The American Journal of Clinical Nutrition 79 (5):727–47. doi: 10.1093/ajcn/79.5.727.
  • McClements, D. J. 2017. The future of food colloids: Next-generation nanoparticle delivery systems. Current Opinion in Colloid & Interface Science 28:7–14. doi: 10.1016/j.cocis.2016.12.002.
  • McClements, D. J. 2021. Advances in edible nanoemulsions: Digestion, bioavailability, and potential toxicity. Progress in Lipid Research 81:101081. doi: 10.1016/j.plipres.2020.101081.
  • McClements, D. J., A. K. Das, P. Dhar, P. K. Nanda, and N. Chatterjee. 2021. Nanoemulsion-based technologies for delivering natural plant-based antimicrobials in foods. Frontiers in Sustainable Food Systems 5:643208. doi: 10.3389/fsufs.2021.643208.
  • McClements, D. J., and Y. Li. 2010a. Review of in vitro digestion models for rapid screening of emulsion-based systems. Food Function 1 (1):32–59. doi: 10.1039/c0fo00111b.
  • McClements, D. J., and Y. Li. 2010b. Structured emulsion-based delivery systems: Controlling the digestion and release of lipophilic food components. Advances in Colloid and Interface Science 159 (2):213–28. doi: 10.1016/j.cis.2010.06.010.
  • McClements, D. J., and J. Rao. 2011. Food-grade nanoemulsions: Formulation, fabrication, properties, performance, biological fate, and potential toxicity. Critical Reviews in Food Science and Nutrition 51 (4):285–330. doi: 10.1080/10408398.2011.559558.
  • McClements, D. J., and H. Xiao. 2012. Potential biological fate of ingested nanoemulsions: Influence of particle characteristics. Food Function 3 (3):202–20. doi: 10.1039/c1fo10193e.
  • Milinčić, D. D., A. Ž. Kostić, U. M. Gašić, S. Lević, S. P. Stanojević, M. B. Barać, Ž. L. Tešić, V. Nedović, and M. B. Pešić. 2021. Skimmed goat’s milk powder enriched with grape pomace seed extract: Phenolics and protein characterization and antioxidant properties. Biomolecules, 11 (7):965. https://www.mdpi.com/2218-273X/11/7/965.
  • Milinčić, D. D., D. A. Popović, S. M. Lević, A. Ž. Kostić, Ž. L. Tešić, V. A. Nedović, and M. B. Pešić. 2019a. Application of polyphenol-loaded nanoparticles in food industry. Nanomaterials (Basel, Switzerland ), 9 (11):1629. doi: 10.3390/nano9111629.
  • Milinčić, D. D., A. Salević, A. Ž. Kostić, V. A. Nedović, and M. B. Pešić. 2022. Chapter 17 – Improvement of physicochemical properties of food, functionality, quality, and safety by phytocompound-loaded nanoemulsions. In Bio-Based Nanoemulsions for Agri-Food Applications, eds. K. A. Abd-Elsalam & K. Murugan, 279–96. Netherlands: Elsevier. doi: 10.1016/B978-0-323-89846-1.00007-3.
  • Milinčić, D. D., N. S. Stanisavljević, A. Ž. Kostić, U. M. Gašić, S. P. Stanojević, Ž. L. Tešić, and M. B. Pešić. 2022. Bioaccessibility of phenolic compounds and antioxidant properties of goat-milk powder fortified with grape-pomace-seed extract after in vitro gastrointestinal digestion. Antioxidants (Basel, Switzerland) 11 (11):2164. doi: 10.3390/antiox11112164.
  • Milinčić, D. D., N. S. Stanisavljević, Kostić, S. Soković Bajić, M. O. Kojić, Gašić, M. B. Barać, S. P. Stanojević, Lj Tešić, and Ž. Pešić. 2021. Phenolic compounds and biopotential of grape pomace extracts from Prokupac red grape variety. LWT 138:110739. doi: 10.1016/j.lwt.2020.110739.
  • Minekus, M., M. Alminger, P. Alvito, S. Ballance, T. Bohn, C. Bourlieu, F. Carrière, R. Boutrou, M. Corredig, D. Dupont, et al. 2014. A standardised static in vitro digestion method suitable for food - an international consensus. Food & Function 5 (6):1113–24. doi: 10.1039/c3fo60702j.
  • Mitrović, N., I. Karabegović, M. Lazić, L. Nikolić, S. Savić, M. Pešić, and J. Šimurina. 2022. The effect of thermal processing on the content and antioxidant capacity of free and bound phenolics of cookies enriched by nettle (Urtica dioica L.) seed flour and extract. Food Science and Technology = Ciencia e Tecnologia de Alimentos 42:e62420. doi: 10.1590/fst.62420.
  • Moghaddasi, F., M. R. Housaindokht, M. Darroudi, M. R. Bozorgmehr, and A. Sadeghi. 2018. Synthesis of nano curcumin using black pepper oil by O/W Nanoemulsion Technique and investigation of their biological activities. LWT 92:92–100. doi: 10.1016/j.lwt.2018.02.023.
  • Moghtaderi, H., H. Sepehri, L. Delphi, and F. Attari. 2018. Gallic acid and curcumin induce cytotoxicity and apoptosis in human breast cancer cell MDA-MB-231. Bioimpacts 8 (3):185–94. doi: 10.15171/bi.2018.21.
  • Mun, S., E. A. Decker, and D. J. McClements. 2007. Influence of emulsifier type on in vitro digestibility of lipid droplets by pancreatic lipase. Food Research International 40 (6):770–81. doi: 10.1016/j.foodres.2007.01.007.
  • Mutlu-Ingok, A., D. Devecioglu, D. N. Dikmetas, F. Karbancioglu-Guler, and E. Capanoglu. 2020. Antibacterial, antifungal, antimycotoxigenic, and antioxidant activities of essential oils: An updated review. Molecules, 25 (20):4711. doi: 10.3390/molecules25204711.
  • Mutsokoti, L., A. Panozzo, A. Pallares Pallares, S. Jaiswal, A. Van Loey, T. Grauwet, and M. Hendrickx. 2017. Carotenoid bioaccessibility and the relation to lipid digestion: A kinetic study. Food Chemistry 232:124–34. doi: 10.1016/j.foodchem.2017.04.001.
  • Novaković, S., I. Djekic, M. Pešić, A. Kostić, D. Milinčić, N. Stanisavljević, A. Radojević, and I. Tomasevic. 2021. Bee pollen powder as a functional ingredient in frankfurters [Article]. Meat Science 182:108621. doi: 10.1016/j.meatsci.2021.108621.
  • Odriozola-Serrano, I., G. Oms-Oliu, and O. Martín-Belloso. 2014. Nanoemulsion-based delivery systems to improve functionality of lipophilic components. Front Nutrition 1:24. doi: 10.3389/fnut.2014.00024.
  • Ozturk, B., S. Argin, M. Ozilgen, and D. J. McClements. 2015. Nanoemulsion delivery systems for oil-soluble vitamins: Influence of carrier oil type on lipid digestion and vitamin D3 bioaccessibility. Food Chemistry 187:499–506. doi: 10.1016/j.foodchem.2015.04.065.
  • Pandey, A. K., P. Kumar, P. Singh, N. N. Tripathi, and V. K. Bajpai. 2016. Essential oils: Sources of antimicrobials and food preservatives. Frontiers in Microbiology 7:2161. doi: 10.3389/fmicb.2016.02161.
  • Pesic, M. B., M. B. Barac, S. P. Stanojevic, N. M. Ristic, O. D. Macej, and M. M. Vrvic. 2012. Heat induced casein-whey protein interactions at natural pH of milk: A comparison between caprine and bovine milk. Small Ruminant Research 108 (1-3):77–86. doi: 10.1016/j.smallrumres.2012.06.013.
  • Pesic, M. B., M. B. Barac, S. P. Stanojevic, and M. M. Vrvic. 2014. Effect of pH on heat-induced casein-whey protein interactions: A comparison between caprine milk and bovine milk [Article. ]. International Dairy Journal 39 (1):178–83. doi: 10.1016/j.idairyj.2014.06.006.
  • Pešić, M. B., D. D. Milinčić, A. Ž. Kostić, N. S. Stanisavljević, G. N. Vukotić, M. O. Kojić, U. M. Gašić, M. B. Barać, S. P. Stanojević, D. A. Popović, et al. 2019. In vitro digestion of meat- and cereal-based food matrix enriched with grape extracts: How are polyphenol composition, bioaccessibility and antioxidant activity affected? Food Chemistry 284:28–44. doi: 10.1016/j.foodchem.2019.01.107.
  • Pimentel-Moral, S., M. C. Teixeira, A. R. Fernandes, D. Arráez-Román, A. Martínez-Férez, A. Segura-Carretero, and E. B. Souto. 2018. Lipid nanocarriers for the loading of polyphenols – A comprehensive review. Advances in Colloid and Interface Science 260:85–94. doi: 10.1016/j.cis.2018.08.007.
  • Pisoschi, A. M., A. Pop, C. Cimpeanu, V. Turcuş, G. Predoi, and F. Iordache. 2018. Nanoencapsulation techniques for compounds and products with antioxidant and antimicrobial activity – A critical view. European Journal of Medicinal Chemistry 157:1326–45. doi: 10.1016/j.ejmech.2018.08.076.
  • Pool, H., S. Mendoza, H. Xiao, and D. J. McClements. 2013. Encapsulation and release of hydrophobic bioactive components in nanoemulsion-based delivery systems: Impact of physical form on quercetin bioaccessibility. Food Function 4 (1):162–74. doi: 10.1039/c2fo30042g.
  • Popović, D. A., D. D. Milinčić, M. B. Pešić, A. M. Kalušević, Ž. L. Tešić, and V. A. Nedović. 2019. 12 - Encapsulation technologies for polyphenol-loaded microparticles in food industry. In Green food processing techniques, eds. F. Chemat and E. Vorobiev, 335–67. London, UK: Academic Press. doi: 10.1016/B978-0-12-815353-6.00012-4.
  • Popović Minić, D. A., D. D. Milinčić, S. Kolašinac, V. Rac, J. Petrović, M. Soković, N. Banjac, J. Lađarević, B. B. Vidović, A. Ž. Kostić, et al. 2023. Goat milk proteins enriched with Agaricus blazei Murrill ss. Heinem extracts: Electrophoretic. Food Chemistry 402:134299. doi: 10.1016/j.foodchem.2022.134299.
  • Porter, C. J. H., N. L. Trevaskis, and W. N. Charman. 2007. Lipids and lipid-based formulations: Optimizing the oral delivery of lipophilic drugs. Nature Reviews Drug Discovery 6 (3):231–48. doi: 10.1038/nrd2197.
  • Prasad, J., S. Das, A. Maurya, S. K. Jain, and A. K. Dwivedy. 2022. Synthesis, characterization and in situ bioefficacy evaluation of Cymbopogon nardus essential oil impregnated chitosan nanoemulsion against fungal infestation and aflatoxin B1 contamination in food system. International Journal of Biological Macromolecules 205:240–52. doi: 10.1016/j.ijbiomac.2022.02.060.
  • Qian, C., E. A. Decker, H. Xiao, and D. J. McClements. 2012. Nanoemulsion delivery systems: Influence of carrier oil on β-carotene bioaccessibility. Food Chemistry 135 (3):1440–7. doi: 10.1016/j.foodchem.2012.06.047.
  • Rajaei, A., M. Hadian, A. Mohsenifar, T. Rahmani-Cherati, and M. Tabatabaei. 2017. A coating based on clove essential oils encapsulated by chitosan-myristic acid nanogel efficiently enhanced the shelf-life of beef cutlets. Food Packaging and Shelf Life 14:137–45. doi: 10.1016/j.fpsl.2017.10.005.
  • Rashidinejad, A., and S. M. Jafari. 2020. 8 – Nanoencapsulation of bioactive food ingredients. In Handbook of Food Nanotechnology, ed. S. M. Jafari, 279–344. London, UK: Academic Press. doi: 10.1016/B978-0-12-815866-1.00008-X.
  • Raveau, R., J. Fontaine, and A. Lounès-Hadj Sahraoui. 2020. Essential oils as potential alternative biocontrol products against plant pathogens and weeds: A Review. Foods 9 (3):365. doi: 10.3390/foods9030365.
  • Rezaei, A., M. Fathi, and S. M. Jafari. 2019. Nanoencapsulation of hydrophobic and low-soluble food bioactive compounds within different nanocarriers. Food Hydrocolloids 88:146–62. doi: 10.1016/j.foodhyd.2018.10.003.
  • Rout, S., Tambe, S. Deshmukh, R. K. Mali, S. Cruz, J. Srivastav, P. P. Amin, P. D. Gaikwad, K. K. Andrade, E. H. D. A, and Oliveira, M. S. D 2022. Recent trends in the application of essential oils: The next generation of food preservation and food packaging. Trends in Food Science & Technology 129:421–39. doi: 10.1016/j.tifs.2022.10.012.
  • Salević, A., C. Prieto, L. Cabedo, V. Nedović, and J. M. Lagaron. 2019. Physicochemical, antioxidant and antimicrobial properties of electrospun poly(ε-caprolactone) films containing a solid dispersion of sage (Salvia officinalis L) extract. Nanomaterials (Basel) 9 (2):270. doi: 10.3390/nano9020270.
  • Salvia-Trujillo, L., O. Martín-Belloso, and D. J. McClements. 2016. Excipient nanoemulsions for improving oral bioavailability of bioactives. Nanomaterials (Basel, Switzerland) 6 (1):17. doi: 10.3390/nano6010017.
  • Salvia-Trujillo, L., and D. J. McClements. 2016. Enhancement of lycopene bioaccessibility from tomato juice using excipient emulsions: Influence of lipid droplet size. Food Chemistry 210:295–304. doi: 10.1016/j.foodchem.2016.04.125.
  • Salvia-Trujillo, L., C. Qian, O. Martín-Belloso, and D. J. McClements. 2013. Influence of particle size on lipid digestion and β-carotene bioaccessibility in emulsions and nanoemulsions. Food Chemistry 141 (2):1472–80. doi: 10.1016/j.foodchem.2013.03.050.
  • Salvia-Trujillo, L., S. H. E. Verkempinck, L. Sun, A. M. Van Loey, T. Grauwet, and M. E. Hendrickx. 2017. Lipid digestion, micelle formation and carotenoid bioaccessibility kinetics: Influence of emulsion droplet size. Food Chemistry 229:653–62. doi: 10.1016/j.foodchem.2017.02.146.
  • Salvia-Trujillo, L., S. H. E. Verkempinck, X. Zhang, A. M. Van Loey, T. Grauwet, and M. E. Hendrickx. 2019. Comparative study on lipid digestion and carotenoid bioaccessibility of emulsions, nanoemulsions and vegetable-based in situ emulsions. Food Hydrocolloids 87:119–28. doi: 10.1016/j.foodhyd.2018.05.053.
  • Sari, T. P., B. Mann, R. Kumar, R. R. B. Singh, R. Sharma, M. Bhardwaj, and S. Athira. 2015. Preparation and characterization of nanoemulsion encapsulating curcumin. Food Hydrocolloids 43:540–6. doi: 10.1016/j.foodhyd.2014.07.011.
  • Sarkar, A., K. K. T. Goh, and H. Singh. 2009. Colloidal stability and interactions of milk-protein-stabilized emulsions in an artificial saliva. Food Hydrocolloids 23 (5):1270–8. doi: 10.1016/j.foodhyd.2008.09.008.
  • Sarkar, A., K. K. T. Goh, and H. Singh. 2010. Properties of oil-in-water emulsions stabilized by β-lactoglobulin in simulated gastric fluid as influenced by ionic strength and presence of mucin. Food Hydrocolloids 24 (5):534–41. doi: 10.1016/j.foodhyd.2009.12.005.
  • Sarkar, A., K. K. T. Goh, R. P. Singh, and H. Singh. 2009. Behaviour of an oil-in-water emulsion stabilized by β-lactoglobulin in an in vitro gastric model. Food Hydrocolloids 23 (6):1563–9. doi: 10.1016/j.foodhyd.2008.10.014.
  • Sarkar, A., A. Ye, and H. Singh. 2016. On the role of bile salts in the digestion of emulsified lipids. Food Hydrocolloids 60:77–84. doi: 10.1016/j.foodhyd.2016.03.018.
  • Sharma, S., S.-F. Cheng, B. Bhattacharya, and S. Chakkaravarthi. 2019. Efficacy of free and encapsulated natural antioxidants in oxidative stability of edible oil: Special emphasis on nanoemulsion-based encapsulation. Trends in Food Science & Technology 91:305–18. doi: 10.1016/j.tifs.2019.07.030.
  • Shishir, M. R. I., L. Xie, C. Sun, X. Zheng, and W. Chen. 2018. Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters. Trends in Food Science & Technology 78:34–60. doi: 10.1016/j.tifs.2018.05.018.
  • Shu, G., N. Khalid, T. Tan, Y. Zhao, M. Neves, I. Kobayashi, and M. Nakajima. 2018. In-vitro bioaccessibility of ergocalciferol in nanoemulsion-based delivery system: The influence of food-grade emulsifiers with different stabilizing mechanisms. International Journal of Food Science & Technology 53:430–40. doi: 10.1111/ijfs.13601.
  • Silva, H. D., E. Beldíková, J. Poejo, L. Abrunhosa, A. T. Serra, C. M. M. Duarte, T. Brányik, M. A. Cerqueira, A. C. Pinheiro, and A. A. Vicente. 2019. Evaluating the effect of chitosan layer on bioaccessibility and cellular uptake of curcumin nanoemulsions. Journal of Food Engineering 243:89–100. doi: 10.1016/j.jfoodeng.2018.09.007.
  • Silva, H. D., J. Poejo, A. C. Pinheiro, F. Donsì, A. T. Serra, C. M. Duarte, G. Ferrari, M. A. Cerqueira, and A. A. Vicente. 2018. Evaluating the behaviour of curcumin nanoemulsions and multilayer nanoemulsions during dynamic in vitro digestion. Journal of Functional Foods 48:605–13.
  • Silva, S., M. Bazana, C. de Deus, M. Machado, L. Marafiga Cordeiro, F. Soares, D. Rubert Nogueira-Librelotto, C. Rolim, C. Menezes, and C. Codevilla. 2019. Physicochemical characterization and evaluation of in vitro and in vivo toxicity of goldenberry extract nanoemulsion. Ciência Rural 49(8): e20190015. doi: 10.1590/0103-8478cr20190015.
  • Stikić, R. I., D. D. Milinčić, A. Ž. Kostić, Z. B. Jovanović, U. M. Gašić, Ž. L. Tešić, N. Z. Djordjević, S. K. Savić, B. G. Czekus, and M. B. Pešić. 2020. Polyphenolic profiles, antioxidant, and in vitro anticancer activities of the seeds of Puno and Titicaca quinoa cultivars. Cereal Chemistry 97 (3):626–33. doi: 10.1002/cche.10278.
  • Tan, Y., J. Liu, H. Zhou, J. Muriel Mundo, and D. J. McClements. 2019. Impact of an indigestible oil phase (mineral oil) on the bioaccessibility of vitamin D3 encapsulated in whey protein-stabilized nanoemulsions. Food Research International 120:264–74. doi: 10.1016/j.foodres.2019.02.031.
  • Tan, Y., Z. Zhang, J. Muriel Mundo, and D. J. McClements. 2020. Factors impacting lipid digestion and nutraceutical bioaccessibility assessed by standardized gastrointestinal model (INFOGEST): Emulsifier type. Food Research International 137:109739. doi: 10.1016/j.foodres.2020.109739.
  • Teixé-Roig, J., G. Oms-Oliu, S. Ballesté-Muñoz, I. Odriozola-Serrano, and O. Martín-Belloso. 2020. Improving the in vitro bioaccessibility of β-carotene using pectin added nanoemulsions. Foods 9 (4):447.
  • Teixé-Roig, J., G. Oms-Oliu, I. Odriozola-Serrano, and O. Martín-Belloso. 2023. Enhancing in vivo retinol bioavailability by incorporating β-carotene from alga Dunaliella salina into nanoemulsions containing natural-based emulsifiers. Food Research International (Ottawa, Ont.) 164:112359. doi: 10.1016/j.foodres.2022.112359.
  • Teo, A., S. J. Lee, K. K. T. Goh, and F. M. Wolber. 2017. Kinetic stability and cellular uptake of lutein in WPI-stabilised nanoemulsions and emulsions prepared by emulsification and solvent evaporation method. Food Chemistry 221:1269–76. doi: 10.1016/j.foodchem.2016.11.030.
  • Troncoso, E., J. M. Aguilera, and D. J. McClements. 2012. Fabrication, characterization and lipase digestibility of food-grade nanoemulsions. Food Hydrocolloids. 27 (2):355–63. doi: 10.1016/j.foodhyd.2011.10.014.
  • Verkempinck, S. H. E., L. Salvia-Trujillo, S. Denis, A. M. Van Loey, M. E. Hendrickx, and T. Grauwet. 2018. Pectin influences the kinetics of in vitro lipid digestion in oil-in-water emulsions. Food Chemistry 262:150–61. doi: 10.1016/j.foodchem.2018.04.082.
  • Verkempinck, S. H. E., L. Salvia-Trujillo, L. G. Moens, C. Carrillo, A. M. Van Loey, M. E. Hendrickx, and T. Grauwet. 2018. Kinetic approach to study the relation between in vitro lipid digestion and carotenoid bioaccessibility in emulsions with different oil unsaturation degree. Journal of Functional Foods 41:135–47. doi: 10.1016/j.jff.2017.12.030.
  • Verkempinck, S. H. E., L. Salvia-Trujillo, L. G. Moens, L. Charleer, A. M. Van Loey, M. E. Hendrickx, and T. Grauwet. 2018. Emulsion stability during gastrointestinal conditions effects lipid digestion kinetics. Food Chemistry 246:179–91. doi: 10.1016/j.foodchem.2017.11.001.
  • Versantvoort, C. H., R. C. Ondrewater, E. Duizer, J. J. Van de Sandt, A. J. Gilde, and J. P. Groten. 2002. Monolayers of IEC-18 cells as an in vitro model for screening the passive transcellular and paracellular transport across the intestinal barrier: Comparison of active and passive transport with the human colon carcinoma Caco-2 cell line. Environmental Toxicology and Pharmacology 11 (3-4):335–44. doi: 10.1016/s1382-6689(01)00122-3.
  • Vidović, B. B., M. D. Marčetić, J. Djuriš, D. D. Milinčić, A. Ž. Kostić, and M. B. Pešić. 2023. Goji berries: Valuable sources of nutrients and bioactive compounds (reference module in food science). Netherlands: Elsevier. doi: 10.1016/B978-0-12-823960-5.00031-7.
  • Vidović, B. B., D. D. Milinčić, M. D. Marčetić, J. D. Djuriš, T. D. Ilić, A. Ž. Kostić, and M. B. Pešić. 2022. Health benefits and applications of goji berries in functional food products development: A review. Antioxidants, 11 (2):248. https://www.mdpi.com/2076-3921/11/2/248.
  • Villalva, M., L. Jaime, E. Arranz, Z. Zhao, M. Corredig, G. Reglero, and S. Santoyo. 2020. Nanoemulsions and acidified milk gels as a strategy for improving stability and antioxidant activity of yarrow phenolic compounds after gastrointestinal digestion. Food Research International 130:108922. doi: 10.1016/j.foodres.2019.108922.
  • Vingerhoeds, M. H., T. B. J. Blijdenstein, F. D. Zoet, and G. A. van Aken. 2005. Emulsion flocculation induced by saliva and mucin. Food Hydrocolloids 19 (5):915–22. doi: 10.1016/j.foodhyd.2004.12.005.
  • Wei, S., X. Zhao, J. Yu, S. Yin, M. Liu, R. Bo, and J. Li. 2021. Characterization of tea tree oil nanoemulsion and its acute and subchronic toxicity. Regulatory Toxicology and Pharmacology 124:104999. doi: 10.1016/j.yrtph.2021.104999.
  • Wooster, T., S. Moore, W. Chen, H. Andrews, R. Addepalli, R. Seymour, and S. Osborne. 2017. Biological fate of food nanoemulsions and the nutrients they carry – Internalisation, transport and cytotoxicity of edible nanoemulsions in Caco-2 intestinal cells. RSC Advances 7:40053–66. doi: 10.1039/C7RA07804H.
  • Xia, Z., Y. Han, H. Du, D. J. McClements, Z. Tang, and H. Xiao. 2020. Exploring the effects of carrier oil type on in vitro bioavailability of β-carotene: A cell culture study of carotenoid-enriched nanoemulsions. LWT 134:110224. doi: 10.1016/j.lwt.2020.110224.
  • Xu, W., Y. Yang, S. J. Xue, J. Shi, L.-T. Lim, C. Forney, G. Xu, and B. S. Bamba. 2018. Effect of in vitro digestion on water-in-oil-in-water emulsions containing anthocyanins from grape skin powder. Molecules 23 (11):2808. doi: 10.3390/molecules23112808.
  • Yang, Y., and D. J. McClements. 2013. Vitamin E bioaccessibility: Influence of carrier oil type on digestion and release of emulsified α-tocopherol acetate. Food Chemistry 141 (1):473–81. doi: 10.1016/j.foodchem.2013.03.033.
  • Yao, K., D. J. McClements, C. Yan, J. Xiao, H. Liu, Z. Chen, X. Hou, Y. Cao, H. Xiao, and X. Liu. 2021. In vitro and in vivo study of the enhancement of carotenoid bioavailability in vegetables using excipient nanoemulsions: Impact of lipid content. Food Research International 141:110162. doi: 10.1016/j.foodres.2021.110162.
  • Yao, M., Z. Li, D. Julian McClements, Z. Tang, and H. Xiao. 2020. Design of nanoemulsion-based delivery systems to enhance intestinal lymphatic transport of lipophilic food bioactives: Influence of oil type. Food Chemistry 317:126229. doi: 10.1016/j.foodchem.2020.126229.
  • Yi, J., Y. Li, F. Zhong, and W. Yokoyama. 2014. The physicochemical stability and in vitro bioaccessibility of beta-carotene in oil-in-water sodium caseinate emulsions. Food Hydrocolloids 35:19–27. doi: 10.1016/j.foodhyd.2013.07.025.
  • Yu, H., and Q. Huang. 2013. Investigation of the cytotoxicity of food-grade nanoemulsions in Caco-2 cell monolayers and HepG2 cells. Food Chemistry 141 (1):29–33. doi: 10.1016/j.foodchem.2013.03.009.
  • Yuan, X., J. Xiao, X. Liu, D. J. McClements, Y. Cao, and H. Xiao. 2019. The gastrointestinal behavior of emulsifiers used to formulate excipient emulsions impact the bioavailability of β-carotene from spinach. Food Chemistry 278:811–9. doi: 10.1016/j.foodchem.2018.11.135.
  • Zembyla, M., B. S. Murray, and A. Sarkar. 2020. Water-in-oil emulsions stabilized by surfactants, biopolymers and/or particles: A review. Trends in Food Science & Technology 104:49–59. doi: 10.1016/j.tifs.2020.07.028.
  • Zhang, C., and B. Li. 2022. Fabrication of nanoemulsion delivery system with high bioaccessibility of carotenoids from Lycium barbarum by spontaneous emulsification. Food Science & Nutrition 10: 2582– 2589. doi: 10.1002/fsn3.2863.
  • Zhang, R., Z. Zhang, and D. J. McClements. 2020. Nanoemulsions: An emerging platform for increasing the efficacy of nutraceuticals in foods. Colloids and Surfaces B: Biointerfaces 194:111202. doi: 10.1016/j.colsurfb.2020.111202.
  • Zhang, R., Z. Zhang, L. Zou, H. Xiao, G. Zhang, E. A. Decker, and D. J. McClements. 2016. Impact of lipid content on the ability of excipient emulsions to increase carotenoid bioaccessibility from natural sources (raw and cooked carrots). Food Biophysics 11 (1):71–80. doi: 10.1007/s11483-015-9418-z.
  • Zhao, C., L. Wei, B. Yin, F. Liu, J. Li, X. Liu, J. Wang, and Y. Wang. 2020. Encapsulation of lycopene within oil-in-water nanoemulsions using lactoferrin: Impact of carrier oils on physicochemical stability and bioaccessibility. International Journal of Biological Macromolecules 153:912–20. doi: 10.1016/j.ijbiomac.2020.03.063.
  • Zheng, B., S. Peng, X. Zhang, and D. J. McClements. 2018. Impact of delivery system type on curcumin bioaccessibility: Comparison of curcumin-loaded nanoemulsions with commercial curcumin supplements. Journal of Agricultural and Food Chemistry 66 (41):10816–26. doi: 10.1021/acs.jafc.8b03174.
  • Zou, L., B. Zheng, W. Liu, C. Liu, H. Xiao, and D. J. McClements. 2015. Enhancing nutraceutical bioavailability using excipient emulsions: Influence of lipid droplet size on solubility and bioaccessibility of powdered curcumin. Journal of Functional Foods 15:72–83. doi: 10.1016/j.jff.2015.02.044.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.