449
Views
0
CrossRef citations to date
0
Altmetric
Review

Prevention and potential repair of colitis: Beneficial effects and regulatory mechanisms of food-derived anti-inflammatory peptides

, , , & ORCID Icon

References

  • Ashley, N. T., Z. M. Weil, and R. J. Nelson. 2012. Inflammation: Mechanisms, costs, and natural variation. Annual Review of Ecology, Evolution, and Systematics 43 (1):385–406. doi: 10.1146/annurev-ecolsys-040212-092530.
  • Basson, A. R., S. Ahmed, R. Almutairi, B. Seo, and F. Cominelli. 2021. Regulation of intestinal inflammation by soybean and soy-derived compounds. Foods (Basel, Switzerland) 10 (4):774. doi: 10.3390/foods10040774.
  • Bessette, C., B. Benoit, S. Sekkal, J. Bruno, M. Estienne, J. Léonil, L. Ferrier, V. Théodorou, and P. Plaisancié. 2016. Protective effects of β‐casofensin, a bioactive peptide from bovine β‐casein, against indomethacin‐induced intestinal lesions in rats. Molecular Nutrition & Food Research 60 (4):823–33. doi: 10.1002/mnfr.201500680.
  • Brodkorb, A., L. Egger, M. Alminger, P. Alvito, R. Assunção, S. Ballance, T. Bohn, C. Bourlieu-Lacanal, R. Boutrou, F. Carrière, et al. 2019. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nature Protocols 14 (4):991–1014. doi: 10.1038/s41596-018-0119-1.
  • Burge, K., A. Gunasekaran, J. Eckert, and H. Chaaban. 2019. Curcumin and intestinal inflammatory diseases: Molecular mechanisms of protection. International Journal of Molecular Sciences 20 (8):1912. doi: 10.3390/ijms20081912.
  • Bahrami, B., S. Macfarlane, and G. T. Macfarlane. 2011. Induction of cytokine formation by human intestinal bacteria in gut epithelial cell lines. Journal of Applied Microbiology 110 (1):353–63. doi: 10.1111/j.1365-2672.2010.04889.x.
  • Chen, J., W. Bai, D. Cai, Z. Yu, and B. Xu. 2021. Characterization and identification of novel anti-inflammatory peptides from Baijiao sea bass (Lateolabrax maculatus). LWT 147:111521. doi: 10.1016/j.lwt.2021.111521.
  • Cervantes-García, D., A. I. Bahena-Delgado, M. Jiménez, L. E. Córdova-Dávalos, V. Ruiz-Esparza Palacios, E. Sánchez-Alemán, M. C. Martínez-Saldaña, and E. Salinas. 2020. Glycomacropeptide ameliorates indomethacin-induced enteropathy in rats by modifying intestinal inflammation and oxidative stress. Molecules (Basel, Switzerland) 25 (10):2351. doi: 10.3390/molecules25102351.
  • Craik, D. J., D. P. Fairlie, S. Liras, and D. Price. 2013. The future of peptide‐based drugs. Chemical Biology & Drug Design 81 (1):136–47. doi: 10.1111/cbdd.12055.
  • Chen, H., T. Han, L. Gao, and D. Zhang. 2022. The involvement of glial cell-derived neurotrophic factor in inflammatory bowel disease. Journal of Interferon & Cytokine Research : The Official Journal of the International Society for Interferon and Cytokine Research 42 (1):1–7. doi: 10.1089/jir.2021.0116.
  • Chen, Y., H. Zhang, R. Liu, L. Mats, H. Zhu, K. P. Pauls, Z. Deng, and R. Tsao. 2019. Antioxidant and anti-inflammatory polyphenols and peptides of common bean (Phaseolus vulga L.) milk and yogurt in Caco-2 and HT-29 cell models. Journal of Functional Foods 53:125–35. doi: 10.1016/j.jff.2018.12.013.
  • Deng, Z., C. Cui, Y. Wang, J. Ni, L. Zheng, H. K. Wei, and J. Peng. 2020. FSGHF3 and peptides, prepared from fish skin gelatin, exert a protective effect on DSS-induced colitis via the Nrf2 pathway. Food & Function 11 (1):414–23. doi: 10.1039/C9FO02165E.
  • de Mattos, B. R. R., M. P. G. Garcia, J. B. Nogueira, L. N. Paiatto, C. G. Albuquerque, C. L. Souza, L. G. R. Fernandes, W. M. d. S. C. Tamashiro, and P. U. Simioni. 2015. Inflammatory bowel disease: An overview of immune mechanisms and biological treatments. Mediators of Inflammation 2015 (1155):493012. doi: 10.1155/2015/493012.
  • Dong, J., W. Liang, T. Wang, J. Sui, J. Wang, Z. Deng, and D. Chen. 2019. Saponins regulate intestinal inflammation in colon cancer and IBD. Pharmacological Research 144:66–72. doi: 10.1016/j.phrs.2019.04.010.
  • Ding, N., C. Mao, Z. Cai, and M. Ma. 2019. Anti-inflammatory effect of preserved egg with simulated gastrointestinal digestion on LPS-stimulated RAW264.7 cells. Poultry Science 98 (10):4401–7. doi: 10.3382/ps/pez243.
  • Durand, R., G. Pellerin, J. Thibodeau, E. Fraboulet, A. Marette, and L. Bazinet. 2020. Screening for metabolic syndrome application of a herring by-product hydrolysate after its separation by electrodialysis with ultrafiltration membrane and identification of novel anti-inflammatory peptides. Separation and Purification Technology 235:116205. doi: 10.1016/j.seppur.2019.116205.
  • Dalmas, E., J. Tordjman, M. Guerre-Millo, and K. Clément. 2017. Macrophages and inflammation. In Adipose tissue biology, 167–93. Symonds ME: Springer. doi: 10.1007/978-1-4614-0965-6_6.
  • e Silva, F. G., L. N. Paiatto, A. T. Yamada, F. M. Netto, P. U. Simioni, and W. M. Tamashiro. 2018. Intake of protein hydrolysates and phenolic fractions isolated from flaxseed ameliorates TNBS‐induced colitis. Molecular Nutrition & Food Research 62 (17):1800088. doi: 10.1002/mnfr.201800088.
  • Fosgerau, K., and T. Hoffmann. 2015. Peptide therapeutics: Current status and future directions. Drug Discovery Today 20 (1):122–8. doi: 10.1016/j.drudis.2014.10.003.
  • Fernandez-Tome, S., B. Hernandez-Ledesma, M. Chaparro, P. Indiano-Romacho, D. Bernardo, and J. P. Gisbert. 2019. Role of food proteins and bioactive peptides in inflammatory bowel disease. Trends in Food Science & Technology 88:194–206. doi: 10.1016/j.tifs.2019.03.017.
  • Fukuda, T., K. Tsukano, H. Nakatsuji, and K. Suzuki. 2019. Plasma diamine oxidase activity decline with diarrhea severity in calves indicating systemic dysfunction related to intestinal mucosal damage. Research in Veterinary Science 126:127–30. doi: 10.1016/j.rvsc.2019.08.027.
  • Felician, F. F., R.-H. Yu, M.-Z. Li, C.-J. Li, H.-Q. Chen, Y. Jiang, T. Tang, W.-Y. Qi, and H.-M. Xu. 2019. The wound healing potential of collagen peptides derived from the jellyfish Rhopilema esculentum. Chinese Journal of Traumatology = Zhonghua Chuang Shang za Zhi 22 (1):12–20. doi: 10.1016/j.cjtee.2018.10.004.
  • Guan, Q. 2019. A comprehensive review and update on the pathogenesis of inflammatory bowel disease. Journal of Immunology Research 2019:7247238. doi: 10.1155/2019/7247238.
  • Gong, X., Q. An, L. Le, F. Geng, L. Jiang, J. Yan, D. Xiang, L. Peng, L. Zou, G. Zhao, et al. 2022. Prospects of cereal protein-derived bioactive peptides: Sources, bioactivities diversity, and production. Critical Reviews in Food Science and Nutrition 62 (11):2855–71. doi: 10.1080/10408398.2020.1860897.
  • Grimstad, T., B. Bjørndal, D. Cacabelos, O. G. Aasprong, R. Omdal, A. Svardal, P. Bohov, R. Pamplona, M. Portero-Otin, R. K. Berge, et al. 2013. A salmon peptide diet alleviates experimental colitis as compared with fish oil. Journal of Nutritional Science 2:e2. doi: 10.1017/jns.2012.23.
  • Ge, H., Z. Cai, J. Chai, J. Liu, B. Liu, Y. Yu, J. Liu, and T. Zhang. 2021. Egg white peptides ameliorate dextran sulfate sodium-induced acute colitis symptoms by inhibiting the production of pro-inflammatory cytokines and modulation of gut microbiota composition. Food Chemistry 360:129981. doi: 10.1016/j.foodchem.2021.129981.
  • Gu, Q.-Q., S.-W. He, L.-H. Liu, G.-H. Wang, D.-F. Hao, H.-M. Liu, C.-B. Wang, C. Li, M. Zhang, and N.-Q. Li. 2021. A teleost bactericidal permeability-increasing protein-derived peptide that possesses a broad antibacterial spectrum and inhibits bacterial infection as well as human colon cancer cells growth. Developmental and Comparative Immunology 118:103995. doi: 10.1016/j.dci.2021.103995.
  • González-Montoya, M., B. Hernández-Ledesma, J. M. Silván, R. Mora-Escobedo, and C. Martínez-Villaluenga. 2018. Peptides derived from in vitro gastrointestinal digestion of germinated soybean proteins inhibit human colon cancer cells proliferation and inflammation. Food Chemistry 242:75–82. doi: 10.1016/j.foodchem.2017.09.035.
  • Guha, S., and K. Majumder. 2019. Structural‐features of food‐derived bioactive peptides with anti‐inflammatory activity: A brief review. Journal of Food Biochemistry 43 (1):e12531. doi: 10.1111/jfbc.12531.
  • Gao, R., Y. Shen, W. Shu, W. Jin, F. Bai, J. Wang, Y. Zhang, H. El-Seedi, Q. Sun, and L. Yuan. 2020a. Sturgeon hydrolysates alleviate DSS-induced colon colitis in mice by modulating NF-κB, MAPK, and microbiota composition. Food & Function 11 (8):6987–99. doi: 10.1039/C9FO02772F.
  • Gao, R., W. Shu, Y. Shen, Q. Sun, F. Bai, J. Wang, D. Li, Y. Li, W. Jin, and L. Yuan. 2020b. Sturgeon protein-derived peptides exert anti-inflammatory effects in LPS-stimulated RAW264.7 macrophages via the MAPK pathway. Journal of Functional Foods 72:104044. doi: 10.1016/j.jff.2020.104044.
  • Gao, R., W. Shu, Y. Shen, Q. Sun, W. Jin, D. Li, Y. Li, and L. Yuan. 2021. Peptide fraction from sturgeon muscle by pepsin hydrolysis exerts anti-inflammatory effects in LPS-stimulated RAW264. 7 macrophages via MAPK and NF-κB pathways. Food Science and Human Wellness 10 (1):103–11. doi: 10.1016/j.fshw.2020.04.014.
  • Hernández-Chirlaque, C., C. J. Aranda, B. Ocón, F. Capitán-Cañadas, M. Ortega-González, J. J. Carrero, M. D. Suárez, A. Zarzuelo, F. Sánchez de Medina, and O. Martínez-Augustin. 2016. Germ-free and antibiotic-treated mice are highly susceptible to epithelial injury in DSS colitis. Journal of Crohn’s & Colitis 10 (11):1324–35. doi: 10.1093/ecco-jcc/jjw096.
  • Hao, Y., X. Fan, H. Guo, Y. Yao, G. Ren, X. Lv, and X. Yang. 2020. Overexpression of the bioactive lunasin peptide in soybean and evaluation of its anti-inflammatory and anti-cancer activities in vitro. Journal of Bioscience and Bioengineering 129 (4):395–404. doi: 10.1016/j.jbiosc.2019.11.001.
  • Hindryckx, P., V. Jairath, and G. D’haens. 2016. Acute severe ulcerative colitis: From pathophysiology to clinical management. Nature Reviews. Gastroenterology & Hepatology 13 (11):654–64. doi: 10.1038/nrgastro.2016.116.
  • Hwang, J.-W., S.-J. Lee, Y.-S. Kim, E.-K. Kim, C.-B. Ahn, Y.-J. Jeon, S.-H. Moon, B.-T. Jeon, and P.-J. Park. 2012. Purification and characterization of a novel peptide with inhibitory effects on colitis induced mice by dextran sulfate sodium from enzymatic hydrolysates of Crassostrea gigas. Fish & Shellfish Immunology 33 (4):993–9. doi: 10.1016/j.fsi.2012.08.017.
  • He, G., and R. Ma. 2020. Overview of molecular mechanisms involved in herbal compounds for inhibiting osteoclastogenesis from macrophage linage RAW264.7. Current Stem Cell Research & Therapy 15 (7):570–8. doi: 10.2174/1574888X14666190703144917.
  • Hall, F., L. Reddivari, and A. M. Liceaga. 2020. Identification and characterization of edible cricket peptides on hypertensive and glycemic in vitro inhibition and their anti-inflammatory activity on RAW 264.7 macrophage cells. Nutrients 12 (11):3588. doi: 10.3390/nu12113588.
  • Hold, G. L., M. Smith, C. Grange, E. R. Watt, E. M. El-Omar, and I. Mukhopadhya. 2014. Role of the gut microbiota in inflammatory bowel disease pathogenesis: What have we learnt in the past 10 years? World Journal of Gastroenterology 20 (5):1192–210. doi: 10.3748/wjg.v20.i5.1192.
  • He, X., Y. Yang, L. Mu, Y. Zhou, Y. Chen, J. Wu, Y. Wang, H. Yang, M. Li, W. Xu, et al. 2019. A frog-derived immunomodulatory peptide promotes cutaneous wound healing by regulating cellular response. Frontiers in Immunology 10:2421. doi: 10.3389/fimmu.2019.02421.
  • Islam, M., W. Hongxin, H. Admassu, A. A. Mahdi, M. Chaoyang, and F. A. Wei. 2021. In vitro antioxidant, cytotoxic and antidiabetic activities of protein hydrolysates prepared from Chinese pond turtle (Chinemys reevesii). Food Technology and Biotechnology 59 (3):360–75. doi: 10.17113/ftb.59.03.21.7087.
  • Jeon, S., and M. M. Kim. 2019. Tomatidine inhibits cell invasion through the negative modulation of gelatinase and inactivation of p38 and ERK. Chemico-Biological Interactions 313:108826. doi: 10.1016/j.cbi.2019.108826.
  • Jiang, H., W. Chen, J. Wang, and R. Zhang. 2022. Selective N-terminal modification of peptides and proteins: Recent progresses and applications. Chinese Chemical Letters 33 (1):80–8. doi: 10.1016/j.cclet.2021.06.011.
  • Joshi, I., H. S. Mohideen, and R. A. Nazeer. 2021. A Meretrix meretrix visceral mass derived peptide inhibits lipopolysaccharide-stimulated responses in RAW264. 7 cells and adult zebrafish model. International Immunopharmacology 90:107140. doi: 10.1016/j.intimp.2020.107140.
  • Karaś, M. 2019. Influence of physiological and chemical factors on the absorption of bioactive peptides. International Journal of Food Science & Technology 54 (5):1486–96. doi: 10.1111/ijfs.14054.
  • Keeler, J. L., O. Patsalos, R. Chung, U. Schmidt, G. Breen, J. Treasure, H. Hubertus, and B. Dalton. 2022. Short communication: Serum levels of brain-derived neurotrophic factor and association with pro-inflammatory cytokines in acute and recovered anorexia nervosa. Journal of Psychiatric Research 150:34–9. doi: 10.1016/j.jpsychires.2022.03.031.
  • Keller, D. S., A. Windsor, R. Cohen, and M. Chand. 2019. Colorectal cancer in inflammatory bowel disease: Review of the evidence. Techniques in Coloproctology 23 (1):3–13. doi: 10.1007/s10151-019-1926-2.
  • Kim, E. K., and E. J. Choi. 2015. Compromised MAPK signaling in human diseases: An update. Archives of Toxicology 89 (6):867–82. doi: 10.1007/s00204-015-1472-2.
  • Kiyono, T., S. Wada, R. Ohta, E. Wada, T. Takagi, Y. Naito, T. Yoshikawa, and K. Sato. 2016. Identification of pyroglutamyl peptides with anti-colitic activity in Japanese rice wine, sake, by oral administration in a mouse model. Journal of Functional Foods 27:612–21. doi: 10.1016/j.jff.2016.10.014.
  • Kovacs-Nolan, J., H. Zhang, M. Ibuki, T. Nakamori, K. Yoshiura, P. V. Turner, T. Matsui, and Y. Mine. 2012. The PepT1-transportable soy tripeptide VPY reduces intestinal inflammation. Biochimica et Biophysica Acta 1820 (11):1753–63. doi: 10.1016/j.bbagen.2012.07.007.
  • Kusmardi, K., N. Nessa, A. Estuningtyas, and A. Tedjo. 2018. The effect of lunasin from Indonesian soybean extract on histopatologic examination and cox-2 expression in dextran sodium sulfate-induced mice colon. International Journal of Physiology, Pathophysiology and Pharmacology 10 (6):154–62.
  • Kyriakis, J. M., and J. Avruch. 2012. Mammalian MAPK signal transduction pathways activated by stress and inflammation: A 10-year update. Physiological Reviews 92 (2):689–737. doi: 10.1152/physrev.00028.2011.
  • Lashgari, N.-A., N. Momeni Roudsari, D. Khayatan, M. Shayan, S. Momtaz, B. D. Roufogalis, A. H. Abdolghaffari, and A. Sahebkar. 2022. Ginger and its constituents: Role in treatment of inflammatory bowel disease. BioFactors 48 (1):7–21. doi: 10.1039/10.1002/biof.1808.
  • Lawrence, T., and C. Fong. 2010. The resolution of inflammation: Anti-inflammatory roles for NF-κB. The International Journal of Biochemistry & Cell Biology 42 (4):519–23. doi: 10.1016/j.biocel.2009.12.016.
  • Lee, S. H. 2015. Intestinal permeability regulation by tight junction: Implication on inflammatory bowel diseases. Intestinal Research 13 (1):11–8. doi: 10.5217/ir.2015.13.1.11.
  • Lee, S. Y., and S. J. Hur. 2019. Effect of treatment with peptide extract from beef myofibrillar protein on oxidative stress in the brains of spontaneously hypertensive rats. Foods (Basel, Switzerland) 8 (10):455. doi: 10.3390/foods8100455.
  • Li, J., S. Yu, X. Pan, M. Zhang, Z. Lv, L. L. Pan, and J. Sun. 2021. Recombinant CRAMP-producing Lactococcus lactis attenuates dextran sulfate sodium-induced colitis by colonic colonization and inhibiting p38/NF-κB signaling. Food & Nutrition Research 65:. doi: 10.29219/fnr.v65.5570.
  • Li, M., L. Dong, H. Du, Z. Bao, and S. Lin. 2021a. Potential mechanisms underlying the protective effects of Tricholoma matsutake singer peptides against LPS-induced inflammation in RAW264. 7 macrophages. Food Chemistry 353:129452. doi: 10.1016/j.foodchem.2021.129452.
  • Li, M., Q. Ge, H. Du, P. Jiang, Z. Bao, D. Chen, and S. Lin. 2021b. Potential mechanisms mediating the protective effects of Tricholoma matsutake-derived peptides in mitigating DSS-induced colitis. Journal of Agricultural and Food Chemistry 69 (19):5536–46. doi: 10.1021/acs.jafc.1c01908.
  • Li, M., R. Lv, C. Wang, Q. Ge, H. Du, and S. Lin. 2021c. Tricholoma matsutake-derived peptide WFNNAGP protects against DSS-induced colitis by ameliorating oxidative stress and intestinal barrier dysfunction. Food & Function 12 (23):11883–97. doi: 10.1039/D1FO02806E.
  • Li, S., B. Ma, J. Wang, H. Peng, M. Zheng, W. Dai, and J. Liu. 2020. Novel pentapeptide derived from chicken by-product ameliorates DSS-induced colitis by enhancing intestinal barrier function via AhR-induced Src inactivation. Journal of Agricultural and Food Chemistry 68 (48):14192–203. doi: 10.1021/acs.jafc.0c06319.
  • Li, T., J. Gao, M. Du, and X. Mao. 2019. Bovine α-lactalbumin hydrolysates ameliorate obesity-associated endotoxemia and inflammation in high-fat diet-fed mice through modulation of gut microbiota. Food & Function 10 (6):3368–78. doi: 10.1039/C8FO01967C.
  • Liang, Q., M. Chalamaiah, X. Ren, H. Ma, and J. Wu. 2018. Identification of new anti-inflammatory peptides from zein hydrolysate after simulated gastrointestinal digestion and transport in Caco-2 cells. Journal of Agricultural and Food Chemistry 66 (5):1114–20. doi: 10.1021/acs.jafc.7b04562.
  • Liang, Q., X. Ren, M. Chalamaiah, and H. Ma. 2020. Simulated gastrointestinal digests of corn protein hydrolysate alleviate inflammation in caco-2 cells and a mouse model of colitis. Journal of Food Science and Technology 57 (6):2079–88. doi: 10.1007/s13197-020-04242-7.
  • Liu, H., Z. Duan, J. Tang, Q. Lv, M. Rong, and R. Lai. 2014. A short peptide from frog skin accelerates diabetic wound healing. The FEBS Journal 281 (20):4633–43. doi: 10.1111/febs.12968.
  • Liu, W., X. Chen, H. Li, J. Zhang, J. An, and X. Liu. 2022. Anti-inflammatory function of plant-derived bioactive peptides: A review. Foods (Basel, Switzerland) 11 (15):2361. doi: 10.3390/foods11152361.
  • Liu, W., Y. Zhang, B. Qiu, S. Fan, H. Ding, and Z. Liu. 2018. Quinoa whole grain diet compromises the changes of gut microbiota and colonic colitis induced by dextran Sulfate sodium in C57BL/6 mice. Scientific Reports 8 (1):1–9. doi: 10.1038/s41598-018-33092-9.
  • Luna-Vital, D. A., E. González de Mejía, and G. Loarca-Piña. 2017. Dietary peptides from phaseolus vulgaris L. reduced AOM/DSS-induced colitis-associated colon carcinogenesis in Balb/c mice. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 72 (4):445–7. doi: 10.1007/s11130-017-0633-2.
  • Lv, R., Y. Dong, Z. Bao, S. Zhang, S. Lin, and N. Sun. 2022. Advances in the activity evaluation and cellular regulation pathways of food-derived antioxidant peptides. Trends in Food Science & Technology 122:171–86. doi: 10.1016/j.tifs.2022.02.026.
  • Muttenthaler, M., G. F. King, D. J. Adams, and P. F. Alewood. 2021. Trends in peptide drug discovery. Nature Reviews. Drug Discovery 20 (4):309–25. doi: 10.1038/s41573-020-00135-8.
  • Moffett, D. B., M. M. Mumtaz, D. W. Sullivan, Jr., and M. H. Whittaker. 2022. General considerations of dose-effect and dose-response relationships. Handbook on the toxicology of metals, 299–317. Academic Press. doi: 10.1016/B978-0-444-59453-2.00010-X.
  • Maestri, E., M. Pavlicevic, M. Montorsi, and N. Marmiroli. 2019. Meta‐analysis for correlating structure of bioactive peptides in foods of animal origin with regard to effect and stability. Comprehensive Reviews in Food Science and Food Safety 18 (1):3–30. doi: 10.1111/1541-4337.12402.
  • Marchbank, T., S. J. Ten Bruggencate, and R. J. Playford. 2021. Protease inhibitors protect bovine colostrum or chicken egg growth factors from pancreatic enzyme digestion in AGS cells or colitic rats. The Journal of Nutrition 151 (10):3036–44. doi: 10.1093/jn/nxab197.
  • Moronta, J., P. L. Smaldini, G. H. Docena, and M. C. Añón. 2016. Peptides of amaranth were targeted as containing sequences with potential anti-inflammatory properties. Journal of Functional Foods 21:463–73. doi: 10.1016/j.jff.2015.12.022.
  • Nagalingam, N. A., and S. V. Lynch. 2012. Role of the microbiota in inflammatory bowel diseases. Inflammatory Bowel Diseases 18 (5):968–84. doi: 10.1002/ibd.21866.
  • Nan, Y. H., K. H. Park, Y. J. Jeon, Y. Park, I. S. Park, K. S. Hahm, and S. Y. Shin. 2007. Antimicrobial and anti-inflammatory activities of a Leu/Lys-rich antimicrobial peptide with Phe-peptoid residues. Protein and Peptide Letters 14 (10):1003–7. doi: 10.2174/092986607782541042.
  • Narayanasamy, A., A. Balde, P. Raghavender, D. Shashanth, J. Abraham, I. Joshi, and R. A. Nazeer. 2020. Isolation of marine crab (Charybdis natator) leg muscle peptide and its anti-inflammatory effects on macrophage cells. Biocatalysis and Agricultural Biotechnology 25:101577. doi: 10.1016/j.bcab.2020.101577.
  • Ng, S. C., H. Y. Shi, N. Hamidi, F. E. Underwood, W. Tang, E. I. Benchimol, R. Panaccione, S. Ghosh, J. C. Y. Wu, F. K. L. Chan, et al. 2017. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: A systematic review of population-based studies. Lancet (London, England) 390 (10114):2769–78. doi: 10.1016/S0140-6736(17)32448-0.
  • O’Hara, A. M., A. Bhattacharyya, R. C. Mifflin, M. F. Smith, K. A. Ryan, K. G.-E. Scott, M. Naganuma, A. Casola, T. Izumi, S. Mitra, et al. 2006. Interleukin-8 induction by Helicobacter pylori in gastric epithelial cells is dependent on apurinic/apyrimidinic endonuclease-1/redox factor-1. Journal of Immunology (Baltimore, MD: 1950) 177 (11):7990–9. doi: 10.4049/jimmunol.177.11.7990.
  • Petito, V., V. Greco, L. Laterza, C. Graziani, C. Fanali, D. Lucchetti, M. R. Barbaro, F. Bugli, L. Pieroni, L. R. Lopetuso, et al. 2021. Impact of the trophic effects of the secretome from a multistrain probiotic preparation on the intestinal epithelia. Inflammatory Bowel Diseases 27 (6):902–13. doi: 10.1093/ibd/izaa298.
  • Paunovic, V., and M. M. Harnett. 2013. Mitogen-activated protein kinases as therapeutic targets for rheumatoid arthritis. Drugs 73 (2):101–15. doi: 10.1007/s40265-013-0014-6.
  • Phongthai, S., and S. Rawdkuen. 2020. Fractionation and characterization of antioxidant peptides from rice bran protein hydrolysates stimulated by in vitro gastrointestinal digestion. Cereal Chemistry 97 (2):316–25. doi: 10.1002/cche.10247.
  • Perez, S., R. Talens-Visconti, S. Rius-Perez, I. Finamor, and J. Sastre. 2017. Redox signaling in the gastrointestinal tract. Free Radical Biology & Medicine 104:75–103. doi: 10.1016/j.freeradbiomed.2016.12.048.
  • Pan, L.-L., M. Zhang, Z. Li, B. Li, X. Pan, X. Chen, B. Yang, H. Zhang, W. Chen, L. Zhang, et al. 2021. CRAMP-encoding Lactobacillus plantarum FCQHC24 attenuates experimental colitis in mice. Food Bioscience 42:101111. doi: 10.1016/j.fbio.2021.101111.
  • Qian, B., X. Zhao, Y. Yang, and C. Tian. 2020. Antioxidant and anti‐inflammatory peptide fraction from oyster soft tissue by enzymatic hydrolysis. Food Science & Nutrition 8 (7):3947–56. doi: 10.1002/fsn3.1710.
  • Rani, S., K. Pooja, and G. K. Pal. 2018. Exploration of rice protein hydrolysates and peptides with special reference to antioxidant potential: Computational derived approaches for bio-activity determination. Trends in Food Science & Technology 80:61–70. doi: 10.1016/j.tifs.2018.07.013.
  • Ren, D., P. Wang, C. Liu, J. Wang, X. Liu, J. Liu, and W. Min. 2018. Hazelnut protein-derived peptide LDAPGHR shows anti-inflammatory activity on LPS-induced RAW264.7 macrophage. Journal of Functional Foods 46:449–55. doi: 10.1016/j.jff.2018.04.024.
  • Reyes-Díaz, A., V. Mata-Haro, J. Hernández, A. F. González-Córdova, A. Hernández-Mendoza, R. Reyes-Díaz, M. J. Torres-Llanez, L. M. Beltrán-Barrientos, and B. Vallejo-Cordoba. 2018. Milk fermented by specific lactobacillus strains regulates the serum levels of IL-6, TNF-α and IL-10 cytokines in a LPS-stimulated murine model. Nutrients 10 (6):691. doi: 10.3390/nu10060691.
  • Sadowska, B., J. Rywaniak, A. Cichocka, K. Cichocka, J. Żuchowski, U. Wójcik-Bojek, M. Więckowska-Szakiel, and B. Różalska. 2020. Phenolic and non-polar fractions of the extracts from fruits, leaves, and twigs of Elaeagnus rhamnoides (L.) A. Nelson—The implications for human barrier cells. Molecules (Basel, Switzerland) 25 (9):2238. doi: 10.3390/molecules25092238.
  • Sahu, K. K., S. Minz, M. Kaurav, and R. S. Pandey. 2016. Proteins and peptides: The need to improve them as promising therapeutics for ulcerative colitis. Artificial Cells, Nanomedicine, and Biotechnology 44 (2):642–53. doi: 10.3109/21691401.2014.975239.
  • Sangtanoo, P., P. Srimongkol, T. Saisavoey, O. Reamtong, and A. Karnchanatat. 2020. Anti-inflammatory action of two novel peptides derived from peanut worms (Sipunculus nudus) in lipopolysaccharide-induced RAW264.7 macrophages. Food & Function 11 (1):552–60. doi: 10.1039/C9FO02178G.
  • Schülke, S. 2018. Induction of interleukin-10 producing dendritic cells as a tool to suppress allergen-specific T helper 2 responses. Frontiers in Immunology 9:455. doi: 10.3389/fimmu.2018.00455.
  • Shi, Z., B. Dun, Z. Wei, C. Liu, J. Tian, G. Ren, and Y. Yao. 2021. Peptides released from extruded adzuki bean protein through simulated gastrointestinal digestion exhibit anti-inflammatory activity. Journal of Agricultural and Food Chemistry 69 (25):7028–36. doi: 10.1021/acs.jafc.1c01712.
  • Shimizu, T., C. Takagi, T. Sawano, Y. Eijima, J. Nakatani, T. Fujita, and H. Tanaka. 2021. Indigo enhances wound healing activity of Caco-2 cells via activation of the aryl hydrocarbon receptor. Journal of Natural Medicines 75 (4):833–9. doi: 10.1007/s11418-021-01524-y.
  • Shin, D. W., and B. O. Lim. 2020. Nutritional interventions using functional foods and nutraceuticals to improve inflammatory bowel disease. Journal of Medicinal Food 23 (11):1136–45. doi: 10.1089/jmf.2020.4712.
  • Soleimani, A., F. Rahmani, G. A. Ferns, M. Ryzhikov, A. Avan, and S. M. Hassanian. 2020. Role of the NF-κB signaling pathway in the pathogenesis of colorectal cancer. Gene 726:144132. doi: 10.1016/j.gene.2019.144132.
  • Sun, C., X. Tang, X. Shao, D. Han, H. Zhang, Y. Shan, R. Gooneratne, L. Shi, X. Wu, and M. Hosseininezhad. 2021. Mulberry (Morus atropurpurea Roxb.) leaf protein hydrolysates ameliorate dextran sodium sulfate-induced colitis via integrated modulation of gut microbiota and immunity. Journal of Functional Foods 84:104575. doi: 10.1016/j.jff.2021.104575.
  • Tenore, G. C., E. Pagano, S. Lama, D. Vanacore, S. Di Maro, M. Maisto, R. Capasso, F. Merlino, F. Borrelli, P. Stiuso, et al. 2019. Intestinal anti-inflammatory effect of a peptide derived from gastrointestinal digestion of buffalo (Bubalus bubalis) mozzarella cheese. Nutrients 11 (3):610. doi: 10.3390/nu11030610.
  • Visekruna, A., T. Joeris, D. Seidel, A. Kroesen, C. Loddenkemper, M. Zeitz, S. H. E. Kaufmann, R. Schmidt-Ullrich, and U. Steinhoff. 2006. Proteasome-mediated degradation of IκBα and processing of p105 in Crohn disease and ulcerative colitis. The Journal of Clinical Investigation 116 (12):3195–203. doi: 10.1172/JCI28804.
  • Wada, S., T. Kiyono, S. Fukunaga, W. Aoi, Y. Naito, K. Sato, and A. Higashi. 2018. Japanese rice wine (sake)-derived pyroglutamyl peptides have anti-inflammatory effect on dextran sulfate sodium (DSS)-induced acute colitis in mice. Free Radical Biology and Medicine 120:S141. doi: 10.1016/j.freeradbiomed.2018.04.465.
  • Wada, S., K. Sato, R. Ohta, E. Wada, Y. Bou, M. Fujiwara, T. Kiyono, E. Y. Park, W. Aoi, T. Takagi, et al. 2013. Ingestion of low dose pyroglutamyl leucine improves dextran sulfate sodium-induced colitis and intestinal microbiota in mice. Journal of Agricultural and Food Chemistry 61 (37):8807–13. doi: 10.1021/jf402515a.
  • Wan, P., Y. Peng, G. Chen, M. Xie, Z. Dai, K. Huang, W. Dong, X. Zeng, and Y. Sun. 2019. Modulation of gut microbiota by Ilex kudingcha improves dextran sulfate sodium-induced colitis. Food Research International (Ottawa, ON) 126:108595. doi: 10.1016/j.foodres.2019.108595.
  • Wang, F., Z. Weng, Y. Lyu, Y. Bao, J. Liu, Y. Zhang, X. Sui, Y. Fang, X. Tang, and X. Shen. 2020. Wheat germ-derived peptide ADWGGPLPH abolishes high glucose-induced oxidative stress via modulation of the PKCζ/AMPK/NOX4 pathway. Food & Function 11 (8):6843–54. doi: 10.1039/D0FO01229G.
  • Wang, Q., T. Zhi, P. Han, S. Li, J. Xia, Z. Chen, C. Wang, Y. Wu, Y. Jia, and A. Ma. 2021. Potential anti-inflammatory activity of walnut protein derived peptide leucine-proline-phenylalanine in lipopolysaccharides-irritated RAW264. 7 cells. Food and Agricultural Immunology 32 (1):663–78. doi: 10.1080/09540105.2021.1982870.
  • Weber, C. R., S. C. Nalle, M. Tretiakova, D. T. Rubin, and J. R. Turner. 2008. Claudin-1 and claudin-2 expression is elevated in inflammatory bowel disease and may contribute to early neoplastic transformation. Laboratory Investigation; a Journal of Technical Methods and Pathology 88 (10):1110–20. doi: 10.1038/labinvest.2008.78.
  • Wen, L., Y. Chen, L. Zhang, H. Yu, Z. Xu, H. You, and Y. Cheng. 2016. Rice protein hydrolysates (RPHs) inhibit the LPS-stimulated inflammatory response and phagocytosis in RAW264.7 macrophages by regulating the NF-κB signaling pathway. RSC Advances 6 (75):71295–304. doi: 10.1039/C6RA08927E.
  • Xiang, X. W., X. L. Zhou, R. Wang, C. H. Shu, Y. F. Zhou, X. G. Ying, and B. Zheng. 2021. Protective effect of tuna bioactive peptide on dextran sulfate sodium-induced colitis in mice. Marine Drugs 19 (3):127. doi: 10.3390/md19030127.
  • Yiu, H. H., A. L. Graham, and R. F. Stengel. 2012. Dynamics of a cytokine storm. PLOS ONE 7(10), e45027. doi: 10.1371/journal.pone.0045027.
  • Zhang, M., Y. Zhao, N. Wu, Y. Yao, M. Xu, H. Du, and Y. Tu. 2018a. The anti-inflammatory activity of peptides from simulated gastrointestinal digestion of preserved egg white in DSS-induced mouse colitis. Food & Function 9 (12):6444–54. doi: 10.1039/C8FO01939H.
  • Zhang, M., Y. Zhao, Y. Yao, M. Xu, H. Du, N. Wu, and Y. Tu. 2018b. Anti-inflammatory effects of preserved egg white. The Journal of Nutritional Biochemistry 63, 44–53. doi: 10.1016/j.jnutbio.2018.09.019.
  • Zhang, Y., S. Chen, X. Zong, C. Wang, C. Shi, F. Wang, Y. Wang, and Z. Lu. 2020. Peptides derived from fermented soybean meal suppresses intestinal inflammation and enhances epithelial barrier function in piglets. Food and Agricultural Immunology 31 (1):120–35. doi: 10.1080/09540105.2019.1705766.
  • Zhao, L., W. Tian, W. Qu, T. Li, J. Zhu, and H. Ma. 2021. Protease hydrolysates ameliorates inflammation and intestinal flora imbalance in DSS-induced colitis mice. Journal of Food Quality 2021:1–11. doi: 10.1155/2021/5536148.
  • Zhao, Y., Y. Yao, M. Xu, S. Wang, X. Wang, and Y. Tu. 2017. Simulated gastrointestinal digest from preserved egg white exerts anti-inflammatory effects on Caco-2 cells and a mouse model of DSS-induced colitis. Journal of Functional Foods 35:655–65. doi: 10.1016/j.jff.2017.06.028.
  • Zhou, N., Y. Yao, N. Wu, H. Du, M. Xu, Y. Zhao, and Y. Tu. 2022. VF‐4 and DR‐8 derived from salted egg white inhibit inflammatory activity via NF‐κB/PI3K‐Akt/MAPK signal transduction pathways in HT‐29 cells induced by TNF‐α. Molecular Nutrition & Food Research 66 (3):2100682. doi: 10.1002/mnfr.202100682.
  • Zhou, Y., Q. Xu, Y. Dong, S. Zhu, S. Song, and N. Sun. 2017. Supplementation of mussel peptides reduces aging phenotype, lipid deposition and oxidative stress in D-galactose-induce aging mice. The Journal of Nutrition, Health & Aging 21 (10):1314–20. doi: 10.1007/s12603-016-0862-3.
  • Zhu, W., L. Ren, L. Zhang, Q. Qiao, M. Z. Farooq, and Q. Xu. 2020. The potential of food protein-derived bioactive peptides against chronic intestinal inflammation. Mediators of Inflammation 2020:6817156. doi: 10.1155/2020/6817156.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.