534
Views
0
CrossRef citations to date
0
Altmetric
Review

Designing starch derivatives with desired structures and functional properties via rearrangements of glycosidic linkages by starch-active transglycosylases

, , , ORCID Icon, , & show all

References

  • Ai, Y., and J. Jane. 2015. Gelatinization and rheological properties of starch. Starch - Stärke 67 (3–4):213–24. doi: 10.1002/star.201400201.
  • Albenne, C., L. K. Skov, O. Mirza, M. Gajhede, G. Potocki-Véronèse, P. Monsan, and M. Remaud-Simeon. 2002. Maltooligosaccharide disproportionation reaction: An intrinsic property of amylosucrase from Neisseria polysaccharea. FEBS Letters 527 (1–3):67–70. doi: 10.1016/s0014-5793(02)03168-x.
  • Alting, A. C., F. Van De Velde, M. W. Kanning, M. Burgering, L. Mulleners, A. Sein, and P. Buwalda. 2009. Improved creaminess of low-fat yoghurt: The impact of amylomaltase-treated starch domains. Food Hydrocolloids. 23 (3):980–7. doi: 10.1016/j.foodhyd.2008.07.011.
  • Andersen, S., M. S. Møller, J.-C N. Poulsen, M. J. Pichler, B. Svensson, L. Lo Leggio, Y. J. Goh, and M. Abou Hachem. 2020. An 1, 4-α-glucosyltransferase defines a new maltodextrin catabolism scheme in Lactobacillus acidophilus. Applied and Environmental Microbiology 86 (15):e00661-20. doi: 10.1128/AEM.00661-20.
  • Ao, Z., S. Simsek, G. Zhang, M. Venkatachalam, B. L. Reuhs, and B. R. Hamaker. 2007. Starch with a slow digestion property produced by altering its chain length, branch density, and crystalline structure. Journal of Agricultural and Food Chemistry 55 (11):4540–7. doi: 10.1021/jf063123x.
  • Bai, Y., J. M. Dobruchowska, R. M. van der Kaaij, G. J. Gerwig, and L. Dijkhuizen. 2016. Structural basis for the roles of starch and sucrose in homo-exopolysaccharide formation by Lactobacillus reuteri 35-5. Carbohydrate Polymers 151:29–39. doi: 10.1016/j.carbpol.2016.05.048.
  • Bai, Y., J. Gangoiti, B. W. Dijkstra, L. Dijkhuizen, and T. Pijning. 2017. Crystal structure of 4, 6-α-glucanotransferase supports diet-driven evolution of GH70 enzymes from α-amylases in oral bacteria. Structure (London, England: 1993) 25 (2):231–42. doi: 10.1016/j.str.2016.11.023.
  • Bangar, S. P., A. O. Ashogbon, A. Singh, V. Chaudhary, and W. S. Whiteside. 2022. Enzymatic modification of starch: A green approach for starch applications. Carbohydrate Polymers 287 (1):119265. doi: 10.1016/j.carbpol.2022.119265.
  • Barends, T. R., J. B. Bultema, T. Kaper, M. J. van der Maarel, L. Dijkhuizen, and B. W. Dijkstra. 2007. Three-way stabilization of the covalent intermediate in amylomaltase, an α-amylase-like transglycosylase. The Journal of Biological Chemistry 282 (23):17242–9. doi: 10.1074/jbc.M701444200.
  • Bhuiyan, S. H., M. Kitaoka, and K. Hayashi. 2003. A cycloamylose-forming hyperthermostable 4-α-glucanotransferase of Aquifex aeolicus expressed in Escherichia coli. Journal of Molecular Catalysis B: Enzymatic 22 (1–2):45–53. doi: 10.1016/S1381-1177(03)00005-5.
  • Biliaderis, C. G. 2009. Structural transitions and related physical properties of starch. In Starch, 293–372. New York, USA: Academic Press.
  • Biwer, A., G. Antranikian, and E. Heinzle. 2002. Enzymatic production of cyclodextrins. Applied Microbiology and Biotechnology 59 (6):609–17. doi: 10.1007/s00253-002-1057-x.
  • Buleon, A., P. Colonna, V. Planchot, and S. Ball. 1998. Starch granules: Structure and biosynthesis. International Journal of Biological Macromolecules 23 (2):85–112. doi: 10.1016/s0141-8130(98)00040-3.
  • Buwalda, P. L. 2014. Formulating gelatin free products. In Food texture design and optimization, 93. Hoboken, USA: John Wiley & Sons, Ltd. doi: 10.1002/9781118765616.ch5.
  • Choi, S. S., B. Danielewska-Nikiel, K. Ohdan, I. Kojima, H. Takata, and T. Kuriki. 2009. Safety evaluation of highly-branched cyclic dextrin and a 1, 4-α-glucan branching enzyme from Bacillus stearothermophilus. Regulatory Toxicology and Pharmacology: RTP 55 (3):281–90. doi: 10.1016/j.yrtph.2009.07.011.
  • De Montalk, G. P., M. Remaud-Simeon, R.-M. Willemot, P. Sarçabal, V. Planchot, and P. Monsan. 2000. Amylosucrase from Neisseria polysaccharea: Novel catalytic properties. FEBS Letters 471 (2–3):219–23. doi: 10.1016/s0014-5793(00)01406-x.
  • Devillers, C. H., M. E. Piper, M. A. Ballicora, and J. Preiss. 2003. Characterization of the branching patterns of glycogen branching enzyme truncated on the N-terminus. Archives of Biochemistry and Biophysics 418 (1):34–8. doi: 10.1016/s0003-9861(03)00341-2.
  • Dippel, R., and W. Boos. 2005. The maltodextrin system of Escherichia coli: Metabolism and transport. Journal of Bacteriology 187 (24):8322–31. doi: 10.1128/JB.187.24.8322-8331.2005.
  • Dodziuk, H., A. Ejchart, W. Anczewski, H. Ueda, E. Krinichnaya, G. Dolgonos, and W. Kutner. 2003. Water solubilization, determination of the number of different types of single-wall carbon nanotubes and their partial separation with respect to diameters by complexation with η-cyclodextrin. Chemical Communications 8 (8):986–7. doi: 10.1039/b211365a.
  • Drula, E., M.-L. Garron, S. Dogan, V. Lombard, B. Henrissat, and N. Terrapon. 2022. The carbohydrate-active enzyme database: Functions and literature. Nucleic Acids Research 50 (D1):D571–D577. doi: 10.1093/nar/gkab1045.
  • El Mannai, Y., R. Deto, M. Kuroki, R. Suzuki, and E. Suzuki. 2021. Cyanobacterial branching enzymes bind to α-glucan via surface binding sites. Archives of Biochemistry and Biophysics 702:108821. doi: 10.1016/j.abb.2021.108821.
  • Fan, X., Y. Wang, Y. Bai, Z. Jin, and B. Svensson. 2022. Enhancing gel strength of Thermoproteus uzoniensis 4-α-glucanotransferase modified starch by amylosucrase treatment. International Journal of Biological Macromolecules 209 (Pt A):1–8. doi: 10.1016/j.ijbiomac.2022.03.153.
  • Fujiwara, S., H. Kakihara, K. Sakaguchi, and T. Imanaka. 1992. Analysis of mutations in cyclodextrin glucanotransferase from Bacillus stearothermophilus which affect cyclization characteristics and thermostability. Journal of Bacteriology 174 (22):7478–81. doi: 10.1128/jb.174.22.7478-7481.1992.
  • Gaenssle, A. L. O., H. H. M. Bax, M. J. E. C. van der Maarel, and E. Jurak. 2021. GH13 Glycogen branching enzymes can adapt the substrate chain length towards their preferences via α-1, 4-transglycosylation. Enzyme and Microbial Technology 150:109882. doi: 10.1016/j.enzmictec.2021.109882.
  • Gangoiti, J., S. F. Corwin, L. M. Lamothe, C. Vafiadi, B. R. Hamaker, and L. Dijkhuizen. 2020. Synthesis of novel α-glucans with potential health benefits through controlled glucose release in the human gastrointestinal tract. Critical Reviews in Food Science and Nutrition 60 (1):123–46. doi: 10.1080/10408398.2018.1516621.
  • Gangoiti, J., S. S. van Leeuwen, G. J. Gerwig, S. Duboux, C. Vafiadi, T. Pijning, and L. Dijkhuizen. 2017. 3-α-Glucanotransferase, a novel reaction specificity in glycoside hydrolase family 70 and clan GH-H. Scientific Reports 7 (1):15. doi: 10.1038/srep39761.
  • Garcia, M. A. V. T., C. F. Garcia, and A. A. G. Faraco. 2020. Pharmaceutical and biomedical applications of native and modified starch: A review. Starch - Stärke 72 (7–8):1900270. doi: 10.1002/star.201900270.
  • Gavgani, H. N., R. Fawaz, N. Ehyaei, D. Walls, K. Pawlowski, R. Fulgos, S. Park, Z. Assar, A. Ghanbarpour, and J. H. Geiger. 2022. A structural explanation for the mechanism and specificity of plant branching enzymes I and IIb. The Journal of Biological Chemistry 298 (1):101395. doi: 10.1016/j.jbc.2021.101395.
  • Grimaud, F., C. Lancelon-Pin, A. Rolland-Sabaté, X. Roussel, S. Laguerre, A. Viksø-Nielsen, J.-L. Putaux, S. Guilois, A. Buléon, C. D’Hulst, et al. 2013. In vitro synthesis of hyperbranched α-glucans using a biomimetic enzymatic toolbox. Biomacromolecules 14 (2):438–47. doi: 10.1021/bm301676c.
  • Gu, F., K. Borewicz, B. Richter, P. H. der Zaal, H. Smidt, P. L. Buwalda, and H. A. Schols. 2018. In vitro fermentation behavior of isomalto/malto‐polysaccharides using human fecal inoculum indicates prebiotic potential. Molecular Nutrition & Food Research 62 (12):1800232. doi: 10.1002/mnfr.201800232.
  • Gu, Z., B. Chen, and Y. Tian. 2021. Highly branched corn starch: Preparation, encapsulation, and release of ascorbic acid. Food Chemistry 343:128485. doi: 10.1016/j.foodchem.2020.128485.
  • Hamilton, L. M., C. T. Kelly, and W. M. Fogarty. 2000. Cyclodextrins and their interaction with amylolytic enzymes. Enzyme and Microbial Technology 26 (8):561–7. doi: 10.1016/s0141-0229(00)00141-1.
  • Hayashi, M., R. Suzuki, C. Colleoni, S. G. Ball, N. Fujita, and E. Suzuki. 2017. Bound substrate in the structure of cyanobacterial branching enzyme supports a new mechanistic model. The Journal of Biological Chemistry 292 (13):5465–75. doi: 10.1074/jbc.M116.755629.
  • Jane, J., Y. Chen, L. Lee, A. McPherson, K. Wong, M. Radosavljevic, and T. Kasemsuwan. 1999. Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch. Cereal Chemistry Journal 76 (5):629–37. doi: 10.1094/CCHEM.1999.76.5.629.
  • Ji, H., Y. Bai, X. Li, J. Wang, X. Xu, and Z. Jin. 2019. Preparation of malto-oligosaccharides with specific degree of polymerization by a novel cyclodextrinase from Palaeococcus pacificus. Carbohydrate Polymers 210:64–72. doi: 10.1016/j.carbpol.2019.01.041.
  • Jiang, H., M. Miao, F. Ye, B. Jiang, and T. Zhang. 2014. Enzymatic modification of corn starch with 4-α-glucanotransferase results in increasing slow digestible and resistant starch. International Journal of Biological Macromolecules 65:208–14. doi: 10.1016/j.ijbiomac.2014.01.044.
  • Kajiura, H., R. Kakutani, T. Akiyama, H. Takata, and T. Kuriki. 2008. A novel enzymatic process for glycogen production. Biocatalysis and Biotransformation 26 (1–2):133–40. doi: 10.1080/10242420701789411.
  • Kajiura, H., H. Takata, T. Akiyama, R. Kakutani, T. Furuyashiki, I. Kojima, T. Harui, and T. Kuriki. 2011. In vitro synthesis of glycogen: The structure, properties, and physiological function of enzymatically-synthesized glycogen. Biologia 66 (3):387–94. doi: 10.2478/s11756-011-0053-y.
  • Kajiura, H., H. Takata, T. Kuriki, and S. Kitamura. 2010. Structure and solution properties of enzymatically synthesized glycogen. Carbohydrate Research 345 (6):817–24. doi: 10.1016/j.carres.2010.01.013.
  • Kakutani, R., Y. Adachi, H. Kajiura, H. Takata, T. Kuriki, and N. Ohno. 2007. Relationship between structure and immunostimulating activity of enzymatically synthesized glycogen. Carbohydrate Research 342 (16):2371–9. doi: 10.1016/j.carres.2007.07.024.
  • Kakutani, R., Y. Adachi, H. Kajiura, H. Takata, N. Ohno, and T. Kuriki. 2008. Stimulation of macrophage by enzymatically synthesized glycogen: The relationship between structure and biological activity. Biocatalysis and Biotransformation 26 (1-2):152–60. doi: 10.1080/10242420701804541.
  • Kaper, T., H. Leemhuis, J. C. Uitdehaag, B. A. Van Der Veen, B. W. Dijkstra, M. J. van der Maarel, and L. Dijkhuizen. 2007. Identification of acceptor substrate binding subsites + 2 and + 3 in the amylomaltase from Thermus thermophilus HB8. Biochemistry 46 (17):5261–9. doi: 10.1021/bi602408j.
  • Kaur, B., F. Ariffin, R. Bhat, and A. A. Karim. 2012. Progress in starch modification in the last decade. Food Hydrocolloids 26 (2):398–404. doi: 10.1016/j.foodhyd.2011.02.016.
  • Kelly, R. M., L. Dijkhuizen, and H. Leemhuis. 2009. The evolution of cyclodextrin glucanotransferase product specificity. Applied Microbiology and Biotechnology 84 (1):119–33. doi: 10.1007/s00253-009-1988-6.
  • Kelly, R. M., H. Leemhuis, H. J. Rozeboom, N. van Oosterwijk, B. W. Dijkstra, and L. Dijkhuizen. 2008. Elimination of competing hydrolysis and coupling side reactions of a cyclodextrin glucanotransferase by directed evolution. The Biochemical Journal 413 (3):517–25. doi: 10.1042/BJ20080353.
  • Kim, Y.-L., S. Mun, K.-H. Park, J.-Y. Shim, and Y.-R. Kim. 2013. Physicochemical functionality of 4-α-glucanotransferase-treated rice flour in food application. International Journal of Biological Macromolecules 60:422–6. doi: 10.1016/j.ijbiomac.2013.04.032.
  • Kong, D., L. Wang, L. Su, and J. Wu. 2021. Effect of Leu277 on disproportionation and hydrolysis activity in Bacillus stearothermophilus NO2 cyclodextrin glucosyltransferase. Applied and Environmental Microbiology 87 (12):03151. doi: 10.1128/AEM.03151-20.
  • Kralj, S., P. Grijpstra, S. S. van Leeuwen, H. Leemhuis, J. M. Dobruchowska, R. M. van der Kaaij, A. Malik, A. Oetari, J. P. Kamerling, and L. Dijkhuizen. 2011. 4, 6-α-Glucanotransferase, a novel enzyme that structurally and functionally provides an evolutionary link between glycoside hydrolase enzyme families 13 and 70. Applied and Environmental Microbiology 77 (22):8154–63. doi: 10.1128/AEM.05735-11.
  • Kringel, D. H., M. D. Antunes, B. Klein, R. L. Crizel, R. Wagner, R. P. de Oliveira, A. R. G. Dias, and E. d. R. Zavareze. 2017. Production, characterization, and stability of orange or eucalyptus essential oil/β‐cyclodextrin inclusion complex. Journal of Food Science 82 (11):2598–605. doi: 10.1111/1750-3841.13923.
  • Larsen, K. L., T. Endo, H. Ueda, and W. Zimmermann. 1998. Inclusion complex formation constants of α-, β-, γ-, δ-, ε-, ζ-, η-and θ-cyclodextrins determined with capillary zone electrophoresis. Carbohydrate Research 309 (2):153–9. doi: 10.1016/S0008-6215(98)00130-X.
  • Lee, K. Y., Y.-R. Kim, K. H. Park, and H. G. Lee. 2006. Effects of α-glucanotransferase treatment on the thermo-reversibility and freeze-thaw stability of a rice starch gel. Carbohydrate Polymers 63 (3):347–54. doi: 10.1016/j.carbpol.2005.08.050.
  • Leemhuis, H., J. M. Dobruchowska, M. Ebbelaar, F. Faber, P. L. Buwalda, M. J. van der Maarel, J. P. Kamerling, and L. Dijkhuizen. 2014. Isomalto/malto-polysaccharide, a novel soluble dietary fiber made via enzymatic conversion of starch. Journal of Agricultural and Food Chemistry 62 (49):12034–44. doi: 10.1021/jf503970a.
  • Leemhuis, H., R. M. Kelly, and L. Dijkhuizen. 2010. Engineering of cyclodextrin glucanotransferases and the impact for biotechnological applications. Applied Microbiology and Biotechnology 85 (4):823–35. doi: 10.1007/s00253-009-2221-3.
  • Li, X., Y. Bai, Z. Jin, and B. Svensson. 2022. Food-derived non-phenolic α-amylase and α-glucosidase inhibitors for controlling starch digestion rate and guiding diabetes-friendly recipes. LWT 153:112455. doi: 10.1016/j.lwt.2021.112455.
  • Li, Y., J. Ren, J. Liu, L. Sun, Y. Wang, B. Liu, C. Li, and Z. Li. 2018. Modification by α-D-glucan branching enzyme lowers the in vitro digestibility of starch from different sources. International Journal of Biological Macromolecules 107 (Pt B):1758–64. doi: 10.1016/j.ijbiomac.2017.10.049.
  • Liu, J., Y. Wang, X. Li, Z. Jin, B. Svensson, and Y. Bai. 2022. Effect of starch primers on the fine structure of enzymatically synthesized glycogen-like glucan. Journal of Agricultural and Food Chemistry 70 (20):6202–12. doi: 10.1021/acs.jafc.2c00152.
  • Manners, D. J. 1989. Recent developments in our understanding of amylopectin structure. Carbohydrate Polymers 11 (2):87–112. doi: 10.1016/0144-8617(89)90018-0.
  • Meng, X., J. Gangoiti, Y. Bai, T. Pijning, S. S. Van Leeuwen, and L. Dijkhuizen. 2016. Structure–function relationships of family GH70 glucansucrase and 4, 6-α-glucanotransferase enzymes, and their evolutionary relationships with family GH13 enzymes. Cellular and Molecular Life Sciences: CMLS 73 (14):2681–706. doi: 10.1007/s00018-016-2245-7.
  • Meng, X., J. Gangoiti, N. Kok, S. Leeuwen, T. Pijning, and L. Dijkhuizen. 2018. Biochemical characterization of two GH70 family 4,6-α-glucanotransferases with distinct product specificity from Lactobacillus aviarius subsp. aviarius DSM 20655. Food Chemistry 253 (1):236–46. doi: 10.1016/j.foodchem.2018.01.154.
  • Moulis, C., I. André, and M. Remaud-Simeon. 2016. GH13 amylosucrases and GH70 branching sucrases, atypical enzymes in their respective families. Cellular and Molecular Life Sciences: CMLS 73 (14):2661–79. doi: 10.1007/s00018-016-2244-8.
  • Nakamura, A., K. Haga, and K. Yamane. 1994. Four aromatic residues in the active center of cyclodextrin glucanotransferase from alkalophilic Bacillus sp. 1011: Effects of replacements on substrate binding and cyclization characteristics. Biochemistry 33 (33):9929–36. doi: 10.1021/bi00199a015.
  • Nakamura, H., T. Takaha, and S. Okada. 1996. Synthesis and characterization of cycloamylose, a novel cyclic glucan. Shokuhin Kogyo 39:52–9.
  • Nugent, A. P. 2005. Health properties of resistant starch. Nutrition Bulletin 30 (1):27–54. doi: 10.1111/j.1467-3010.2005.00481.x.
  • Oudjeriouat, N., Y. Moreau, M. Santimone, B. Svensson, G. Marchis‐Mouren, and V. Desseaux. 2003. On the mechanism of α‐amylase: Acarbose and cyclodextrin inhibition of barley amylase isozymes. European Journal of Biochemistry 270 (19):3871–9. doi: 10.1046/j.1432-1033.2003.03733.x.
  • Pal, K., S. Kumar, S. Sharma, S. K. Garg, M. S. Alam, H. E. Xu, P. Agrawal, and K. Swaminathan. 2010. Crystal structure of full-length Mycobacterium tuberculosis H37Rv glycogen branching enzyme: Insights of N-terminal β-sandwich in substrate specificity and enzymatic activity. The Journal of Biological Chemistry 285 (27):20897–903. doi: 10.1074/jbc.M110.121707.
  • Palomo, M., T. Pijning, T. Booiman, J. M. Dobruchowska, J. van der Vlist, S. Kralj, A. Planas, K. Loos, J. P. Kamerling, B. W. Dijkstra, et al. 2011. Thermus thermophilus glycoside hydrolase family 57 branching enzyme: Crystal structure, mechanism of action, and products formed. The Journal of Biological Chemistry 286 (5):3520–30. doi: 10.1074/jbc.M110.179515.
  • Park, S., and Y.-R. Kim. 2021. Clean label starch: Production, physicochemical characteristics, and industrial applications. Food Science and Biotechnology 30 (1):1–17. doi: 10.1007/s10068-020-00834-3.
  • Parsiegla, G., A. K. Schmidt, and G. E. Schulz. 1998. Substrate binding to a cyclodextrin glycosyltransferase and mutations increasing the γ‐cyclodextrin production. European Journal of Biochemistry 255 (3):710–7. doi: 10.1046/j.1432-1327.1998.2550710.x.
  • Penninga, D., B. Strokopytov, H. J. Rozeboom, C. L. Lawson, B. W. Dijkstra, J. Bergsma, and L. Dijkhuizen. 1995. Site-directed mutations in tyrosine 195 of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 affect activity and product specificity. Biochemistry 34 (10):3368–76. doi: 10.1021/bi00010a028.
  • Pijning, T., J. Gangoiti, E. M. Te Poele, T. Börner, and L. Dijkhuizen. 2021. Insights into broad-specificity starch modification from the crystal structure of Limosilactobacillus reuteri NCC 2613 4, 6-α-Glucanotransferase GtfB. Journal of Agricultural and Food Chemistry 69 (44):13235–45. doi: 10.1021/acs.jafc.1c05657.
  • Przylas, I., Y. Terada, K. Fujii, T. Takaha, W. Saenger, and N. Sträter. 2000. X‐ray structure of acarbose bound to amylomaltase from Thermus aquaticus: Implications for the synthesis of large cyclic glucans. European Journal of Biochemistry 267 (23):6903–13. doi: 10.1046/j.1432-1033.2000.01790.x.
  • Rolland-Sabaté, A., P. Colonna, G. Potocki-Veronese, P. Monsan, and V. Planchot. 2004. Elongation and insolubilisation of α-glucans by the action of Neisseria polysaccharea amylosucrase. Journal of Cereal Science 40 (1):17–30. doi: 10.1016/j.jcs.2004.04.001.
  • Roth, C., N. Weizenmann, N. Bexten, W. Saenger, W. Zimmermann, T. Maier, and N. Sträter. 2017. Amylose recognition and ring-size determination of amylomaltase. Science Advances 3 (1):e1601386. doi: 10.1126/sciadv.1601386.
  • Ryoyama, K., Y. Kidachi, H. Yamaguchi, H. Kajiura, and H. Takata. 2004. Anti-tumor activity of an enzymatically synthesized α-1, 6 branched α-1, 4-glucan, glycogen. Bioscience, Biotechnology, and Biochemistry 68 (11):2332–40. doi: 10.1271/bbb.68.2332.
  • Seibold, G. M., K. J. Breitinger, R. Kempkes, L. Both, M. Krämer, S. Dempf, and B. J. Eikmanns. 2011. The glgB-encoded glycogen branching enzyme is essential for glycogen accumulation in Corynebacterium glutamicum. Microbiology (Reading, England) 157 (Pt 11):3243–51. doi: 10.1099/mic.0.051565-0.
  • Shah, U., F. Naqash, A. Gani, and F. Masoodi. 2016. Art and science behind modified starch edible films and coatings: A review. Comprehensive Reviews in Food Science and Food Safety 15 (3):568–80. doi: 10.1111/1541-4337.12197.
  • Shin, H. J., S. J. Choi, C. S. Park, and T. W. Moon. 2010. Preparation of starches with low glycaemic response using amylosucrase and their physicochemical properties. Carbohydrate Polymers 82 (2):489–97. doi: 10.1016/j.carbpol.2010.05.017.
  • Sin, K.-A., A. Nakamura, H. Masaki, Y. Matsuura, and T. Uozumi. 1994. Replacement of an amino acid residue of cyclodextrin glucanotransferase of Bacillus ohbensis doubles the production of γ-cyclodextrin. Journal of Biotechnology 32 (3):283–8. doi: 10.1016/0168-1656(94)90214-3.
  • Sin, K.-A., A. Nakamura, H. Masaki, and T. Uozumi. 1993. Extracellular production of Bacillus ohbensis cyclodextrin glucanotransferase by B. subtilis. Bioscience, Biotechnology, and Biochemistry 57 (2):346–7. doi: 10.1271/bbb.57.346.
  • Singh, R. S., G. K. Saini, and J. F. Kennedy. 2008. Pullulan: Microbial sources, production and applications. Carbohydrate Polymers 73 (4):515–31. doi: 10.1016/j.carbpol.2008.01.003.
  • Sorndech, W., S. Meier, A. M. Jansson, D. Sagnelli, O. Hindsgaul, S. Tongta, and A. Blennow. 2015. Synergistic amylomaltase and branching enzyme catalysis to suppress cassava starch digestibility. Carbohydrate Polymers 132:409–18. doi: 10.1016/j.carbpol.2015.05.084.
  • Strokopytov, B., R. M. Knegtel, D. Penninga, H. J. Rozeboom, K. H. Kalk, L. Dijkhuizen, and B. W. Dijkstra. 1996. Structure of cyclodextrin glycosyltransferase complexed with a maltononaose inhibitor at 2.6 Å resolution. Implications for product specificity. Biochemistry 35 (13):4241–9. doi: 10.1021/bi952339h.
  • Szejtli, J. 2013. Cyclodextrin technology. Vol. 1. Berlin, Germany: Springer Science & Business Media.
  • Taira, H., H. Nagase, T. Endo, and H. Ueda. 2006. Isolation, purification and characterization of large-ring cyclodextrins (CD36-CD39). Journal of Inclusion Phenomena and Macrocyclic Chemistry 56 (1-2):23–8. doi: 10.1007/s10847-006-9055-8.
  • Takaha, T., and S. M. Smith. 1999. The functions of 4-α-glucanotransferases and their use for the production of cyclic glucans. Biotechnology & Genetic Engineering Reviews 16:257–80. doi: 10.1080/02648725.1999.10647978.
  • Takaha, T., M. Yanase, H. Takata, S. Okada, and S. M. Smith. 1996. Potato D-enzyme catalyzes the cyclization of amylose to produce cycloamylose, a novel cyclic glucan. The Journal of Biological Chemistry 271 (6):2902–8. doi: 10.1074/jbc.271.6.2902.
  • Takata, H., T. Akiyama, H. Kajiura, R. Kakutani, T. Furuyashiki, E. Tomioka, I. Kojima, and T. Kuriki. 2010. Application of branching enzyme in starch processing. Biocatalysis and Biotransformation 28 (1):60–3. doi: 10.3109/10242420903408393.
  • Takata, H., K. Ohdan, T. Takaha, T. Kuriki, and S. Okada. 2003. Properties of branching enzyme from hyperthermophilic bacterium, Aquifex aeolicus, and its potential for production of highly-branched cyclic dextrin. Journal of Applied Glycoscience 50 (1):15–20. doi: 10.5458/jag.50.15.
  • Takii, H., T. Kometani, T. Nishimura, T. Kuriki, and T. Fushiki. 2004. A sports drink based on highly branched cyclic dextrin generates few gastrointestinal disorders in untrained men during bicycle exercise. Food Science and Technology Research 10 (4):428–31. doi: 10.3136/fstr.10.428.
  • Terada, Y., K. Fujii, T. Takaha, and S. Okada. 1999. Thermus aquaticus ATCC 33923 amylomaltase gene cloning and expression and enzyme characterization: Production of cycloamylose. Applied and Environmental Microbiology 65 (3):910–5. doi: 10.1128/AEM.65.3.910-915.1999.
  • Tharanathan, R. N. 2005. Starch—value addition by modification. Critical Reviews in Food Science and Nutrition 45 (5):371–84. doi: 10.1080/10408390590967702.
  • Tian, Y., Y. Li, F. A. Manthey, X. Xu, Z. Jin, and L. Deng. 2009. Influence of β-cyclodextrin on the short-term retrogradation of rice starch. Food Chemistry 116 (1):54–8. doi: 10.1016/j.foodchem.2009.02.003.
  • Tian, Y., W. Xu, W. Zhang, T. Zhang, C. Guang, and W. Mu. 2018. Amylosucrase as a transglucosylation tool: From molecular features to bioengineering applications. Biotechnology Advances 36 (5):1540–52. doi: 10.1016/j.biotechadv.2018.06.010.
  • Tonkova, A. 1998. Bacterial cyclodextrin glucanotransferase. Enzyme and Microbial Technology 22 (8):678–86. doi: 10.1016/S0141-0229(97)00263-9.
  • Uitdehaag, J. C., K. H. Kalk, B. A. van der Veen, L. Dijkhuizen, and B. W. Dijkstra. 1999. The cyclization mechanism of cyclodextrin glycosyltransferase (CGTase) as revealed by a γ-cyclodextrin-CGTase complex at 1.8-Å resolution. The Journal of Biological Chemistry 274 (49):34868–76. doi: 10.1074/jbc.274.49.34868.
  • Van Der Maarel, M. J., I. Capron, G. J. W. Euverink, H. T. Bos, T. Kaper, D. J. Binnema, and P. A. Steeneken. 2005. A novel thermoreversible gelling product made by enzymatic modification of starch. Starch - Stärke 57 (10):465–72. doi: 10.1002/star.200500409.
  • van der Maarel, M. J., and H. Leemhuis. 2013. Starch modification with microbial alpha-glucanotransferase enzymes. Carbohydrate Polymers 93 (1):116–21. doi: 10.1016/j.carbpol.2012.01.065.
  • Van Der Maarel, M. J., B. Van der Veen, J. C. Uitdehaag, H. Leemhuis, and L. Dijkhuizen. 2002. Properties and applications of starch-converting enzymes of the α-amylase family. Journal of Biotechnology 94 (2):137–55. doi: 10.1016/s0168-1656(01)00407-2.
  • van der Veen, B. A., J. C. Uitdehaag, D. Penninga, G.-J W. van Alebeek, L. M. Smith, B. W. Dijkstra, and L. Dijkhuizen. 2000a. Rational design of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 to increase α-cyclodextrin production. Journal of Molecular Biology 296 (4):1027–38. doi: 10.1006/jmbi.2000.3528.
  • van der Veen, B. A., G. J. W. van Alebeek, J. C. Uitdehaag, B. W. Dijkstra, and L. Dijkhuizen. 2000b. The three transglycosylation reactions catalyzed by cyclodextrin glycosyltransferase from Bacillus circulans (strain 251) proceed via different kinetic mechanisms. European Journal of Biochemistry 267 (3):658–65. doi: 10.1046/j.1432-1327.2000.01031.x.
  • Wagner, E. M., K. L. C. Jen, J. D. Artiss, and A. T. Remaley. 2008. Dietary α-cyclodextrin lowers low-density lipoprotein cholesterol and alters plasma fatty acid profile in low-density lipoprotein receptor knockout mice on a high-fat diet. Metabolism: Clinical and Experimental 57 (8):1046–51. doi: 10.1016/j.metabol.2008.02.020.
  • Wang, L., and M. J. Wise. 2011. Glycogen with short average chain length enhances bacterial durability. Die Naturwissenschaften 98 (9):719–29. doi: 10.1007/s00114-011-0832-x.
  • Wang, S., C. Li, L. Copeland, Q. Niu, and S. Wang. 2015. Starch retrogradation: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety 14 (5):568–85. doi: 10.1111/1541-4337.12143.
  • Wang, Y., X. Li, H. Ji, D. Zheng, Z. Jin, Y. Bai, and B. Svensson. 2020. Thermophilic 4-α-glucanotransferase from Thermoproteus uzoniensis retards the long-term retrogradation but maintains the short-term gelation strength of tapioca starch. Journal of Agricultural and Food Chemistry 68 (20):5658–67. doi: 10.1021/acs.jafc.0c00927.
  • Wu, Y., X. Li, Z. Jin, B. Svensson, and Y. Bai. 2023. A practical approach to producing the single-arm linear dextrin, a chimeric glucosaccharide containing an (α-1→ 4) linked portion at the nonreducing end of an (α-1→ 6) glucochain. Carbohydrate Polymers 305:120520. doi: 10.1016/j.carbpol.2022.120520.
  • Xiang, G., H. Leemhuis, and M. J. E. C. van Der Maarel. 2022. Structural elements determining the transglycosylating activity of glycoside hydrolase family 57 glycogen branching enzymes. Proteins 90 (1):155–63. doi: 10.1002/prot.26200.
  • Xue, N., B. Svensson, and Y. Bai. 2022. Structure, function and enzymatic synthesis of glucosaccharides assembled mainly by α1→ 6 linkages–A review. Carbohydrate Polymers 275:118705. doi: 10.1016/j.carbpol.2021.118705.
  • Yamamoto, K., K. Yoshikawa, and S. Okada. 1993a. Detailed action mechanism of dextrin dextranase from Acetobacter capsulatus ATCC 11894. Bioscience, Biotechnology, and Biochemistry 57 (1):47–50. doi: 10.1271/bbb.57.47.
  • Yamamoto, K., K. Yoshikawa, and S. Okada. 1993b. Dextran synthesis from reduced maltooligosaccharides by dextrin dextranase from Acetobacter capsulatus ATCC 11894. Bioscience, Biotechnology, and Biochemistry 57 (1):136–7. doi: 10.1271/bbb.57.136.
  • Zheng, M., T. Endo, and W. Zimmermann. 2002. Enzymatic synthesis and analysis of large-ring cyclodextrins. Australian Journal of Chemistry 55 (2):39–48. doi: 10.1071/CH01189.
  • Zhong, Y., J. Xu, X. Liu, L. Ding, B. Svensson, K. Herburger, K. Guo, C. Pang, and A. Blennow. 2022. Recent advances in enzyme biotechnology on modifying gelatinized and granular starch. Trends in Food Science & Technology 123:343–54. doi: 10.1016/j.tifs.2022.03.019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.