682
Views
0
CrossRef citations to date
0
Altmetric
Review

A review of oil and water retention in emulsified meat products: The mechanisms of gelation and emulsification, the application of multi-layer hydrogels

, , , &

References

  • Abaee, A., M. Mohammadian, and S. M. Jafari. 2017. Whey and soy protein-based hydrogels and nano-hydrogels as bioactive delivery systems. Trends in Food Science & Technology 70:69–81. doi: 10.1016/j.tifs.2017.10.011.
  • Ahmad, S., M. Ahmad, K. Manzoor, R. Purwar, and S. Ikram. 2019. A review on latest innovations in natural gums based hydrogels: Preparations & applications. International Journal of Biological Macromolecules 136:870–90. doi: 10.1016/j.ijbiomac.2019.06.113.
  • Akharume, F. U., R. E. Aluko, and A. A. Adedeji. 2021. Modification of plant proteins for improved functionality: A review. Comprehensive Reviews in Food Science and Food Safety 20 (1):198–224. doi: 10.1111/1541-4337.12688.
  • Albano, K. M., Â. L. F. Cavallieri, and V. R. Nicoletti. 2019. Electrostatic interaction between proteins and polysaccharides: Physicochemical aspects and applications in emulsion stabilization. Food Reviews International 35 (1):54–89. doi: 10.1080/87559129.2018.1467442.
  • Ali, A., and S. Ahmed. 2018. Recent advances in edible polymer based hydrogels as a sustainable alternative to conventional polymers. Journal of Agricultural and Food Chemistry 66 (27):6940–67. doi: 10.1021/acs.jafc.8b01052.
  • Alrosan, M., T. C. Tan, A. M. Easa, S. Gammoh, and M. H. Alu’datt. 2022. Molecular forces governing protein-protein interaction: Structure-function relationship of complexes protein in the food industry. Critical Reviews in Food Science and Nutrition 62 (15):4036–52. doi: 10.1080/10408398.2021.1871589.
  • Alves, A. C., and G. M. Tavares. 2019. Mixing animal and plant proteins: Is this a way to improve protein techno-functionalities? Food Hydrocolloids 97:105171. doi: 10.1016/j.foodhyd.2019.06.016.
  • Arrebola, I. N., L. Billon, and G. Aguirre. 2021. Microgels self-assembly at liquid/liquid interface as stabilizers of emulsion: Past, present & future. Advances in Colloid and Interface Science 287:102333. doi: 10.1016/j.cis.2020.102333.
  • Badar, I. H., H. Liu, Q. Chen, X. Xia, and B. Kong. 2021. Future trends of processed meat products concerning perceived healthiness: A review. Comprehensive Reviews in Food Science and Food Safety 20 (5):4739–78. doi: 10.1111/1541-4337.12813.
  • Bai, L., S. Huan, O. J. Rojas, and D. J. McClements. 2021. Recent innovations in emulsion science and technology for food applications. Journal of Agricultural and Food Chemistry 69 (32):8944–63. doi: 10.1021/acs.jafc.1c01877.
  • Ballard, N., A. D. Law, and S. A. Bon. 2019. Colloidal particles at fluid interfaces: Behaviour of isolated particles. Soft Matter 15 (6):1186–99. doi: 10.1039/c8sm02048e.
  • Barbut, S., J. Wood, and A. Marangoni. 2016. Potential use of organogels to replace animal fat in comminuted meat products. Meat Science 122:155–62. doi: 10.1016/j.meatsci.2016.08.003.
  • Berton-Carabin, C. C., L. Sagis, and K. Schroën. 2018. Formation, structure, and functionality of interfacial layers in food emulsions. Annual Review of Food Science and Technology 9:551–87. doi: 10.1146/annurev-food-030117-012405.
  • Beverung, C. J., C. J. Radke, and H. W. Blanch. 1999. Protein adsorption at the oil/water interface: Characterization of adsorption kinetics by dynamic interfacial tension measurements. Biophysical Chemistry 81 (1):59–80. doi: 10.1016/s0301-4622(99)00082-4.
  • Camerin, F., M. Á. Fernández-Rodríguez, L. Rovigatti, M.-N. Antonopoulou, N. Gnan, A. Ninarello, L. Isa, and E. Zaccarelli. 2019. Microgels adsorbed at liquid-liquid interfaces: A joint numerical and experimental study. ACS Nano 13 (4):4548–59. doi: 10.1021/acsnano.9b00390.
  • Cao, Y. P., S. Bolisetty, J. Adamcik, and R. Mezzenga. 2018. Elasticity in physically cross-linked amyloid fibril networks. Physical Review Letters 120 (15):158103. doi: 10.1103/PhysRevLett.120.158103.
  • Cao, Y., and R. Mezzenga. 2019. Food protein amyloid fibrils: Origin, structure, formation, characterization, applications and health implications. Advances in Colloid and Interface Science 269:334–56. doi: 10.1016/j.cis.2019.05.002.
  • Cao, Y., and R. Mezzenga. 2020. Design principles of food gels. Nature Food 1 (2):106–18. doi: 10.1038/s43016-019-0009-x.
  • Chattopadhyay, K., K. M. Xavier, P. Layana, A. K. Balange, and B. B. Nayak. 2019. Chitosan hydrogel inclusion in fish mince based emulsion sausages: Effect of gel interaction on functional and physicochemical qualities. International Journal of Biological Macromolecules 134:1063–9. doi: 10.1016/j.ijbiomac.2019.05.148.
  • Chen, H., J. Gan, A. Ji, S. Song, and L. Yin. 2019. Development of double network gels based on soy protein isolate and sugar beet pectin induced by thermal treatment and laccase catalysis. Food Chemistry 292:188–96. doi: 10.1016/j.foodchem.2019.04.059.
  • Chen, B., X. Liu, K. Zhou, Y. Xie, Y. Wang, H. Zhou, Y. Bai, and B. Xu. 2023. Differentiating the effects of hydrophobic interaction and disulfide bond on the myofibrillar protein emulsion gels at the high temperature and the protein interfacial properties. Food Chemistry 412:135472. doi: 10.1016/j.foodchem.2023.135472.
  • Day, L., J. A. Cakebread, and S. M. Loveday. 2022. Food proteins from animals and plants: Differences in the nutritional and functional properties. Trends in Food Science & Technology 119:428–42. doi: 10.1016/j.tifs.2021.12.020.
  • Deshmukh, O. S., D. V. D. Ende, M. C. Stuart, F. Mugele, and M. H. G. Duits. 2015. Hard and soft colloids at fluid interfaces: Adsorption, interactions, assembly & rheology. Advances in Colloid and Interface Science 222:215–27. doi: 10.1016/j.cis.2014.09.003.
  • Dickinson, E. 2003. Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food Hydrocolloids 17 (1):25–39. doi: 10.1016/S0268-005X(01)00120-5.
  • Dickinson, E. 2012. Emulsion gels: The structuring of soft solids with protein-stabilized oil droplets. Food Hydrocolloids 28 (1):224–41. doi: 10.1016/j.foodhyd.2011.12.017.
  • Dickinson, E. 2015. Microgels-an alternative colloidal ingredient for stabilization of food emulsions. Trends in Food Science & Technology 43 (2):178–88. doi: 10.1016/j.tifs.2015.02.006.
  • Dickinson, E. 2019. Strategies to control and inhibit the flocculation of protein-stabilized oil-in-water emulsions. Food Hydrocolloids 96:209–23. doi: 10.1016/j.foodhyd.2019.05.021.
  • Ding, L., Y. Huang, X. Cai, and S. Wang. 2019. Impact of pH, ionic strength and chitosan charge density on chitosan/casein complexation and phase behavior. Carbohydrate Polymers 208:133–41. doi: 10.1016/j.carbpol.2018.12.015.
  • Domínguez, R., P. E. Munekata, M. Pateiro, O. López-Fernández, and J. M. Lorenzo. 2021. Immobilization of oils using hydrogels as strategy to replace animal fats and improve the healthiness of meat products. Current Opinion in Food Science 37:135–44. doi: 10.1016/j.cofs.2020.10.005.
  • Du, M., W. Lu, Y. Zhang, A. Mata, and Y. Fang. 2021. Natural polymer-sourced interpenetrating network hydrogels: Fabrication, properties, mechanism and food applications. Trends in Food Science & Technology 116:342–56. doi: 10.1016/j.tifs.2021.07.031.
  • Du, F., Y. Qi, H. Huang, P. Wang, X. Xu, and Z. Yang. 2022. Stabilization of O/W emulsions via interfacial protein concentrating induced by thermodynamic incompatibility between sarcoplasmic proteins and xanthan gum. Food Hydrocolloids 124:107242. doi: 10.1016/j.foodhyd.2021.107242.
  • Du, X., M. Zhao, N. Pan, S. Wang, X. Xia, and D. Zhang. 2021. Tracking aggregation behaviour and gel properties induced by structural alterations in myofibrillar protein in mirror carp (Cyprinus carpio) under the synergistic effects of pH and heating. Food Chemistry 362:130222. doi: 10.1016/j.foodchem.2021.130222.
  • Ebert, S., S. Kaplan, K. Brettschneider, N. Terjung, M. Gibis, and J. Weiss. 2021. Aggregation behavior of solubilized meat-Potato protein mixtures. Food Hydrocolloids 113:106388. doi: 10.1016/j.foodhyd.2020.106388.
  • Farjami, T., and A. Madadlou. 2019. An overview on preparation of emulsion-filled gels and emulsion particulate gels. Trends in Food Science & Technology 86:85–94. doi: 10.1016/j.tifs.2019.02.043.
  • Fathi, M., M. Vinceković, S. Jurić, M. Viskić, A. Režek Jambrak, and F. Donsì. 2021. Natural hydrogels, the interesting carriers for herbal extracts. Food Reviews International 37 (1):1–45. doi: 10.1080/87559129.2021.1885436.
  • Fernandez-Rodriguez, M. A., A. Martín-Molina, and J. Maldonado-Valderrama. 2021. Microgels at interfaces, from mickering emulsions to flat interfaces and back. Advances in Colloid and Interface Science 288:102350. doi: 10.1016/j.cis.2020.102350.
  • Ferry, J. 1948. Protein gels. Advances in Protein Chemistry 4:1–78. doi: 10.1016/s0065-3233(08)60004-2.
  • Floret, C., A. F. Monnet, V. Micard, S. Walrand, and C. Michon. 2023. Replacement of animal proteins in food: How to take advantage of nutritional and gelling properties of alternative protein sources. Critical Reviews in Food Science and Nutrition 63 (7):920–46. doi: 10.1080/10408398.2021.1956426.
  • Foegeding, E. A. 2006. Food biophysics of protein gels: A challenge of nano and macroscopic proportions. Food Biophysics 1 (1):41–50. doi: 10.1007/s11483-005-9003-y.
  • Gao, T., X. Zhao, R. Li, A. Bassey, Y. Bai, K. Ye, S. Deng, and G. Zhou. 2022. Synergistic effects of polysaccharide addition-ultrasound treatment on the emulsified properties of low-salt myofibrillar protein. Food Hydrocolloids 123:107143. doi: 10.1016/j.foodhyd.2021.107143.
  • Gharibzahedi, S. M. T., S. Roohinejad, S. George, F. J. Barba, R. Greiner, G. V. Barbosa-Cánovas, and K. Mallikarjunan. 2018. Innovative food processing technologies on the transglutaminase functionality in protein-based food products: Trends, opportunities and drawbacks. Trends in Food Science & Technology 75:194–205. doi: 10.1016/j.tifs.2018.03.014.
  • Gharibzahedi, S. M., and T. Smith, B. 2020. The functional modification of legume proteins by ultrasonication: A review. Trends in Food Science & Technology 98:107–16. doi: 10.1016/j.tifs.2020.02.002.
  • Goh, K. L., M. K. Aswathi, R. T. De Silva, and S. Thomas. 2020. 1-Introduction. In Interfaces in particle and fibre reinforced composites, edited by K. L. Goh, A. M. K., R. T. De Silva, and S. Thomas, 1–5. UK: Woodhead Publishing.
  • Gordon, A., S. Barbut, and G. Schmidt. 1992. Mechanisms of meat batter stabilization: A review. Critical Reviews in Food Science and Nutrition 32 (4):299–332. doi: 10.1080/10408399209527602.
  • Gough, C. R., A. Rivera-Galletti, D. A. Cowan, D. Salas-de la Cruz, and X. Hu. 2020. Protein and polysaccharide-based fiber materials generated from ionic liquids: A review. Molecules 25 (15):3362. doi: 10.3390/molecules25153362.
  • Graham, S., P. F. Marina, and A. Blencowe. 2019. Thermoresponsive polysaccharides and their thermoreversible physical hydrogel networks. Carbohydrate Polymers 207:143–59. doi: 10.1016/j.carbpol.2018.11.053.
  • Gul, K., R.-Y. Gan, C.-X. Sun, G. Jiao, D.-T. Wu, H.-B. Li, A. Kenaan, H. Corke, and Y.-P. Fang. 2022. Recent advances in the structure, synthesis, and applications of natural polymeric hydrogels. Critical Reviews in Food Science and Nutrition 62 (14):3817–32. doi: 10.1080/10408398.2020.1870034.
  • Guo, X., F. Gao, Y. Zhang, Z. Peng, and M. A. Jamali. 2021. Effect of l-histidine and l-lysine on the properties of oil-in-water emulsions stabilized by porcine myofibrillar proteins at low/high ionic strength. LWT 141:110883. doi: 10.1016/j.lwt.2021.110883.
  • Guo, X., Y. Zhang, M. A. Jamali, and Z. Peng. 2021. Manipulating interfacial behaviour and emulsifying properties of myofibrillar proteins by L-Arginine at low and high salt concentration. International Journal of Food Science & Technology 56 (2):999–1012. doi: 10.1111/ijfs.14752.
  • Han, W., X. Chai, Y. Liu, Y. Xu, and C. P. Tan. 2022. Crystal network structure and stability of beeswax-based oleogels with different polyunsaturated fatty acid oils. Food Chemistry 381:131745. doi: 10.1016/j.foodchem.2021.131745.
  • Han, Z. Y., X. X. Li, Y. B. Liu, X. Q. Yue, Z. X. Wu, and J. H. Shao. 2021. The evolution of pork myosin aggregates and the relationship between aggregation modes and microstructures of O/W emulsions. Food Hydrocolloids 119:106825. doi: 10.1016/j.foodhyd.2021.106825.
  • Han, Z. Y., S. Q. Xu, J. X. Sun, X. Q. Yue, Z. X. Wu, and J. H. Shao. 2021. Effects of fatty acid saturation degree on salt-soluble pork protein conformation and interfacial adsorption characteristics at the oil/water interface. Food Hydrocolloids 113:106472. doi: 10.1016/j.foodhyd.2020.106472.
  • Han, Z., X. Yue, and J. H. Shao. 2022. The adsorption characteristics of 2D fibril and 3D hydrogel aggregates at the O/W interface combining molecular dynamics simulation. Food Hydrocolloids 128:107537. doi: 10.1016/j.foodhyd.2022.107537.
  • Han, Z. Y., J. L. Zhang, J. Y. Zheng, X. J. Li, and J. H. Shao. 2019. The study of protein conformation and hydration characteristics of meat batters at various phase transition temperatures combined with Low-field nuclear magnetic resonance and Fourier transform infrared spectroscopy. Food Chemistry 280:263–9. doi: 10.1016/j.foodchem.2018.12.071.
  • Hegarty, G. R., L. J. Bratzler, and A. M. Pearson. 1963. Studies on the emulsifying properties of some intracellular beef muscle proteins ab. Journal of Food Science 28 (6):663–8. doi: 10.1111/j.1365-2621.1963.tb01671.x.
  • Herranz, B., M. D. Alvarez, M. J. Ridout, and P. J. Wilde. 2018. Influence of interfacial mechanisms on the rheology of creaming emulsions. International Journal of Food Properties 21 (1):1322–31. doi: 10.1080/10942912.2018.1489838.
  • Huang, P., C. Huang, X. Ma, C. Gao, F. Sun, N. Yang, and K. Nishinari. 2021. Effect of pH on the mechanical, interfacial, and emulsification properties of chitosan microgels. Food Hydrocolloids 121:106972. doi: 10.1016/j.foodhyd.2021.106972.
  • Huang, X., J. Li, C. Chang, L. Gu, Y. Su, and Y. Yang. 2019. Effects of NaOH/NaCl pickling on heat-induced gelation behaviour of egg white. Food Chemistry 297:124939. doi: 10.1016/j.foodchem.2019.06.006.
  • Huang, Y., D. Zhang, Y. Zhang, H. Fang, and C. Zhou. 2021. Role of ultrasound and l-lysine/l-argnine in improving the physical stability of myosin-soybean oil emulsion. Food Hydrocolloids 111:106367. doi: 10.1016/j.foodhyd.2020.106367.
  • Isaschar-Ovdat, S., and A. Fishman. 2018. Crosslinking of food proteins mediated by oxidative enzymes–a review. Trends in Food Science & Technology 72:134–43. doi: 10.1016/j.tifs.2017.12.011.
  • Jimenez-Colmenero, F., L. Salcedo-Sandoval, R. Bou, S. Cofrades, A. M. Herrero, and C. Ruiz-Capillas. 2015. Novel applications of oil-structuring methods as a strategy to improve the fat content of meat products. Trends in Food Science & Technology 44 (2):177–88. doi: 10.1016/j.tifs.2015.04.011.
  • Kang, D., W. Zhang, J. M. Lorenzo, and X. Chen. 2021. Structural and functional modification of food proteins by high power ultrasound and its application in meat processing. Critical Reviews in Food Science and Nutrition 61 (11):1914–33. doi: 10.1080/10408398.2020.1767538.
  • Khalesi, H., W. Lu, K. Nishinari, and Y. Fang. 2020. New insights into food hydrogels with reinforced mechanical properties: A review on innovative strategies. Advances in Colloid and Interface Science 285:102278. doi: 10.1016/j.cis.2020.102278.
  • Khalesi, H., W. Lu, K. Nishinari, and Y. Fang. 2021. Fundamentals of composites containing fibrous materials and hydrogels: A review on design and development for food applications. Food Chemistry 364:130329. doi: 10.1016/j.foodchem.2021.130329.
  • Khalesi, H., C. Sun, J. He, W. Lu, and Y. Fang. 2021. The role of amyloid fibrils in the modification of whey protein isolate gels with the form of stranded and particulate microstructures. Food Research International (Ottawa, ON) 140:109856. doi: 10.1016/j.foodres.2020.109856.
  • Kieserling, H., A. Pankow, J. K. Keppler, A. M. Wagemans, and S. Drusch. 2021. Conformational state and charge determine the interfacial film formation and film stability of β -lactoglobulin. Food Hydrocolloids 114:106561. doi: 10.1016/j.foodhyd.2020.106561.
  • Kim, T. K., M. H. Lee, H. I. Yong, H. W. Jang, S. Jung, and Y. S. Choi. 2021. Impacts of fat types and myofibrillar protein on the rheological properties and thermal stability of meat emulsion systems. Food Chemistry 346:128930. doi: 10.1016/j.foodchem.2020.128930.
  • Kobayashi, Y., S. G. Mayer, and J. W. Park. 2017. FT-IR and Raman spectroscopies determine structural changes of tilapia fish protein isolate and surimi under different comminution conditions. Food Chemistry 226:156–64. doi: 10.1016/j.foodchem.2017.01.068.
  • Kumar, Y. 2021. Development of low-fat/reduced-fat processed meat products using fat replacers and analogues. Food Reviews International 37 (3):296–312. doi: 10.1080/87559129.2019.1704001.
  • Kwok, M. H., G. Sun, and T. Ngai. 2019. Microgel particles at interfaces: Phenomena, principles, and opportunities in food sciences. Langmuir: The ACS Journal of Surfaces and Colloids 35 (12):4205–17. doi: 10.1021/acs.langmuir.8b04009.
  • Le, X. T., L. E. Rioux, and S. L. Turgeon. 2017. Formation and functional properties of protein-polysaccharide electrostatic hydrogels in comparison to protein or polysaccharide hydrogels. Advances in Colloid and Interface Science 239:127–35. doi: 10.1016/j.cis.2016.04.006.
  • Lee, S. H., T. Lefèvre, M. Subirade, and P. Paquin. 2007. Changes and roles of secondary structures of whey protein for the formation of protein membrane at soy oil/water interface under high-pressure homogenization. Journal of Agricultural and Food Chemistry 55 (26):10924–31. doi: 10.1021/jf0726076.
  • Li, L., Y. Bai, R. Cai, C. Wu, P. Wang, X. Xu, and J. Sun. 2018. Alkaline pH-dependent thermal aggregation of chicken breast myosin: Formation of soluble aggregates. CyTA - Journal of Food 16 (1):765–75. doi: 10.1080/19476337.2018.1470576.
  • Li, L., R. Cai, P. Wang, X. Xu, G. Zhou, and J. Sun. 2018. Manipulating interfacial behavior and emulsifying properties of myosin through alkali-heat treatment. Food Hydrocolloids 85:69–74. doi: 10.1016/j.foodhyd.2018.06.044.
  • Li, L., L. Chen, C. Ning, P. Bao, H. Fang, and C. Zhou. 2020. L-Arginine and L-Lysine improve the physical stability of soybean oil-myosin emulsions by changing penetration and unfolding behaviors of interfacial myosin. Food Hydrocolloids 98:105265. doi: 10.1016/j.foodhyd.2019.105265.
  • Li, J. L., X. Jia, and L. J. Yin. 2021. Hydrogel: Diversity of Structures and Applications in Food Science. Food Reviews International 37 (3):313–72. doi: 10.1080/87559129.2020.1858313.
  • Li, J., X. Li, C. Wang, M. Zhang, Y. Xu, B. Zhou, Y. Su, and Y. Yang. 2018. Characteristics of gelling and water holding properties of hen egg white/yolk gel with NaCl addition. Food Hydrocolloids 77:887–93. doi: 10.1016/j.foodhyd.2017.11.034.
  • Ling, S., D. L. Kaplan, and M. J. Buehler. 2018. Nanofibrils in nature and materials engineering. Nature Reviews Materials 3 (4):18016. doi: 10.1038/natrevmats.2018.16.
  • Lin, D., A. L. Kelly, and S. Miao. 2020. Preparation, structure-property relationships and applications of different emulsion gels: Bulk emulsion gels, emulsion gel particles, and fluid emulsion gels. Trends in Food Science & Technology 102:123–37. doi: 10.1016/j.tifs.2020.05.024.
  • Lin, D., W. Lu, A. L. Kelly, L. Zhang, B. Zheng, and S. Miao. 2017. Interactions of vegetable proteins with other polymers: Structure-function relationships and applications in the food industry. Trends in Food Science & Technology 68:130–44. doi: 10.1016/j.tifs.2017.08.006.
  • Lin, L., and Y. L. Xiong. 2021. Competitive adsorption and dilatational rheology of pork myofibrillar and sarcoplasmic proteins at the O/W emulsion interface. Food Hydrocolloids 118:106816. doi: 10.1016/j.foodhyd.2021.106816.
  • Lin, D., L. Zhang, R. Li, B. Zheng, M. C. Rea, and S. Miao. 2019. Effect of plant protein mixtures on the microstructure and rheological properties of myofibrillar protein gel derived from red sea bream (Pagrosomus major). Food Hydrocolloids 96:537–45. doi: 10.1016/j.foodhyd.2019.05.043.
  • Lin, K., D. Zhang, M. H. Macedo, W. Cui, B. Sarmento, and G. Shen. 2019. Advanced collagen-based biomaterials for regenerative biomedicine. Advanced Functional Materials 29 (3):1804943. doi: 10.1002/adfm.201804943.
  • Lu, J., W. Zhang, X. Zhao, and X. Xu. 2022. Comparison of the interfacial properties of native and refolded myofibrillar proteins subjected to pH-shifting. Food Chemistry 380:131734. doi: 10.1016/j.foodchem.2021.131734.
  • Ma, T., L. Lv, C. Ouyang, X. Hu, X. Liao, Y. Song, and X. Hu. 2021. Rheological behavior and particle alignment of cellulose nanocrystal and its composite hydrogels during 3D printing. Carbohydrate Polymers 253:117217. doi: 10.1016/j.carbpol.2020.117217.
  • Ma, T., Y. L. Xiong, and J. Jiang. 2022. Calcium-aided fabrication of pea protein hydrogels with filler emulsion particles coated by pH12-shifting and ultrasound treated protein. Food Hydrocolloids 125:107396. doi: 10.1016/j.foodhyd.2021.107396.
  • McClements, D. J., and L. Grossmann. 2021. The science of plant-based foods: Constructing next-generation meat, fish, milk, and egg analogs. Comprehensive Reviews in Food Science and Food Safety 20 (4):4049–100. doi: 10.1111/1541-4337.12771.
  • McClements, D. J., and S. M. Jafari. 2018. Improving emulsion formation, stability and performance using mixed emulsifiers: A review. Advances in Colloid and Interface Science 251:55–79. doi: 10.1016/j.cis.2017.12.001.
  • Mezzenga, R., and P. Fischer. 2013. The self-assembly, aggregation and phase transitions of food protein systems in one, two and three dimensions. Reports on Progress in Physics. Physical Society (Great Britain) 76 (4):046601. doi: 10.1088/0034-4885/76/4/046601.
  • Mishyna, M., J. J. I. Martinez, J. Chen, M. Davidovich-Pinhas, and O. Benjamin. 2019. Heat-induced aggregation and gelation of proteins from edible honey bee brood (Apis mellifera) as a function of temperature and pH. Food Hydrocolloids 91:117–26. doi: 10.1016/j.foodhyd.2019.01.017.
  • Muschiolik, G., and E. Dickinson. 2017. Double emulsions relevant to food systems: Preparation, stability, and applications. Comprehensive Reviews in Food Science and Food Safety 16 (3):532–55. doi: 10.1111/1541-4337.12261.
  • Nasirpour-Tabrizi, P., S. Azadmard-Damirchi, J. Hesari, M. K. Heshmati, and G. P. Savage. 2020. Rheological and physicochemical properties of novel low-fat emulgels containing flaxseed oil as a rich source of ω-3 fatty acids. LWT 133:110107. doi: 10.1016/j.lwt.2020.110107.
  • Nicolai, T. 2016. Formation and functionality of self-assembled whey protein microgels. Colloids and Surfaces. B, Biointerfaces 137:32–8. doi: 10.1016/j.colsurfb.2015.05.055.
  • Nicolai, T. 2019. Gelation of food protein-protein mixtures. Advances in Colloid and Interface Science 270:147–64. doi: 10.1016/j.cis.2019.06.006.
  • Niu, H., Y. Li, J. Han, Q. Liu, and B. Kong. 2017. Gelation and rheological properties of myofibrillar proteins influenced by the addition of soybean protein isolates subjected to an acidic pH treatment combined with a mild heating. Food Hydrocolloids 70:269–76. doi: 10.1016/j.foodhyd.2017.04.001.
  • Niu, H., W. Wang, Z. Dou, X. Chen, X. Chen, H. Chen, and X. Fu. 2023. Multiscale combined techniques for evaluating emulsion stability: A critical review. Advances in Colloid and Interface Science 311:102813. doi: 10.1016/j.cis.2022.102813.
  • Paglarini, C. D. S., V. A. S. Vidal, S. Martini, R. L. Cunha, and M. A. R. Pollonio. 2022. Protein-based hydrogelled emulsions and their application as fat replacers in meat products: A review. Critical Reviews in Food Science and Nutrition 62 (3):640–55. doi: 10.1080/10408398.2020.1825322.
  • Patel, A. R. 2020. Functional and engineered colloids from edible materials for emerging applications in designing the food of the future. Advanced Functional Materials 30 (18):1806809. doi: 10.1002/adfm.201806809.
  • Pereira, J., M. Sathuvan, J. M. Lorenzo, E. F. Boateng, S. A. Brohi, and W. Zhang. 2021. Insight into the effects of coconut kernel fiber on the functional and microstructural properties of myofibrillar protein gel system. LWT 138:110745. doi: 10.1016/j.lwt.2020.110745.
  • Ren, Y., L. Huang, Y. Zhang, H. Li, D. Zhao, J. Cao, and X. Liu. 2022. Application of emulsion gels as fat substitutes in meat products. Foods 11 (13):1950. doi: 10.3390/foods11131950.
  • Samejima, K., M. Ishioroshi, and T. Yasui. 1981. Relative roles of the heat and tails portions of molecule in the heat-induced gelation of myosin. Journal of Food Science 46 (5):1412–8. doi: 10.1111/j.1365-2621.1981.tb04187.x.
  • Santhi, D., A. Kalaikannan, and S. Sureshkumar. 2017. Factors influencing meat emulsion properties and product texture: A review. Critical Reviews in Food Science and Nutrition 57 (10):2021–7. doi: 10.1080/10408398.2013.858027.
  • Schestkowa, H., S. Drusch, and A. M. Wagemans. 2020. FTIR analysis of β-lactoglobulin at the oil/water-interface. Food Chemistry 302:125349. doi: 10.1016/j.foodchem.2019.125349.
  • Schilling, M. W. 2019. Emulsifier applications in meat products. In Food emulsifiers and their applications, 347–77. Cham: Springer.
  • Schmidt, M. M., S. Bochenek, A. A. Gavrilov, I. I. Potemkin, and W. Richtering. 2020. Influence of charges on the behavior of polyelectrolyte microgels confined to oil-water interfaces. Langmuir: The ACS Journal of Surfaces and Colloids 36 (37):11079–93. doi: 10.1021/acs.langmuir.0c02081.
  • Scholten, E. 2017. Composite foods: From structure to sensory perception. Food & Function 8 (2):481–97. doi: 10.1039/c6fo01099g.
  • Shao, J.-H., Y.-M. Deng, L. Song, A. Batur, N. Jia, and D.-Y. Liu. 2016. Investigation the effects of protein hydration states on the mobility water and fat in meat batters by LF-NMR technique. LWT - Food Science and Technology 66:1–6. doi: 10.1016/j.lwt.2015.10.008.
  • Shao, J.-H., Y.-M. Deng, G.-H. Zhou, X.-L. Xu, and D.-Y. Liu. 2015. A Raman spectroscopic study of meat protein-lipid interactions at protein/oil or protein/fat interfaces. International Journal of Food Science & Technology 50 (4):982–9. doi: 10.1111/ijfs.12695.
  • Shao, T., Y. Zhou, H. Dai, L. Ma, X. Feng, H. Wang, and Y. Zhang. 2021. Regulation mechanism of myofibrillar protein emulsification mode by adding psyllium (Plantago ovata) husk. Food Chemistry 376:131939. doi: 10.1016/j.foodchem.2021.131939.
  • Shi, T., H. Liu, T. Song, Z. Xiong, L. Yuan, D. J. McClements, W. Jin, Q. Sun, and R. Gao. 2021. Use of l-arginine-assisted ultrasonic treatment to change the molecular and interfacial characteristics of fish myosin and enhance the physical stability of the emulsion. Food Chemistry 342:128314. doi: 10.1016/j.foodchem.2020.128314.
  • Singh, A., F. I. Auzanneau, and M. A. Rogers. 2017. Advances in edible oleogel technologies-A decade in review. Food Research International (Ottawa, ON) 97:307–17. doi: 10.1016/j.foodres.2017.04.022.
  • Slavutsky, A. M., and M. A. Bertuzzi. 2019. Formulation and characterization of hydrogel based on pectin and brea gum. International Journal of Biological Macromolecules 123:784–91. doi: 10.1016/j.ijbiomac.2018.11.038.
  • Tang, C. H. 2020. Globular proteins as soft particles for stabilizing emulsions: Concepts and strategies. Food Hydrocolloids 103:105664. doi: 10.1016/j.foodhyd.2020.105664.
  • Tornberg, E. V. A. 2005. Effects of heat on meat proteins-Implications on structure and quality of meat products. Meat Science 70 (3):493–508. doi: 10.1016/j.meatsci.2004.11.021.
  • van Aken, G. A., L. Oliver, and E. Scholten. 2015. Rheological effect of particle clustering in gelled dispersions. Food Hydrocolloids 48:102–9. doi: 10.1016/j.foodhyd.2015.02.001.
  • Wang, B., B. Kong, F. Li, Q. Liu, H. Zhang, and X. Xia. 2020. Changes in the thermal stability and structure of protein from porcine longissimus dorsi induced by different thawing methods. Food Chemistry 316:126375. doi: 10.1016/j.foodchem.2020.126375.
  • Wang, G., M. Liu, L. Cao, J. Yongsawatdigul, S. Xiong, and R. Liu. 2018. Effects of different NaCl concentrations on self-assembly of silver carp myosin. Food Bioscience 24:1–8. doi: 10.1016/j.fbio.2018.05.002.
  • Wang, C., C. Sun, W. Lu, K. Gul, A. Mata, and Y. Fang. 2020. Emulsion structure design for improving the oxidative stability of polyunsaturated fatty acids. Comprehensive Reviews in Food Science and Food Safety 19 (6):2955–71. doi: 10.1111/1541-4337.12621.
  • Wang, H., P. Wang, Q. Shen, H. Yang, H. Xie, M. Huang, J. Zhang, Q. Zhao, P. Luo, D. Jin, et al. 2022. Insight into the effect of ultrasound treatment on the rheological properties of myofibrillar proteins based on the changes in their tertiary structure. Food Research International (Ottawa, ON) 157:111136. doi: 10.1016/j.foodres.2022.111136.
  • Wang, X., M. Xia, Y. Zhou, L. Wang, X. Feng, K. Yang, J. Ma, Z. Li, L. Wang, and W. Sun. 2020. Gel properties of myofibrillar proteins heated at different heating rates under a low-frequency magnetic field. Food Chemistry 321:126728. doi: 10.1016/j.foodchem.2020.126728.
  • Wei, L., L. Cao, S. Xiong, J. You, Y. Hu, and R. Liu. 2019. Effects of pH on self-assembly of silver carp myosin at low temperature. Food Bioscience 30:100420. doi: 10.1016/j.fbio.2019.100420.
  • Wu, C., J. Wang, X. Yan, W. Ma, D. Wu, and M. Du. 2020. Effect of partial replacement of water-soluble cod proteins by soy proteins on the heat-induced aggregation and gelation properties of mixed protein systems. Food Hydrocolloids 100:105417. doi: 10.1016/j.foodhyd.2019.105417.
  • Xia, W., L. Ma, X. Chen, X. Li, and Y. Zhang. 2018. Physicochemical and structural properties of composite gels prepared with myofibrillar protein and lecithin at various ionic strengths. Food Hydrocolloids 82:135–43. doi: 10.1016/j.foodhyd.2018.03.044.
  • Xiong, Y. L. 2018. Muscle proteins. In Proteins in food processing, 127–48. Woodhead Publishing, United States.
  • Xu, Y., and X. Xu. 2021. Modification of myofibrillar protein functional properties prepared by various strategies: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety 20 (1):458–500. doi: 10.1111/1541-4337.12665.
  • Xu, Y., J. Zhao, R. Wang, X. Li, H. Mi, and J. Li. 2019. Effect of heat treatment on the binding of selected flavor compounds to myofibrillar proteins. Journal of the Science of Food and Agriculture 99 (11):5028–34. doi: 10.1002/jsfa.9744.
  • Yang, H.-J., M.-Y. Han, H.-f. Wang, G.-t. Cao, F. Tao, X.-L. Xu, G.-H. Zhou, and Q. Shen. 2021. HPP improves the emulsion properties of reduced fat and salt meat batters by promoting the adsorption of proteins at fat droplets/water interface. LWT 137:110394. doi: 10.1016/j.lwt.2020.110394.
  • Yang, H., M. A. Khan, M. Han, X. Yu, X. Bai, X. Xu, and G. Zhou. 2016. Optimization of textural properties of reduced-fat and reduced-salt emulsion-type sausages treated with high pressure using a response surface Methodology. Innovative Food Science & Emerging Technologies 33:162–9. doi: 10.1016/j.ifset.2015.10.007.
  • Yu, T. Y., J. D. Morton, S. Clerens, and J. M. Dyer. 2017. Cooking-induced protein modifications in meat. Comprehensive Reviews in Food Science and Food Safety 16 (1):141–59. doi: 10.1111/1541-4337.12243.
  • Zhang, W., J. Lu, X. Zhao, and X. Xu. 2022. An optimized approach to recovering O/W interfacial myofibrillar protein: Emphasizing on interface-induced structural changes. Food Hydrocolloids 124:107194. doi: 10.1016/j.foodhyd.2021.107194.
  • Zhang, S., L. Sun, H. Ju, Z. Bao, X. A. Zeng, and S. Lin. 2021. Research advances and application of pulsed electric field on proteins and peptides in food. Food Research International (Ottawa, ON) 139:109914. doi: 10.1016/j.foodres.2020.109914.
  • Zhang, X., W. Wang, Y. Wang, Y. Wang, X. Wang, G. Gao, G. Y. Chen, and A. Liu. 2018. Effects of nanofiber cellulose on functional properties of heat-induced chicken salt-soluble meat protein gel enhanced with microbial transglutaminase. Food Hydrocolloids 84:1–8. doi: 10.1016/j.foodhyd.2018.05.046.
  • Zhang, R., W. Wang, H. Zhang, Y. Dai, H. Dong, and H. Hou. 2019. Effects of hydrophobic agents on the physicochemical properties of edible agar/maltodextrin films. Food Hydrocolloids 88:283–90. doi: 10.1016/j.foodhyd.2018.10.008.
  • Zhang, T., J. Xu, J. Chen, Z. Wang, X. Wang, and J. Zhong. 2021. Protein nanoparticles for Pickering emulsions: A comprehensive review on their shapes, preparation methods, and modification methods. Trends in Food Science & Technology 113:26–41. doi: 10.1016/j.tifs.2021.04.054.
  • Zhang, W., X. Xu, X. Zhao, and G. Zhou. 2022. Insight into the oil polarity impact on interfacial properties of myofibrillar protein. Food Hydrocolloids 128:107563. doi: 10.1016/j.foodhyd.2022.107563.
  • Zhang, Z., Y. Yang, P. Zhou, X. Zhang, and J. Wang. 2017. Effects of high pressure modification on conformation and gelation properties of myofibrillar protein. Food Chemistry 217:678–86. doi: 10.1016/j.foodchem.2016.09.040.
  • Zhao, Y., Q. Hou, S. Cao, Y. Wang, G. Zhou, and W. Zhang. 2019. Effect of regenerated cellulose fiber on the properties and microstructure of emulsion model system from meat batters. Food Hydrocolloids 87:83–9. doi: 10.1016/j.foodhyd.2018.07.044.
  • Zhao, X., T. Wu, T. Xing, X. L. Xu, and G. Zhou. 2019. Rheological and physical properties of O/W protein emulsions stabilized by isoelectric solubilization/precipitation isolated protein: The underlying effects of varying protein concentrations. Food Hydrocolloids 95:580–9. doi: 10.1016/j.foodhyd.2018.03.040.
  • Zhao, X., X. Xu, and G. Zhou. 2021. Covalent chemical modification of myofibrillar proteins to improve their gelation properties: A systematic review. Comprehensive Reviews in Food Science and Food Safety 20 (1):924–59. doi: 10.1111/1541-4337.12684.
  • Zhao, N., H. Zou, S. Sun, and C. Yu. 2020. The interaction between sodium alginate and myofibrillar proteins: The rheological and emulsifying properties of their mixture. International Journal of Biological Macromolecules 161:1545–51. doi: 10.1016/j.ijbiomac.2020.08.025.
  • Zheng, J., D. Sun, X. Li, D. Liu, C. Li, Y. Zheng, X. Yue, and J.-H. Shao. 2021. The effect of fatty acid chain length and saturation on the emulsification properties of pork myofibrillar proteins. LWT 139:110242. doi: 10.1016/j.lwt.2020.110242.
  • Zhou, X., H. Chen, F. Lyu, H. Lin, Q. Zhang, and Y. Ding. 2019. Physicochemical properties and microstructure of fish myofibrillar protein-lipid composite gels: Effects of fat type and concentration. Food Hydrocolloids 90:433–42. doi: 10.1016/j.foodhyd.2018.12.032.
  • Zhou, L., J. Jiang, F. Feng, J. Wang, J. Cai, L. Xing, G. Zhou, and W. Zhang. 2023. Effects of carboxymethyl cellulose on the emulsifying, gel and digestive properties of myofibrillar protein-soybean oil emulsion. Carbohydrate Polymers 309:120679. doi: 10.1016/j.carbpol.2023.120679.
  • Zhou, B., J. T. Tobin, S. Drusch, and S. A. Hogan. 2021. Dynamic adsorption and interfacial rheology of whey protein isolate at oil-water interfaces: Effects of protein concentration, pH and heat treatment. Food Hydrocolloids 116:106640. doi: 10.1016/j.foodhyd.2021.106640.
  • Zhou, L., Y. Yang, J. Wang, S. Wei, and S. Li. 2019. Effects of low fat addition on chicken myofibrillar protein gelation properties. Food Hydrocolloids 90:126–31. doi: 10.1016/j.foodhyd.2018.11.044.
  • Zhuang, X., L. Wang, X. Jiang, Y. Chen, and G. Zhou. 2020. The effects of three polysaccharides on the gelation properties of myofibrillar protein: Phase behaviour and moisture stability. Meat Science 170:108228. doi: 10.1016/j.meatsci.2020.108228.
  • Zhuang, X., L. Wang, X. Jiang, Y. Chen, and G. Zhou. 2021. Insight into the mechanism of myofibrillar protein gel influenced by konjac glucomannan: Moisture stability and phase separation behavior. Food Chemistry 339:127941. doi: 10.1016/j.foodchem.2020.127941.
  • Zhu, P. Y.,Y. Yang,L. Zou,J. Gao,B. Wang,X. Bian,D. H. Yu,L. L. Liu,C. Y. Lin,N.Zhang. 2021. The effect of trehalose on the thermodynamic stability and emulsification of soybean 11S globulin in the molten globule state. Food Hydrocolloids 118:106811. doi: 10.1016/j.foodhyd.2021.106811.
  • Zhu, S., X. Chen, J. Zheng, W. Fan, Y. Ding, and X. Zhou. 2022. Emulsion surimi gel with tunable gel properties and improved thermal stability by modulating oil types and emulsification degree. Foods 11 (2):179. doi: 10.3390/foods11020179.
  • Zhu, X., L. Li, S. Li, C. Ning, and C. Zhou. 2019. L-Arginine/L-lysine improves emulsion stability of chicken sausage by increasing electrostatic repulsion of emulsion droplet and decreasing the interfacial tension of soybean oil-water. Food Hydrocolloids 89:492–502. doi: 10.1016/j.foodhyd.2018.11.021.
  • Zhu, X., C. Ning, S. Li, P. Xu, Y. Zheng, and C. Zhou. 2018. Effects of L-lysine/L-arginine on the emulsion stability, textural, rheological and microstructural characteristics of chicken sausages. International Journal of Food Science & Technology 53 (1):88–96. doi: 10.1111/ijfs.13561.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.