2,721
Views
0
CrossRef citations to date
0
Altmetric
Review

Structure-function relationship and impact on the gut-immune barrier function of non-digestible carbohydrates and human milk oligosaccharides applicable for infant formula

ORCID Icon & ORCID Icon

References

  • Akbari, P., J. Fink-Gremmels, R. H. A. M. Willems, E. Difilippo, H. A. Schols, M. H. C. Schoterman, J. Garssen, and S. Braber. 2017. Characterizing microbiota-independent effects of oligosaccharides on intestinal epithelial cells: insight into the role of structure and size. European Journal of Nutrition 56 (5):1919–30. doi: 10.1007/s00394-016-1234-9.
  • Akkerman, R., M. J. Logtenberg, M. Beukema, B. J. de Haan, M. M. Faas, E. G. Zoetendal, H. A. Schols, and P. de Vos. 2022. Combining galacto-oligosaccharides and 2′-fucosyllactose alters their fermentation kinetics by infant fecal microbiota and influences AhR-receptor dependent cytokine responses in immature dendritic cells. Food & Function 13 (12):6510–21. doi: 10.1039/d2fo00550f.
  • Akkerman, R., M. J. Logtenberg, M. Beukema, B. J. De Haan, M. M. Faas, E. G. Zoetendal, H. A. Schols, and P. de Vos. 2021. Chicory inulin enhances fermentation of 2′-fucosyllactose by infant fecal microbiota and differentially influences immature dendritic cell and T-cell cytokine responses under normal and Th2-polarizing conditions. Food & Function 12 (19):9018–29. doi: 10.1039/d1fo00893e.
  • Akkerman, R., M. M. Faas, and P. de Vos. 2019. Non-digestible carbohydrates in infant formula as substitution for human milk oligosaccharide functions: Effects on microbiota and gut maturation. Critical Reviews in Food Science and Nutrition 59 (9):1486–97. doi: 10.1080/10408398.2017.1414030.
  • Alexeev, E. E., J. M. Lanis, D. J. Kao, E. L. Campbell, C. J. Kelly, K. D. Battista, M. E. Gerich, B. R. Jenkins, S. T. Walk, D. J. Kominsky, et al. 2018. Microbiota-derived indole metabolites promote human and murine intestinal homeostasis through regulation of interleukin-10 receptor. The American Journal of Pathology 188 (5):1183–94. doi: 10.1016/j.ajpath.2018.01.011.
  • Al-Khafaji, A. H., S. D. Jepsen, K. R. Christensen, and L. K. Vigsnæs. 2020. The potential of human milk oligosaccharides to impact the microbiota-gut-brain axis through modulation of the gut microbiota. Journal of Functional Foods 74:104176. doi: 10.1016/j.jff.2020.104176.
  • Allam-Ndoul, B., S. Castonguay-Paradis, and A. Veilleux. 2020. Gut microbiota and intestinal trans-epithelial permeability. International Journal of Molecular Sciences 21 (17):6402. doi: 10.3390/ijms21176402.
  • Allan Walker, W. 2013. Initial intestinal colonization in the human infant and immune homeostasis. Annals of Nutrition and Metabolism 63 (Suppl. 2):8–15. doi: 10.1159/000354907.
  • Amaretti, A., C. Gozzoli, M. Simone, S. Raimondi, L. Righini, V. Pérez-Brocal, R. García-López, A. Moya, and M. Rossi. 2019. Profiling of protein degraders in cultures of human gut microbiota. Frontiers in Microbiology 10:2614. doi: 10.3389/fmicb.2019.02614.
  • Ambrogi, V., F. Bottacini, L. Cao, B. Kuipers, M. Schoterman, and D. van Sinderen. 2023. Galacto-oligosaccharides as infant prebiotics: Production, application, bioactive activities and future perspectives. Critical Reviews in Food Science and Nutrition. Taylor & Francis 63 (6):753–66. doi: 10.1080/10408398.2021.1953437.
  • Assimakopoulos, S. F., C. Triantos, I. Maroulis, and C. Gogos. 2018. The role of the gut barrier function in health and disease. Gastroenterology Research 11 (4):261–3. doi: 10.14740/gr1053w.
  • Asto, E., I. Mendez, M. Rodriguez-Prado, J. Cune, J. Espadaler, and A. Farran-Codina. 2019. Effect of the degree of polymerization of fructans on ex vivo fermented human gut microbiome. Nutrients 11 (6):1293. doi: 10.3390/nu11061293.
  • Atuma, C., V. Strugala, A. Allen, and L. Holm. 2001. The adherent gastrointestinal mucus gel layer: Thickness and physical state in vivo. American Journal of Physiology. Gastrointestinal and Liver Physiology 280 (5):G922–G929. doi: 10.1152/ajpgi.2001.280.5.g922.
  • Ayabe, T., T. Ashida, Y. Kohgo, and T. Kono. 2004. The role of paneth cells and their antimicrobial peptides in innate host defense. Trends in Microbiology 12 (8):394–8. doi: 10.1016/j.tim.2004.06.007.
  • Ayechu-Muruzabal, V., A. H. van Stigt, M. Mank, L. E. M. Willemsen, B. Stahl, J. Garssen, and B. Van’t Land. 2018. Diversity of human milk oligosaccharides and effects on early life immune development. Frontiers in Pediatrics 6:239. doi: 10.3389/fped.2018.00239.
  • Ballard, O., and A. L. Morrow. 2013. Human milk composition: Nutrients and bioactive factors. Pediatric Clinics of North America 60 (1):49–74. doi: 10.1016/j.pcl.2012.10.002.
  • Bansil, R., and B. S. Turner. 2018. The biology of mucus: Composition, synthesis and organization. Advanced Drug Delivery Reviews 124:3–15. doi: 10.1016/j.addr.2017.09.023.
  • BeMiller, J. N. 2018. Carbohydrate chemistry for food scientists. Amsterdam, The Netherlands: Elsevier. doi: 10.1016/C2016-0-01960-5.
  • Bermudez-Brito, M., C. Rösch, H. A. Schols, M. M. Faas, and P. de Vos. 2015. Resistant starches differentially stimulate toll-like receptors and attenuate proinflammatory cytokines in dendritic cells by modulation of intestinal epithelial cells. Molecular Nutrition & Food Research 59 (9):1814–26. doi: 10.1002/mnfr.201500148.
  • Bermudez-Brito, M., N. M. Sahasrabudhe, C. Rösch, H. A. Schols, M. M. Faas, and P. de Vos. 2015. The impact of dietary fibers on dendritic cell responses in vitro is dependent on the differential effects of the fibers on intestinal epithelial cells. Molecular Nutrition & Food Research 59 (4):698–710. doi: 10.1002/mnfr.201400811.
  • Beukema, M., É. Jermendi, H. A. Schols, and P. de Vos. 2020. The influence of calcium on pectin’s impact on TLR2 signalling. Food & Function 11 (9):7427–32. doi: 10.1039/d0fo01703e.
  • Beukema, M., É. Jermendi, M. A. van den Berg, M. M. Faas, H. A. Schols, and P. de Vos. 2021. The impact of the level and distribution of methyl-esters of pectins on TLR2-1 dependent anti-inflammatory responses. Carbohydrate Polymers 251:117093. doi: 10.1016/j.carbpol.2020.117093.
  • Beukema, M., É. Jermendi, M. M. P. Oerlemans, M. J. Logtenberg, R. Akkerman, R. An, M. A. van den Berg, E. G. Zoetendal, T. Koster, C. Kong, et al. 2022. The level and distribution of methyl-esters influence the impact of pectin on intestinal T cells, microbiota, and AHR activation. Carbohydrate Polymers 286:119280. doi: 10.1016/j.carbpol.2022.119280.
  • Beukema, M., M. M. Faas, and P. de Vos. 2020. The effects of different dietary fiber pectin structures on the gastrointestinal immune barrier: impact via gut microbiota and direct effects on immune cells. Experimental & Molecular Medicine 52 (9):1364–76. doi: 10.1038/s12276-020-0449-2.
  • Bischoff, S. C., G. Barbara, W. Buurman, T. Ockhuizen, J. D. Schulzke, M. Serino, H. Tilg, A. Watson, and J. M. Wells. 2014. Intestinal permeability–a new target for disease prevention and therapy. BMC Gastroenterology 14 (1):25. doi: 10.1186/s12876-014-0189-7.
  • Blanco-Pérez, F., H. Steigerwald, S. Schülke, S. Vieths, M. Toda, and S. Scheurer. 2021. The dietary fiber pectin: Health benefits and potential for the treatment of allergies by modulation of gut microbiota. Current Allergy and Asthma Reports 21 (10):1–19. doi: 10.1007/s11882-021-01020-z.
  • Bode, L. 2012. Human milk oligosaccharides: Every baby needs a sugar mama. Glycobiology 22 (9):1147–62. doi: 10.1093/glycob/cws074.
  • Bode, L., and E. Jantscher-Krenn. 2012. Structure-function relationships of human milk oligosaccharides. Advances in Nutrition (Bethesda, MD) 3 (3):383S–91S. doi: 10.3945/an.111.001404.
  • Böger, M., S. S. van Leeuwen, A. Lammerts van Bueren, and L. Dijkhuizen. 2019. Structural identity of galactooligosaccharide molecules selectively utilized by single cultures of probiotic bacterial strains. Journal of Agricultural and Food Chemistry 67 (50):13969–77. doi: 10.1021/acs.jafc.9b05968.
  • Brosseau, C., A. Selle, D. J. Palmer, S. L. Prescott, S. Barbarot, and M. Bodinier. 2019. Prebiotics: Mechanisms and preventive effects in allergy. Nutrients 11 (8):1841. doi: 10.3390/nu11081841.
  • Bruzzese, E., M. Volpicelli, F. Salvini, M. Bisceglia, P. Lionetti, M. Cinquetti, G. Iacono, and A. Guarino. 2006. Early administration of GOS/FOS prevents intestinal and respiratory infections in infants. Journal of Pediatric Gastroenterology and Nutrition 42 (5):LWW:E95.
  • Bührer, C., R. Ensenauer, F. Jochum, H. Kalhoff, B. Koletzko, B. Lawrenz, W. Mihatsch, C. Posovszky, and S. Rudloff. 2022. Infant formulas with synthetic oligosaccharides and respective marketing practices: Position statement of the German Society for Child and Adolescent Medicine EV (DGKJ), Commission for Nutrition. Molecular and Cellular Pediatrics 9 (1):14. doi: 10.1186/s40348-022-00146-y.
  • Burger-van Paassen, N., A. Vincent, P. J. Puiman, M. van der Sluis, J. Bouma, G. Boehm, J. B. Van Goudoever, I. Van Seuningen, and I. B. Renes. 2009. The regulation of intestinal mucin MUC2 expression by short-chain fatty acids: Implications for epithelial protection. The Biochemical Journal 420 (2):211–9. doi: 10.1042/BJ20082222.
  • Bych, K., M. H. Mikš, T. Johanson, M. J. Hederos, L. K. Vigsnæs, and P. Becker. 2019. Production of HMOs using microbial hosts—from cell engineering to large scale production. Current Opinion in Biotechnology 56:130–7. doi: 10.1016/j.copbio.2018.11.003.
  • Cai, Y., J. Folkerts, G. Folkerts, M. Maurer, and S. Braber. 2020. Microbiota‐dependent and‐independent effects of dietary fibre on human health. British Journal of Pharmacology 177 (6):1363–81. doi: 10.1111/bph.14871.
  • Carasi, P., S. M. Racedo, C. Jacquot, D. E. Romanin, M. A. Serradell, and M. C. Urdaci. 2015. Impact of Kefir derived lactobacillus kefiri on the mucosal immune response and gut microbiota. Journal of Immunology Research 2015:1–12. doi: 10.1155/2015/361604.
  • Chen, K., H. Chen, M. M. Faas, B. J. de Haan, J. Li, P. Xiao, H. Zhang, J. Diana, P. de Vos, and J. Sun. 2017. Specific inulin‐type fructan fibers protect against autoimmune diabetes by modulating gut immunity, barrier function, and microbiota homeostasis. Molecular Nutrition & Food Research 61 (8):1601006. doi: 10.1002/mnfr.201601006.
  • Chen, X. 2015. Human milk oligosaccharides (HMOS): Structure, function, and enzyme-catalyzed synthesis. Advances in carbohydrate chemistry and biochemistry 72:113–90. doi: 10.1016/bs.accb.2015.08.002.
  • Cheng, L., C. Kong, M. T. C. Walvoort, M. M. Faas, and P. Vos. 2020. Human milk oligosaccharides differently modulate goblet cells under homeostatic, proinflammatory conditions and ER stress. Molecular Nutrition & Food Research 64 (5):1900976. doi: 10.1002/mnfr.201900976.
  • Clevers, H. C., and C. L. Bevins. 2013. Paneth Cells: Maestros of the small intestinal crypts. Annual Review of Physiology 75:289–311. doi: 10.1146/annurev-physiol-030212-183744.
  • Cone, R. A. 2009. Barrier properties of mucus. Advanced Drug Delivery Reviews 61 (2):75–85. doi: 10.1016/j.addr.2008.09.008.
  • Corfield, A. P. 2015. Mucins: A biologically relevant glycan barrier in mucosal protection. Biochimica Et Biophysica Acta 1850 (1):236–52. doi: 10.1016/j.bbagen.2014.05.003.
  • Cornick, S., A. Tawiah, and K. Chadee. 2015. Roles and regulation of the mucus barrier in the gut. Tissue Barriers 3 (1–2):e982426. doi: 10.4161/21688370.2014.982426.
  • Cummings, J. H., E. W. Pomare, W. J. Branch, C. P. Naylor, and G. T. MacFarlane. 1987. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28 (10):1221–7. doi: 10.1136/gut.28.10.1221.
  • de Almeida, M. N., and G. P. Maitan-Alfenas. 2021. Production of Oligosaccharides by fungi or fungal enzymes. In Encyclopedia of Mycology, 385–93. Amsterdam, The Netherlands: Elsevier. doi: 10.1016/B978-0-12-819990-9.00037-8.
  • Dieterich, W., M. Schink, and Y. Zopf. 2018. Microbiota in the gastrointestinal tract. Medical Sciences 6 (4):116. doi: 10.3390/medsci6040116.
  • Engfer, M. B., B. Stahl, B. Finke, G. Sawatzki, and H. Daniel. 2000. Human milk oligosaccharides are resistant to enzymatic hydrolysis in the upper gastrointestinal tract. The American Journal of Clinical Nutrition 71 (6):1589–96. doi: 10.1093/ajcn/71.6.1589.
  • Fanaro, S., J. Jelinek, B. Stahl, G. Boehm, R. Kock, and V. Vigi. 2005. Acidic oligosaccharides from pectin hydrolysate as new component for infant formulae: effect on intestinal flora, stool characteristics, and PH. Journal of Pediatric Gastroenterology and Nutrition 41 (2):186–90. doi: 10.1097/01.mpg.0000172747.64103.d7.
  • Farquhar, M. G., and G. E. Palade. 1963. Junctional complexes in various epithelia. The Journal of Cell Biology 17 (2):375–412. doi: 10.1083/jcb.17.2.375.
  • Feng, W., Y. Wu, G. Chen, S. Fu, B. Li, B. Huang, D. Wang, W. Wang, and J. Liu. 2018. Sodium butyrate attenuates diarrhea in weaned piglets and promotes tight junction protein expression in colon in a GPR109A-dependent manner. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology 47 (4):1617–29. doi: 10.1159/000490981.
  • Figueroa‐Lozano, S., and P. de Vos. 2019. Relationship between oligosaccharides and glycoconjugates content in human milk and the development of the gut barrier. Comprehensive Reviews in Food Science and Food Safety 18 (1):121–39. doi: 10.1111/1541-4337.12400.
  • Figueroa-Lozano, S., C. Ren, H. Yin, H. Pham, S. van Leeuwen, L. Dijkhuizen, and P. de Vos. 2020. The Impact of Oligosaccharide Content, Glycosidic Linkages and Lactose Content of Galacto-Oligosaccharides (GOS) on the Expression of Mucus-Related Genes in Goblet Cells. Food & Function 11 (4):3506–15. doi: 10.1039/d0fo00064g.
  • Fransen, F., N. M. Sahasrabudhe, M. Elderman, M. Bosveld, S. El Aidy, F. Hugenholtz, T. Borghuis, B. Kousemaker, S. Winkel, C. van der Gaast-de Jongh, et al. 2017. 1-fructans modulate the immune system in vivo in a microbiota-dependent and-independent fashion. Frontiers in Immunology 8:154. doi: 10.3389/fimmu.2017.00154.
  • Gao, R., S. Tian, J. Wang, and W. Zhu. 2021. Galacto-oligosaccharides improve barrier function and relieve colonic inflammation via modulating mucosa-associated microbiota composition in lipopolysaccharides-challenged piglets. Journal of Animal Science and Biotechnology 12 (1):16. doi: 10.1186/s40104-021-00612-z.
  • Garrod, D., and M. Chidgey. 2008. Desmosome structure, composition and function. Biochimica Et Biophysica Acta 1778 (3):572–87. doi: 10.1016/j.bbamem.2007.07.014.
  • Garthoff, J. A., S. Heemskerk, R. A. Hempenius, B. A. R. Lina, C. A. M. Krul, J. H. Koeman, and G. J. A. Speijers. 2010. Safety evaluation of pectin-derived acidic oligosaccharides (PAOS): Genotoxicity and sub-chronic studies. Regulatory Toxicology and Pharmacology: RTP 57 (1):31–42. doi: 10.1016/j.yrtph.2009.12.004.
  • Gasaly, N., P. de Vos, and M. A. Hermoso. 2021. Impact of bacterial metabolites on gut barrier function and host immunity: A focus on bacterial metabolism and its relevance for intestinal inflammation. Frontiers in Immunology 12:658354. doi: 10.3389/fimmu.2021.658354.
  • Ghosh, S., C. S. Whitley, B. Haribabu, and V. R. Jala. 2021. Regulation of intestinal barrier function by microbial metabolites. Cellular and Molecular Gastroenterology and Hepatology 11 (5):1463–82. doi: 10.1016/j.jcmgh.2021.02.007.
  • Goehring, K. C., B. J. Marriage, J. S. Oliver, J. A. Wilder, E. G. Barrett, and R. H. Buck. 2016. Similar to those who are breastfed, infants fed a formula containing 2′-fucosyllactose have lower inflammatory cytokines in a randomized controlled trial. The Journal of Nutrition 146 (12):2559–66. doi: 10.3945/jn.116.236919.
  • Gopal, P. K., P. A. Sullivan, and J. B. Smart. 2001. Utilisation of galacto-oligosaccharides as selective substrates for growth by lactic acid bacteria including bifidobacterium lactis DR10 and lactobacillus rhamnosus DR20. International Dairy Journal 11 (1-2):19–25. doi: 10.1016/S0958-6946(01)00026-7.
  • Goto, Y. 2019. Epithelial cells as a transmitter of signals from commensal bacteria and host immune cells. Frontiers in Immunology 10:2057. doi: 10.3389/fimmu.2019.02057.
  • Hamer, H. M., D. Jonkers, K. Venema, S. Vanhoutvin, F. J. Troost, and R.-J. Brummer. 2008. Review article: The role of butyrate on colonic function. Alimentary Pharmacology & Therapeutics 27 (2):104–19. doi: 10.1111/j.1365-2036.2007.03562.x.
  • Heiss, C. N., and L. E. Olofsson. 2018. Gut microbiota-dependent modulation of energy metabolism. Journal of Innate Immunity 10 (3):163–71. doi: 10.1159/000481519.
  • Hendel, S. K., L. Kellermann, A. Hausmann, N. Bindslev, K. B. Jensen, and O. H. Nielsen. 2022. Tuft cells and their role in intestinal diseases. Frontiers in Immunology 13:822867. doi: 10.3389/fimmu.2022.822867.
  • Holscher, H. D., L. Bode, and K. A. Tappenden. 2017. Human milk oligosaccharides influence intestinal epithelial cell maturation in vitro. Journal of Pediatric Gastroenterology and Nutrition 64 (2):296–301. doi: 10.1097/MPG.0000000000001274.
  • Holscher, H. D., S. R. Davis, and K. A. Tappenden. 2014. Human milk oligosaccharides influence maturation of human intestinal Caco-2Bbe and HT-29 cell lines. The Journal of Nutrition 144 (5):586–91. doi: 10.3945/jn.113.189704.
  • Hooper, L. V. 2009. Do symbiotic bacteria subvert host immunity? Nature Reviews. Microbiology 7 (5):367–74. doi: 10.1038/nrmicro2114.
  • Houston, S. A., V. Cerovic, C. Thomson, J. Brewer, A. M. Mowat, and S. Milling. 2016. The lymph nodes draining the small intestine and colon are anatomically separate and immunologically distinct. Mucosal Immunology 9 (2):468–78. doi: 10.1038/mi.2015.77.
  • Huang, F., E. Liao, and S. Yu. 2018. House dust mite allergy: Its innate immune response and immunotherapy. Immunobiology 223 (3):300–2. doi: 10.1016/j.imbio.2017.10.035.
  • Huang, W., Q. Fang, L. Fan, T. Hong, H. Tan, and S. Nie. 2022. Pectin with various degrees of esterification differentially alters gut microbiota and metabolome of healthy adults. eFood 3 (1–2):e5. doi: 10.1002/efd2.5.
  • Ibrahim, O. O. 2018. Functional oligosaccharides: Chemicals structure, manufacturing, health benefits, applications and regulations. Journal of Food Chemistry and Nanotechnology 4 (4):65–76. doi: 10.17756/jfcn.2018-060.
  • Jackson, P. P. J., A. Wijeyesekera, S. Theis, J. van Harsselaar, and R. A. Rastall. 2022. Food for thought! inulin-type fructans: does the food matrix matter? Journal of Functional Foods 90:104987. doi: 10.1016/j.jff.2022.104987.
  • Jandhyala, S. M., R. Talukdar, C. Subramanyam, H. Vuyyuru, M. Sasikala, and D. N. Reddy. 2015. Role of the normal gut microbiota. World Journal of Gastroenterology 21 (29):8787–803. doi: 10.3748/wjg.v21.i29.8787.
  • Jiao, X., F. Li, J. Zhao, Y. Wei, L. Zhang, W. Yu, and Q. Li. 2023. The preparation and potential bioactivities of modified pectins: A review. Foods 12 (5):1016. doi: 10.3390/foods12051016.
  • Kelly, G. 2008. Inulin-type prebiotics–a review: Part 1. Alternative Medicine Review 13 (4):315–29.
  • Kong, C., M. Elderman, L. Cheng, B. J. de Haan, A. Nauta, and P. de Vos. 2019. Modulation of intestinal epithelial glycocalyx development by human milk oligosaccharides and non‐digestible carbohydrates. Molecular Nutrition & Food Research 63 (17):1900303. doi: 10.1002/mnfr.201900303.
  • Kong, C., M. M. Faas, P. de Vos, and R. Akkerman. 2020. Impact of dietary fibers in infant formulas on gut microbiota and the intestinal immune barrier. Food & Function 11 (11):9445–67. doi: 10.1039/d0fo01700k.
  • Kong, C., R. Akkerman, C. E. Klostermann, M. Beukema, M. M. P. Oerlemans, H. A. Schols, and P. de Vos. 2021. Distinct fermentation of human milk oligosaccharides 3-FL and LNT2 and GOS/inulin by infant gut microbiota and impact on adhesion of lactobacillus plantarum WCFS1 to gut epithelial cells. Food & Function 12 (24):12513–25. doi: 10.1039/d1fo02563e.
  • König, J., J. Wells, P. D. Cani, C. L. García-Ródenas, T. MacDonald, A. Mercenier, J. Whyte, F. Troost, and R. J. Brummer. 2016. Human intestinal barrier function in health and disease. Clinical and Translational Gastroenterology 7 (10):e196. doi: 10.1038/ctg.2016.54.
  • Kuhn, K. A., I. Pedraza, and M. K. Demoruelle. 2014. Mucosal immune responses to microbiota in the development of autoimmune disease. Rheumatic Diseases Clinics of North America 40 (4):711–25. doi: 10.1016/j.rdc.2014.07.013.
  • Kundi, Z. M., J. C. Y. Lee, J. Pihlajamäki, C. B. Chan, K. S. Leung, S. S. Y. So, E. Nordlund, M. Kolehmainen, and H. El‐Nezami. 2021. Dietary fiber from oat and rye brans ameliorate western diet–induced body weight gain and hepatic inflammation by the modulation of short‐chain fatty acids, bile acids, and tryptophan metabolism. Molecular Nutrition & Food Research 65 (1):1900580. doi: 10.1002/mnfr.201900580.
  • Ladirat, S. E. 2014. Galacto-oligosaccharides to counter the side effects of antibiotic treatments. Wageningen, The Netherlands: Wageningen University.
  • Ladirat, S. E., H. A. Schols, A. Nauta, M. H. Schoterman, F. H. Schuren, and H. Gruppen. 2014. In vitro fermentation of galacto-oligosaccharides and its specific size-fractions using non-treated and amoxicillin-treated human inoculum. Bioactive Carbohydrates and Dietary Fibre 3 (2):59–70. doi: 10.1016/j.bcdf.2014.02.002.
  • Larsen, N., C. Bussolo de Souza, L. Krych, T. Barbosa Cahú, M. Wiese, W. Kot, K. M. Hansen, A. Blennow, K. Venema, and L. Jespersen. 2019. Potential of pectins to beneficially modulate the gut microbiota depends on their structural properties. Frontiers in Microbiology 10:223. doi: 10.3389/fmicb.2019.00223.
  • Lee, B., K. M. Moon, and C. Y. Kim. 2018. Tight junction in the intestinal epithelium: its association with diseases and regulation by phytochemicals. Journal of Immunology Research 2018:1–11. doi: 10.1155/2018/2645465.
  • Li, J., L. Zhang, T. Wu, Y. Li, X. Zhou, and Z. Ruan. 2021. Indole-3-propionic acid improved the intestinal barrier by enhancing epithelial barrier and mucus barrier. Journal of Agricultural and Food Chemistry 69 (5):1487–95. doi: 10.1021/acs.jafc.0c05205.
  • Li, L., Y. Wang, L. Zhu, Z. Liu, C. Ye, and S. Qin. 2020. Inulin with different degrees of polymerization protects against diet-induced endotoxemia and inflammation in association with gut microbiota regulation in mice. Scientific Reports 10 (1):12. doi: 10.1038/s41598-020-58048-w.
  • Li, W., K. Wang, Y. Sun, H. Ye, B. Hu, and X. Zeng. 2015. Influences of structures of galactooligosaccharides and fructooligosaccharides on the fermentation in vitro by human intestinal microbiota. Journal of Functional Foods 13:158–68. doi: 10.1016/j.jff.2014.12.044.
  • Liang, R., J. Chen, W. Liu, C. Liu, W. Yu, M. Yuan, and X. Zhou. 2012. Extraction, characterization and spontaneous gel-forming property of pectin from creeping fig (Ficus Pumila Linn.) seeds. Carbohydrate Polymers 87 (1):76–83. doi: 10.1016/j.carbpol.2011.07.013.
  • Liu, T. W., K. D. Cephas, H. D. Holscher, K. R. Kerr, H. F. Mangian, K. A. Tappenden, and K. S. Swanson. 2016. Nondigestible fructans alter gastrointestinal barrier function, gene expression, histomorphology, and the microbiota profiles of diet-induced obese C57BL/6J mice. The Journal of Nutrition 146 (5):949–56. doi: 10.3945/jn.115.227504.
  • LoCascio, R. G., M. R. Ninonuevo, S. L. Freeman, D. A. Sela, R. Grimm, C. B. Lebrilla, D. A. Mills, and J. B. German. 2007. Glycoprofiling of bifidobacterial consumption of human milk oligosaccharides demonstrates strain specific, preferential consumption of small chain glycans secreted in early human lactation. Journal of Agricultural and Food Chemistry 55 (22):8914–9. doi: 10.1021/jf0710480.
  • Logtenberg, M. J. 2020. Bridging the immune gap between human milk and infant formula: Non-digestible oligosaccharides. Wageningen, The Netherlands: Wageningen University and Research.
  • Logtenberg, M. J., R. Akkerman, R. An, G. D. A. Hermes, B. J. de Haan, M. M. Faas, E. G. Zoetendal, H. A. Schols, and P. de Vos. 2020. Fermentation of chicory fructo‐oligosaccharides and native inulin by infant fecal microbiota attenuates pro‐inflammatory responses in immature dendritic cells in an infant‐age‐dependent and fructan‐specific way. Molecular Nutrition & Food Research 64 (13):2000068. doi: 10.1002/mnfr.202000068.
  • Louis, P., K. P. Scott, S. H. Duncan, and H. J. Flint. 2007. Understanding the effects of diet on bacterial metabolism in the large intestine. Journal of Applied Microbiology 102 (5):1197–208. doi: 10.1111/j.1365-2672.2007.03322.x.
  • Mabbott, N. A., D. S. Donaldson, H. Ohno, I. R. Williams, and A. Mahajan. 2013. Microfold (M) cells: Important immunosurveillance posts in the intestinal epithelium. Mucosal Immunology 6 (4):666–77. doi: 10.1038/mi.2013.30.
  • Macfarlane, S., and G. T. Macfarlane. 2003. Regulation of short-chain fatty acid production. The Proceedings of the Nutrition Society 62 (1):67–72. doi: 10.1079/pns2002207.
  • Maráz, A., Z. Kovács, E. Benjamins, and M. Pázmándi. 2022. Recent developments in microbial production of high-purity galacto-oligosaccharides. World Journal of Microbiology and Biotechnology 38 (6):1–10. doi: 10.1007/s11274-022-03279-4.
  • Marín-Manzano, M. C., O. Hernandez-Hernandez, M. Diez-Municio, C. Delgado-Andrade, F. J. Moreno, and A. Clemente. 2020. Prebiotic properties of non-fructosylated α-galactooligosaccharides from pea (Pisum Sativum L.) using infant fecal slurries. Foods 9 (7):921. doi: 10.3390/foods9070921.
  • Marriage, B. J., R. H. Buck, K. C. Goehring, J. S. Oliver, and J. A. Williams. 2015. Infants fed a lower calorie formula with 2′ FL show growth and 2′ FL uptake like breast-fed infants. Journal of Pediatric Gastroenterology and Nutrition 61 (6):649–58. doi: 10.1097/MPG.0000000000000889.
  • Martel, J., S. H. Chang, Y. F. Ko, T. L. Hwang, J. D. Young, and D. M. Ojcius. 2022. Gut barrier disruption and chronic disease. Trends in Endocrinology & Metabolism. Elsevier 33 (4):247–65. doi: 10.1016/j.tem.2022.01.002.
  • Maslowski, K. M., A. T. Vieira, A. Ng, J. Kranich, F. Sierro, D. Yu, H. C. Schilter, M. S. Rolph, F. Mackay, D. Artis, et al. 2009. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461 (7268):1282–6. doi: 10.1038/nature08530.
  • Masui, R., M. Sasaki, Y. Funaki, N. Ogasawara, M. Mizuno, A. Iida, S. Izawa, Y. Kondo, Y. Ito, Y. Tamura, et al. 2013. G protein-coupled receptor 43 moderates gut inflammation through cytokine regulation from mononuclear cells. Inflammatory Bowel Diseases 19 (13):2848–56. doi: 10.1097/01.MIB.0000435444.14860.ea.
  • McDole, J. R., L. W. Wheeler, K. G. McDonald, B. Wang, V. Konjufca, K. A. Knoop, R. D. Newberry, and M. J. Miller. 2012. Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature 483 (7389):345–9. doi: 10.1038/nature10863.
  • Milani, C., S. Duranti, F. Bottacini, E. Casey, F. Turroni, J. Mahony, C. Belzer, S. Delgado Palacio, S. Arboleya Montes, L. Mancabelli, et al. 2017. The first microbial colonizers of the human gut: Composition, activities, and health implications of the infant gut microbiota. Microbiology and Molecular Biology Reviews 81 (4):e00036–17. doi: 10.1128/MMBR.00036-17.
  • Morales-Medina, R., S. Drusch, F. Acevedo, A. Castro-Alvarez, A. Benie, D. Poncelet, M. M. Dragosavac, M. V. Defain Tesoriero, P. Löwenstein, V. Yonaha, et al. 2022. Structure, controlled release mechanisms and health benefits of pectins as an encapsulation material for bioactive food components. Food & Function 13 (21):10870–81. doi: 10.1039/d2fo00350c.
  • Mowat, A. M., and W. W. Agace. 2014. Regional specialization within the intestinal immune system. Nature Reviews. Immunology 14 (10):667–85. doi: 10.1038/nri3738.
  • Nakayama, Y., N. Kawasaki, T. Tamiya, S. Anzai, K. Toyohara, A. Nishiyama, and E. Kitazono. 2020. Comparison of the prebiotic properties of native chicory and synthetic inulins using swine fecal cultures. Bioscience, Biotechnology, and Biochemistry 84 (7):1486–96. doi: 10.1080/09168451.2020.1749553.
  • Natividad, J. M., and E. F. Verdu. 2013. Modulation of intestinal barrier by intestinal microbiota: Pathological and therapeutic implications. Pharmacological Research 69 (1):42–51. doi: 10.1016/j.phrs.2012.10.007.
  • Natividad, J. M., B. Marsaux, C. L. G. Rodenas, A. Rytz, G. Vandevijver, M. Marzorati, P. Van den Abbeele, M. Calatayud, and F. Rochat. 2022. Human milk oligosaccharides and lactose differentially affect infant gut microbiota and intestinal barrier in vitro. Nutrients 14 (12):2546. doi: 10.3390/nu14122546.
  • Noll, A. J., Y. Yu, Y. Lasanajak, G. Duska-McEwen, R. H. Buck, D. F. Smith, and R. D. Cummings. 2016. Human DC-SIGN binds specific human milk glycans. The Biochemical Journal 473 (10):1343–53. doi: 10.1042/BCJ20160046.
  • O’Hara, A. M., and F. Shanahan. 2006. The gut flora as a forgotten organ. EMBO Reports 7 (7):688–93. doi: 10.1038/sj.embor.7400731.
  • O’Reilly, M. K., and J. C. Paulson. 2009. Siglecs as targets for therapy in immune-cell-mediated disease. Trends in Pharmacological Sciences 30 (5):240–8. doi: 10.1016/j.tips.2009.02.005.
  • Pabst, R., M. W. Russell, and P. Brandtzaeg. 2008. Tissue distribution of lymphocytes and plasma cells and the role of the gut. Trends in Immunology 29 (5):206–8. doi: 10.1016/j.it.2008.02.006.
  • Paone, P., and P. D. Cani. 2020. Mucus barrier, mucins and gut microbiota: The expected slimy partners? Gut 69 (12):2232–43. doi: 10.1136/gutjnl-2020-322260.
  • Parada Venegas, D., M. K. De la Fuente, G. Landskron, M. J. González, R. Quera, G. Dijkstra, H. J. M. Harmsen, K. N. Faber, and M. A. Hermoso. 2019. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Frontiers in Immunology 10:277. doi: 10.3389/fimmu.2019.01486.
  • Paßlack, N., M. Al-Samman, W. Vahjen, K. Männer, and J. Zentek. 2012. Chain length of inulin affects its degradation and the microbiota in the gastrointestinal tract of weaned piglets after a short-term dietary application. Livestock Science 149 (1–2):128–36. doi: 10.1016/j.livsci.2012.07.005.
  • Payling, L., K. Fraser, S. M. Loveday, I. Sims, N. Roy, and W. McNabb. 2020. The effects of carbohydrate structure on the composition and functionality of the human gut microbiota. Trends in Food Science & Technology 97:233–48. doi: 10.1016/j.tifs.2020.01.009.
  • Pelaseyed, T., J. H. Bergström, J. K. Gustafsson, A. Ermund, G. M. H. Birchenough, A. Schütte, S. van der Post, F. Svensson, A. M. Rodríguez-Piñeiro, E. E. L. Nyström, et al. 2014. The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunological Reviews 260 (1):8–20. doi: 10.1111/imr.12182.
  • Peterson, L. W., and D. Artis. 2014. Intestinal epithelial cells: Regulators of barrier function and immune homeostasis. Nature Reviews. Immunology 14 (3):141–53. doi: 10.1038/nri3608.
  • Pham, V. T., N. Seifert, N. Richard, D. Raederstorff, R. E. Steinert, K. Prudence, and M. H. Mohajeri. 2018. The effects of fermentation products of prebiotic fibres on gut barrier and immune functions in vitro. PeerJ 6:e5288. doi: 10.7717/peerj.5288.
  • Picazo, B., A. C. Flores-Gallegos, D. B. Muñiz-Márquez, A. Flores-Maltos, M. R. Michel-Michel, O. de la Rosa, R. M. Rodríguez-Jasso, R. Rodríguez-Herrera, and C. N. Aguilar-González. 2019. Enzymes for fructooligosaccharides production: Achievements and opportunities. In Enzymes in food biotechnology, 303–20. Amsterdam, The Netherlands: Elsevier.
  • Pickett-Bernard, D. 2006. Infant formula: Evaluating the safety of new ingredients. Journal of Human Lactation 22 (2):231. doi: 10.1177/089033440602200221.
  • Powell, D. N., A. Swimm, R. Sonowal, A. Bretin, A. T. Gewirtz, R. M. Jones, and D. Kalman. 2020. Indoles from the commensal microbiota act via the AHR and IL-10 to tune the cellular composition of the colonic epithelium during aging. Proceedings of the National Academy of Sciences of the United States of America 117 (35):21519–26. doi: 10.1073/pnas.2003004117.
  • Puccio, G., P. Alliet, C. Cajozzo, E. Janssens, G. Corsello, N. Sprenger, S. Wernimont, D. Egli, L. Gosoniu, and P. Steenhout. 2017. Effects of infant formula with human milk oligosaccharides on growth and morbidity: A randomized multicenter trial. Journal of Pediatric Gastroenterology and Nutrition 64 (4):624–31. doi: 10.1097/MPG.0000000000001520.
  • Qi, Q., J. Li, B. Yu, J.-Y. Moon, J. C. Chai, J. Merino, J. Hu, M. Ruiz-Canela, C. Rebholz, Z. Wang, et al. 2022. Host and gut microbial tryptophan metabolism and type 2 diabetes: An integrative analysis of host genetics, diet, gut microbiome and circulating metabolites in cohort studies. Gut 71 (6):1095–105. doi: 10.1136/gutjnl-2021-324053.
  • Rapoport, E. M., O. V. Kurmyshkina, and N. V. Bovin. 2008. Mammalian galectins: Structure, carbohydrate specificity, and functions. Biochemistry. Biokhimiia 73 (4):393–405. doi: 10.1134/s0006297908040032.
  • Rastall, R. A., M. Diez-Municio, S. D. Forssten, B. Hamaker, A. Meynier, F. J. Moreno, F. Respondek, B. Stahl, K. Venema, and M. Wiese. 2022. Structure and function of non-digestible carbohydrates in the gut microbiome. Beneficial Microbes 13 (2):95–168. doi: 10.3920/BM2021.0090.
  • Reboldi, A., and J. G. Cyster. 2016. Peyer’s patches: Organizing B‐cell responses at the intestinal frontier. Immunological Reviews 271 (1):230–45. doi: 10.1111/imr.12400.
  • Rescigno, M., M. Urbano, B. Valzasina, M. Francolini, G. Rotta, R. Bonasio, F. Granucci, J. P. Kraehenbuhl, and P. Ricciardi-Castagnoli. 2001. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nature Immunology 2 (4):361–7. doi: 10.1038/86373.
  • Rinninella, E., P. Raoul, M. Cintoni, F. Franceschi, G. A. D. Miggiano, A. Gasbarrini, and M. C. Mele. 2019. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms 7 (1):14. doi: 10.3390/microorganisms7010014.
  • Roager, H. M., and T. R. Licht. 2018. Microbial tryptophan catabolites in health and disease. Nature Communications 9 (1):1–10. doi: 10.1038/s41467-018-05470-4.
  • Roberfroid, M. B. 2004. Inulin-type fructans: Functional food ingredients. The Journal of Nutrition 137 (11):2493S–2502S. doi: 10.1093/jn/137.11.2493S
  • Roberfroid, M. B., J. A. E. Van Loo, and G. R. Gibson. 1998. The bifidogenic nature of chicory inulin and its hydrolysis products. The Journal of Nutrition 128 (1):11–9. doi: 10.1093/jn/128.1.11.
  • Robledo, V. R., and L. I. C. Vázquez. 2019. Pectin-extraction, purification, characterization and applications. In Pectins-extraction, purification, characterization and applications, 1–19. London, UK: intechopen.
  • Rousseaux, A., C. Brosseau, S. Le Gall, H. Piloquet, S. Barbarot, and M. Bodinier. 2021. Human milk oligosaccharides: Their effects on the host and their potential as therapeutic agents. Frontiers in Immunology 12:680911. doi: 10.3389/fimmu.2021.680911.
  • Rowland, I., G. Gibson, A. Heinken, K. Scott, J. Swann, I. Thiele, and K. Tuohy. 2018. Gut microbiota functions: Metabolism of nutrients and other food components. European Journal of Nutrition 57 (1):1–24. doi: 10.1007/s00394-017-1445-8.
  • Sahasrabudhe, N. M., M. Beukema, L. Tian, B. Troost, J. Scholte, E. Bruininx, G. Bruggeman, M. van den Berg, A. Scheurink, H. A. Schols, et al. 2018. Dietary fiber pectin directly blocks toll-like receptor 2–1 and prevents doxorubicin-induced ileitis. Frontiers in Immunology 9:383. doi: 10.3389/fimmu.2018.00383.
  • Salomov, I. T., A. R. Ashurov, O. KhM, U. I. Salomov, and B. M. Dzhalilov. 1994. Effect of pectin additives from cotton on the physical development, nutrition and erythrocytes in infants. Voprosy Pitaniia 6:16–8.
  • Scholtens, P. A. M. J., M. S. Alles, J. G. Bindels, E. G. M. van der Linde, J. J. M. Tolboom, and J. Knol. 2006. Bifidogenic effects of solid weaning foods with added prebiotic oligosaccharides: a randomised controlled clinical trial. Journal of Pediatric Gastroenterology and Nutrition 42 (5):553–9. doi: 10.1097/01.mpg.0000221887.28877.c7.
  • Schulzke, J. D., and M. Fromm. 2009. Tight junctions: Molecular structure meets function. Annals of the New York Academy of Sciences 1165 (1):1–6. doi: 10.1111/j.1749-6632.2009.04925.x.
  • Scott, S. A., J. Fu, and P. V. Chang. 2020. Microbial tryptophan metabolites regulate gut barrier function via the aryl hydrocarbon receptor. Proceedings of the National Academy of Sciences of the United States of America 117 (32):19376–87. doi: 10.1073/pnas.2000047117.
  • Sekirov, I., S. L. Russell, L. M. Antunes, and B. B. Finlay. 2010. Gut microbiota in health and disease. Physiological Reviews. American Physiological Society Bethesda, MD 90 (3):859–904. doi: 10.1159/000481627.
  • Sharma, A. A., R. Jen, A. Butler, and P. M. Lavoie. 2012. The developing human preterm neonatal immune system: A case for more research in this area. Clinical Immunology 145 (1):61–8. doi: 10.1016/j.clim.2012.08.006.
  • Shemtov, S. J., R. Emani, O. Bielska, A. J. Covarrubias, E. Verdin, J. K. Andersen, and D. A. Winer. 2022. The intestinal immune system and gut barrier function in obesity and ageing. The FEBS Journal 4:67. doi: 10.1111/febs.16558.
  • Shi, J., P. Du, Q. Xie, N. Wang, H. Li, E. Smith, C. Li, F. Liu, G. Huo, and B. Li. 2020. Protective effects of tryptophan-catabolizing lactobacillus plantarum KLDS 1.0386 against dextran sodium sulfate-induced colitis in mice. Food & Function 11 (12):10736–47. doi: 10.1039/d0fo02622k.
  • Shi, N., N. Li, X. Duan, and H. Niu. 2017. Interaction between the gut microbiome and mucosal immune system. Military Medical Research 4 (1):1–7. doi: 10.1186/s40779-017-0122-9.
  • Singh, N., A. Gurav, S. Sivaprakasam, E. Brady, R. Padia, H. Shi, M. Thangaraju, P. D. Prasad, S. Manicassamy, D. H. Munn, et al. 2014. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 40 (1):128–39. doi: 10.1016/j.immuni.2013.12.007.
  • Smilowitz, J. T., C. B. Lebrilla, D. A. Mills, J. B. German, and S. L. Freeman. 2014. Breast milk oligosaccharides: Structure-function relationships in the neonate. Annual Review of Nutrition 34 (1):143–69. doi: 10.1146/annurev-nutr-071813-105721.
  • Smith, P. M., M. R. Howitt, N. Panikov, M. Michaud, C. A. Gallini, M. Bohlooly-Y, J. N. Glickman, and W. S. Garrett. 2013. The microbial metabolites, short-chain fatty acids, regulate colonic T reg cell homeostasis. Science 341 (6145):569–73. doi: 10.1126/science.1241165.
  • Sosinsky, G. E., and B. J. Nicholson. 2005. Structural organization of gap junction channels. Biochimica Et Biophysica Acta 1711 (2):99–125. doi: 10.1016/j.bbamem.2005.04.001.
  • Strunk, T., A. Currie, P. Richmond, K. Simmer, and D. Burgner. 2011. Innate immunity in human newborn infants: Prematurity means more than immaturity. The Journal of Maternal-Fetal & Neonatal Medicine 24 (1):25–31. doi: 10.3109/14767058.2010.482605.
  • Su, X., M. Zhang, H. Qi, Y. Gao, Y. Yang, H. Yun, Q. Zhang, X. Yang, Y. Zhang, J. He, et al. 2022. Gut microbiota–derived metabolite 3-idoleacetic acid together with lps induces IL-35+ B cell generation. Microbiome 10 (1):1–20. doi: 10.1186/s40168-021-01205-8.
  • Su, X., Y. Gao, and R. Yang. 2022. Gut microbiota-derived tryptophan metabolites maintain gut and systemic homeostasis. Cells 11 (15):2296. doi: 10.3390/cells11152296.
  • Šuligoj, T., L. K. Vigsnæs, P. V. Abbeele, A. Apostolou, K. Karalis, G. M. Savva, B. McConnell, and N. Juge. 2020. Effects of human milk oligosaccharides on the adult gut microbiota and barrier function. Nutrients 12 (9):2808. doi: 10.3390/nu12092808.
  • Sun, M., W. Wu, Z. Liu, and Y. Cong. 2017. Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases. Journal of Gastroenterology 52 (1):1–8. doi: 10.1007/s00535-016-1242-9.
  • Suzuki, T., S. Yoshida, and H. Hara. 2008. Physiological concentrations of short-chain fatty acids immediately suppress colonic epithelial permeability. The British Journal of Nutrition 100 (2):297–305. doi: 10.1017/S0007114508888733.
  • Tennoune, N., M. Andriamihaja, and F. Blachier. 2022. Production of indole and indole-related compounds by the intestinal microbiota and consequences for the host: The good, the bad, and the ugly. Microorganisms 10 (5):930. doi: 10.3390/microorganisms10050930.
  • Thursby, E., and N. Juge. 2017. Introduction to the human gut microbiota. The Biochemical Journal 474 (11):1823–36. doi: 10.1042/BCJ20160510.
  • Tramontano, M., S. Andrejev, M. Pruteanu, M. Klünemann, M. Kuhn, M. Galardini, P. Jouhten, A. Zelezniak, G. Zeller, P. Bork, et al. 2018. Nutritional preferences of human gut bacteria reveal their metabolic idiosyncrasies. Nature Microbiology 3 (4):514–22. doi: 10.1038/s41564-018-0123-9.
  • Triantis, V., L. Bode, and R. J. J. Van Neerven. 2018. Immunological effects of human milk oligosaccharides. Frontiers in Pediatrics 6:190. doi: 10.3389/fped.2018.00190.
  • Trompette, A., E. S. Gollwitzer, K. Yadava, A. K. Sichelstiel, N. Sprenger, C. Ngom-Bru, C. Blanchard, T. Junt, L. P. Nicod, N. L. Harris, et al. 2014. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nature Medicine 20 (2):159–66. doi: 10.1038/nm.3444.
  • Tuomainen, M., J. Lindström, M. Lehtonen, S. Auriola, J. Pihlajamäki, M. Peltonen, J. Tuomilehto, M. Uusitupa, V. D. de Mello, and K. Hanhineva. 2018. Associations of serum indolepropionic acid, a gut microbiota metabolite, with type 2 diabetes and low-grade inflammation in high-risk individuals. Nutrition & Diabetes 8 (1):1–5. doi: 10.1038/s41387-018-0046-9.
  • Turner, P. V. 2018. The role of the gut microbiota on animal model reproducibility. Animal Models and Experimental Medicine 1 (2):109–15. doi: 10.1002/ame2.12022.
  • Uerlings, J., M. Schroyen, E. Willems, S. Tanghe, G. Bruggeman, J. Bindelle, and N. Everaert. 2020. Differential effects of inulin or its fermentation metabolites on gut barrier and immune function of porcine intestinal epithelial cells. Journal of Functional Foods 67:103855. doi: 10.1016/j.jff.2020.103855.
  • Ulluwishewa, D., R. C. Anderson, W. C. McNabb, P. J. Moughan, J. M. Wells, and N. C. Roy. 2011. Regulation of tight junction permeability by intestinal bacteria and dietary components. The Journal of Nutrition 141 (5):769–76. doi: 10.3945/jn.110.135657.
  • Valdes, A. M., J. Walter, E. Segal, and T. D. Spector. 2018. Role of the gut microbiota in nutrition and health. BMJ (Clinical Research Ed.) 361:k2179. doi: 10.1136/bmj.k2179.
  • Van den Abbeele, P., L. Verstrepen, J. Ghyselinck, R. Albers, M. Marzorati, and A. Mercenier. 2020. A novel non-digestible, carrot-derived polysaccharide (CRG-I) selectively modulates the human gut microbiota while promoting gut barrier integrity: An integrated in vitro approach. Nutrients 12 (7):1917. doi: 10.3390/nu12071917.
  • Van der Sluis, M., B. A. E. De Koning, A. C. J. M. De Bruijn, A. Velcich, J. P. P. Meijerink, J. B. Van Goudoever, H. A. Büller, J. Dekker, I. Van Seuningen, I. B. Renes, et al. 2006. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 131 (1):117–29. doi: 10.1053/j.gastro.2006.04.020.
  • Vancamelbeke, M., and S. Vermeire. 2017. The intestinal barrier: A fundamental role in health and disease. Expert Review of Gastroenterology & Hepatology 11 (9):821–34. doi: 10.1080/17474124.2017.1343143.
  • Varasteh, S., B. Van’t Land, I. Giziakis, M. Mank, B. Stahl, S. Wiertsema, G. Folkerts, J. Garssen, and S. Braber. 2019. Human milk oligosaccharide 3′-galactosyllactose can protect the intestinal barrier to challenges. Journal of Pediatric Gastroenterology and Nutrition 68:N–P–016. doi: 10.3390/nu13093190.
  • Veereman, G. 2007. Pediatric applications of inulin and oligofructose. The Journal of Nutrition 137 (11 Suppl):2585S–9S. doi: 10.1093/jn/137.11.2585S.
  • Venkatesh, M., S. Mukherjee, H. Wang, H. Li, K. Sun, A. P. Benechet, Z. Qiu, L. Maher, M. R. Redinbo, R. S. Phillips, et al. 2014. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and toll-like receptor 4. Immunity 41 (2):296–310. doi: 10.1016/j.immuni.2014.06.014.
  • Vera, C., A. Córdova, C. Aburto, C. Guerrero, S. Suárez, and A. Illanes. 2016. Synthesis and purification of galacto-oligosaccharides: State of the art. World Journal of Microbiology and Biotechnology 32 (12):1–20. doi: 10.1007/s11274-016-2159-4.
  • Verkhnyatskaya, S., M. Ferrari, P. de Vos, and M. T. C. Walvoort. 2019. Shaping the infant microbiome with non-digestible carbohydrates. Frontiers in Microbiology 10:343. doi: 10.3389/fmicb.2019.00343.
  • Viggiano, D., G. Ianiro, G. Vanella, S. Bibbò, G. Bruno, G. Simeone, and G. Mele. 2015. Gut barrier in health and disease: Focus on childhood. European Review for Medical and Pharmacological Sciences 19 (6):1077–85.
  • Vogt, L. M., D. Meyer, G. Pullens, M. M. Faas, K. Venema, U. Ramasamy, H. A. Schols, and P. de Vos. 2014. Toll-like receptor 2 activation by B2→1-fructans protects barrier function of T84 human intestinal epithelial cells in a chain length-dependent manner. Journal of Nutrition 144 (7):1002–8. doi: 10.3945/jn.114.191643.
  • Vogt, L. M., N. M. Sahasrabudhe, U. Ramasamy, D. Meyer, G. Pullens, M. M. Faas, K. Venema, H. A. Schols, and P. de Vos. 2016. The impact of lemon pectin characteristics on TLR activation and T84 intestinal epithelial cell barrier function. Journal of Functional Foods 22:398–407. doi: 10.1016/j.jff.2016.02.002.
  • Vogt, L., D. Meyer, G. Pullens, M. Faas, M. Smelt, K. Venema, U. Ramasamy, H. A. Schols, and P. de Vos. 2015. Immunological properties of inulin-type fructans. Critical Reviews in Food Science and Nutrition 55 (3):414–36. doi: 10.1080/10408398.2012.656772.
  • Vogt, L., U. Ramasamy, D. Meyer, G. Pullens, K. Venema, M. M. Faas, H. A. Schols, and P. de Vos. 2013. Immune modulation by different types of B2→1-fructans is toll-like receptor dependent. PLoS One 8 (7):e68367. doi: 10.1371/journal.pone.0068367.
  • Walker, A. 2010. Breast milk as the gold standard for protective nutrients. The Journal of Pediatrics 156 (2 Suppl):S3–S7. doi: 10.1016/j.jpeds.2009.11.021.
  • Walters, W. A., Z. Xu, and R. Knight. 2014. Meta-analyses of human gut microbes associated with obesity and IBD. FEBS Letters 588 (22):4223–33. doi: 10.1016/j.febslet.2014.09.039.
  • Wang, G., W. Sun, X. Pei, Y. Jin, H. Wang, W. Tao, Z. Xiao, L. Liu, and M. Wang. 2021. Galactooligosaccharide pretreatment alleviates damage of the intestinal barrier and inflammatory responses in LPS-challenged mice. Food & Function 12 (4):1569–79. doi: 10.1039/d0fo03020a.
  • Westerbeek, E. A. M., J. P. van den Berg, H. N. Lafeber, W. P. F. Fetter, G. Boehm, J. W. R. Twisk, and R. M. van Elburg. 2010. Neutral and acidic oligosaccharides in preterm infants: A randomized, double-blind, placebo-controlled trial. The American Journal of Clinical Nutrition 91 (3):679–86. doi: 10.3945/ajcn.2009.28625.
  • Westerbeek, E. A. M., R. L. Hensgens, W. A. Mihatsch, G. Boehm, H. N. Lafeber, and R. M. Van Elburg. 2011. The effect of neutral and acidic oligosaccharides on stool viscosity, stool frequency and stool PH in preterm infants. Acta Paediatrica (Oslo, Norway: 1992) 100 (11):1426–31. doi: 10.1111/j.1651-2227.2011.02295.x.
  • Wiciński, M., E. Sawicka, J. Gębalski, K. Kubiak, and B. Malinowski. 2020. Human milk oligosaccharides: Health benefits, potential applications in infant formulas, and pharmacology. Nutrients 12 (1):266. doi: 10.3390/nu12010266.
  • Wiertsema, S. P., J. van Bergenhenegouwen, J. Garssen, and L. J. Knippels. 2021. The interplay between the gut microbiome and the immune system in the context of infectious diseases throughout life and the role of nutrition in optimizing treatment strategies. Nutrients 13 (3):886. doi: 10.3390/nu13030886.
  • Wlodarska, M., C. Luo, R. Kolde, E. d’Hennezel, J. W. Annand, C. E. Heim, P. Krastel, E. K. Schmitt, A. S. Omar, E. A. Creasey, et al. 2017. Indoleacrylic acid produced by commensal peptostreptococcus species suppresses inflammation. Cell Host & Microbe 22 (1):25–37.e6. doi: 10.1016/j.chom.2017.06.007.
  • Wozniak, H., T. S. Beckmann, L. Fröhlich, T. Soccorsi, C. Le Terrier, A. de Watteville, J. Schrenzel, and C. P. Heidegger. 2022. The central and biodynamic role of gut microbiota in critically ill patients. Critical Care 26 (1):1–12. doi: 10.1186/s13054-022-04127-5.
  • Wu, R. Y., B. Li, Y. Koike, P. Määttänen, H. Miyake, M. Cadete, K. C. Johnson‐Henry, S. R. Botts, C. Lee, T. R. Abrahamsson, et al. 2018. Human milk oligosaccharides increase mucin expression in experimental necrotizing enterocolitis. Molecular Nutrition & Food Research 63 (3):1800658. doi: 10.1002/mnfr.201800658.
  • Yang, B.-H., S. Hagemann, P. Mamareli, U. Lauer, U. Hoffmann, M. Beckstette, L. Föhse, I. Prinz, J. Pezoldt, S. Suerbaum, et al. 2016. Foxp3+ T cells expressing RORγt represent a stable regulatory T-cell effector lineage with enhanced suppressive capacity during intestinal inflammation. Mucosal Immunology 9 (2):444–57. doi: 10.1038/mi.2015.74.
  • Ye, X., H. Li, K. Anjum, X. Zhong, S. Miao, G. Zheng, W. Liu, and L. Li. 2022. Dual role of indoles derived from intestinal microbiota on human health. Frontiers in Immunology 13:903526. doi: 10.3389/fimmu.2022.903526.
  • Yeung, Y. K., Y. R. Kang, B. R. So, S. K. Jung, and Y. H. Chang. 2021. Structural, antioxidant, prebiotic and anti-inflammatory properties of pectic oligosaccharides hydrolyzed from okra pectin by fenton reaction. Food Hydrocolloids 118:106779. doi: 10.1016/j.foodhyd.2021.106779.
  • Yu, Z., C. Chen, and D. S. Newburg. 2013. Utilization of major fucosylated and sialylated human milk oligosaccharides by isolated human gut microbes. Glycobiology 23 (11):1281–92. doi: 10.1093/glycob/cwt065.
  • Zelante, T., R. G. Iannitti, C. Cunha, A. De Luca, G. Giovannini, G. Pieraccini, R. Zecchi, C. D’Angelo, C. Massi-Benedetti, F. Fallarino, et al. 2013. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 39 (2):372–85. doi: 10.1016/j.immuni.­2013.08.003.
  • Zeuner, B., D. Teze, J. Muschiol, and A. S. Meyer. 2019. Synthesis of human milk oligosaccharides: protein engineering strategies for improved enzymatic transglycosylation. Molecules 24 (11):2033. doi: 10.3390/molecules24112033.
  • Zhao, Y., J. Bi, J. Yi, X. Wu, Y. Ma, and R. Li. 2021. Pectin and homogalacturonan with small molecular mass modulate microbial community and generate high SCFAs via in vitro gut fermentation. Carbohydrate Polymers 269:118326. doi: 10.1016/j.carbpol.2021.118326.
  • Zheng, D., T. Liwinski, and E. Elinav. 2020. Interaction between microbiota and immunity in health and disease. Cell Research 30 (6):492–506. doi: 10.1038/s41422-020-0332-7.
  • Zhi, Z., J. Chen, S. Li, W. Wang, R. Huang, D. Liu, T. Ding, R. J. Linhardt, S. Chen, and X. Ye. 2017. Fast preparation of RG-I enriched ultra-low molecular weight pectin by an ultrasound accelerated fenton process. Scientific Reports 7 (1):1–11. doi: 10.1038/s41598-017-00572-3.
  • Zhu, L., S. Qin, S. Zhai, Y. Gao, and L. Li. 2017. Inulin with different degrees of polymerization modulates composition of intestinal microbiota in mice. FEMS Microbiology Letters 364 (10):fnx075. doi: 10.1093/femsle/fnx075.
  • Zuurveld, M., N. P. van Witzenburg, J. Garssen, G. Folkerts, B. Stahl, B. Van’t Land, and L. E. M. Willemsen. 2020. Immunomodulation by human milk oligosaccharides: The potential role in prevention of allergic diseases. Frontiers in Immunology 11:801. doi: 10.3389/fimmu.2020.00801.