477
Views
0
CrossRef citations to date
0
Altmetric
Review

Oral bioavailability of bioactive compounds; modulating factors, in vitro analysis methods, and enhancing strategies

, , , , &

References

  • Acosta, E. 2009. Bioavailability of nanoparticles in nutrient and nutraceutical delivery. Current Opinion in Colloid and Interface Science. 14 (1):3–15. doi: 10.1016/j.cocis.2008.01.002.
  • Aguilera, J. M. 2005. Why food microstructure? Journal of Food Engineering. 67 (1-2):3–11. doi: 10.1016/j.jfoodeng.2004.05.050.
  • Aguilera, J. M. 2013. Edible structures: The basic science of what we eat. New York, NY: CRC Press.
  • Aguilera, J. M. 2019. The food matrix: Implications in processing, nutrition and health. Critical Reviews in Food Science and Nutrition 59 (22):3612–29. doi: 10.1080/10408398.2018.1502743.
  • Aguilera, J. M., and D. J. Park. 2016. Texture-modified foods for the elderly: Status, technologies and opportunities Trends. Trends in Food Science & Technology 57:156–64. . doi: 10.1016/j.tifs.2016.10.001.
  • Aguilera-Garrido, A., E. Arranz, M. J. Gálvez-Ruiz, J. A. Marchal, F. Galisteo-González, and L. Giblin. 2022. Solid lipid nanoparticles to improve bioaccessibility and permeability of orally administered maslinic acid. Drug Delivery 29 (1):1971–82. doi: 10.1080/10717544.2022.2086937.
  • Ahmed, I., D. N. Leach, H. Wohlmuth, J. J. De Voss, and J. T. Blanchfield. 2020. Caco-2 Cell permeability of flavonoids and saponins from Gynostemma pentaphyllum: The immortal herb. ACS Omega 5 (34):21561–9. doi: 10.1021/acsomega.0c02180.
  • Akbari, A., A. Lavasanifar, and J. Wu. 2017. Interaction of cruciferin-based nanoparticles withCaco-2 cells and Caco-2/HT29-MTX co-cultures. Acta Biomaterialia 64:249–58. doi: 10.1016/j.actbio.2017.10.017.
  • Akbari-Alavijeh, S., R. Shaddel, and S. M. Jafari. 2021. In vivo assessments for predicting thebioavailability of nanoencapsulated food bioactives and the safety of nanomaterials. Critical Reviews in Food Science and Nutrition. 62 (27):7460–78. doi: 10.1080/10408398.2021.1915239.
  • Akhavan, S., E. Assadpour, I. Katouzian, and S. M. Jafari. 2018. Lipid nano scale cargos forthe protection and delivery of food bioactive ingredients and nutraceuticals. Trends in Food Science and Technology. 74:132–46. doi: 10.1016/j.tifs.2018.02.001.
  • Almazroo, O. A., M. K. Miah, and R. Venkataramanan. 2017. Drug metabolism in the liver. Clinics in Liver Disease 21 (1):1–20. doi: 10.1016/j.cld.2016.08.001.
  • Alomrani, A., M. Badran, G. I. Harisa, M. ALshehry, M. Alhariri, A. Alshamsan, and M. Alkholief. 2019. The use of chitosan-coated flexible liposomes as a remarkable carrier toenhance theantitumor efficacy of 5-fluorouracil against colorectal cancer. Saudi Pharmaceutical Journal: SPJ: The Official Publication of the Saudi Pharmaceutical Society 27 (5):603–11. doi: 10.1016/j.jsps.2019.02.008.
  • Al Sawaftah, N. M., N. S. Awad, W. G. Pitt, and G. A. Husseini. 2022. pH-Responsive nanocarriers in cancer therapy. Polymers 14:936. doi: 10.3390/polym14050936.
  • Altemimi, A., N. Lakhssassi, A. Baharlouei, D. G. Watson, and D. A. Lightfoot. 2017. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants (Basel) 6 (4):42. doi: 10.3390/plants6040042.
  • Amara, S., C. Bourlieu, L. Humbert, D. Rainteau, and F. Carrière. 2019. Variations in gastrointestinallipases, pH and bile acid levels with food intake, age and diseases: Possible impact on oral lipid-based drug delivery systems. Advanced Drug Delivery Reviews 142:3–15. doi: 10.1016/j.addr.2019.03.005.
  • Amidon, G. L., H. Lennernas, V. P. Shah, and J. R. Crison. 1995. A theoretical basis for abiopharmaceutic drug classification: The correlation of in vitro drug product dissolution and in vivo bioavailability. Pharmaceutical Research 12 (3):413–20. doi: 10.1023/a:1016212804288.
  • Anese, M., G. Mirolo, P. Beraldo, and G. Lippe. 2013. Effect of ultrasound treatments of tomatopulp on microstructure and lycopene in vitro bioaccessibility. Food Chemistry 136 (2):458–63. doi: 10.1016/j.foodchem.2012.08.013.
  • Antunes, F., F. Andrade, F. Araújo, D. Ferreira, and B. Sarmento. 2013. Establishment of a triple co-culture in vitro cell models to study intestinal absorption of peptide drugs. European Journal of Pharmaceutics and Biopharmaceutics: Official Journal of Arbeitsgemeinschaft Fur Pharmazeutische Verfahrenstechnik e.V 83 (3):427–35. doi: 10.1016/j.ejpb.2012.10.003.
  • Arballo, J., J. Amengual, and J. W. Erdman. 2021. Lycopene: A critical review of digestion,absorption, metabolism, and excretion. Antioxidants 10 (3):342. doi: 10.3390/antiox10030342.
  • Armand, M., M. Hamosh, J. R. Philpott, A. K. Resnik, B. J. Rosenstein, A. Hamosh, J. A. Perman, and P. Hamosh. 2004. Gastric function in children with cystic fibrosis: Effect of diet on gstric lipase levels and fat digestion. Pediatric Research 55 (3):457–65. doi: 10.1203/01.PDR.0000110522.78194.5B.
  • Asgari, E., M. Askari, N. Bellissimo, and L. Azadbakht. 2022. Association between ultraprocessedfood intake and overweight, obesity, and malnutrition among children in Tehran, Iran. International Journal of Clinical Practice 20222022/8310260. :8310260. doi: 10.1155/2022/8310260.
  • Assadpour, E., and S. M. Jafari. 2019a. An overview of biopolymer nanostructures for encapsulationof food ingredients., In: Biopolymer nanostructures for food encapsulation purposes, ed. S. M. Jafari, 1–35. Academic Press.
  • Assadpour, E., and S. M. Jafari. 2019b. A systematic review on nanoencapsulation of food bioactiveingredients and nutraceuticals by various nanocarriers. Critical Reviews in Food Science and Nutrition 59 (19):3129–51. doi: 10.1080/10408398.2018.1484687.
  • Bailey, H. M., J. K. Mathai, E. P. Berg, and H. H. Stein. 2020. Pork products have digestibleindispensable amino acid scores (DIAAS) that are greater than 100 when determined in pigs, but processing does not always increase DIAAS. The Journal of Nutrition 150 (3):475–82. doi: 10.1093/jn/nxz284.
  • Bailey, H. M., and H. H. Stein. 2020. Raw and roasted pistachio nuts (Pistacia vera L.) are ‘good’sources of protein based on their digestible indispensable amino acid score as determined in pigs. Journal of the Science of Food and Agriculture 100 (10):3878–85. doi: 10.1002/jsfa.10429.
  • Bao, C., P. Jiang, J. Chai, Y. Jiang, D. Li, W. Bao, B. Liu, B. Liu, W. Norde, and Y. Li., 2019. The delivery of sensitivefood bioactive ingredients: Absorption mechanisms, influencing factors, encapsulation techniques and evaluation models. Food Research International (Ottawa, Ont.) 120:130–40. doi: 10.1016/j.foodres.2019.02.024.
  • Barba, F. J., L. R. B. Mariutti, N. Bragagnolo, A. Z. Mercadante, G. V. Barbosa-Cánovas, and V. Orlien. 2017. Bioaccessibility of bioactive compounds from fruits and vegetables after thermal and nonthermal processing. Trends in Food Science and Technology. 67:195–206. doi: 10.1016/j.tifs.2017.07.006.
  • Behzadi, S., V. Serpooshan, W. Tao, M. A. Hamaly, M. Y. Alkawareek, E. C. Dreaden, D. Brown, A. M. Alkilany, O. C. Farokhzad, and M. Mahmoudi. 2017. Cellular Uptake of Nanoparticles: JourneyInside the Cell. Chemical Society Reviews 46 (14):4218–44. doi: 10.1039/c6cs00636a.
  • Benet, L. Z. 2013. The role of BCS (biopharmaceutics classification system) and BDDCS (biopharmaceutics drug disposition classification system) in drug development. Journal of Pharmaceutical Sciences 102 (1):34–42. doi: 10.1002/jps.23359.
  • Bielik, V., and M. Kolisek. 2021. Bioaccessibility and bioavailability of minerals in relation to ahealthy gut microbiome. International Journal of Molecular Sciences 22:6803. doi: 10.3390/ijms22136803.
  • Blomhof, R. 2001. Vitamin A and carotenoid toxicity. Food and Nutrition Bulletin 22 (3):213–345. doi: 10.1177/15648265010220030.
  • Bohn, T., F. Carriere, L. Day, A. Deglaire, L. Egger, D. Freitas, M. Golding, S. Le Feunteun, A. Macierzanka, O. Menard, et al. 2018. Correlation between in vitro and in vivo data on fooddigestion. What can we predict with static in vitro digestion models? Critical Reviews in Food Science and Nutrition 58 (13):2239–61. doi: 10.1080/10408398.2017.1315362.
  • Boileau, A. C., N. R. Merchen, K. Wasson, C. A. Atkinson, and J. W. Erdman. 1999. Cis-Lycopene ismore bioavailable than trans-lycopene in vitro and in vivo in lymph-cannulated ferrets. The Journal of Nutrition 129 (6):1176–81. doi: 10.1093/jn/129.6.1176.
  • Boon, C. S., D. J. McClements, J. Weiss, and E. A. Decker. 2010. Factors influencing the chemicalstability of carotenoids in foods. Critical Reviews in Food Science and Nutrition 50 (6):515–32. doi: 10.1080/10408390802565889.
  • Borel, P., P. Grolier, M. Armand, A. Partier, H. Lafont, D. Lairon, and V. Azais-Braesco. 1996. Carotenoids in biological emulsions: Solubility, surface-to-core distribution, and release from lipid droplets. Journal of Lipid Research 37 (2):250–61.
  • Boyer, JL. 2013. Bile Formation and Secretion. Compr Physiol 3 (3):1035–78. doi: 10.1002/cphy.c120027.
  • Braga, A. R. C., D. C. Murador, M. Souza, and V. V. D. E. Rosso. 2018. Bioavailability ofanthocyanins: Gaps in knowledge, challenges and future research. Journal of Food Composition and Analysis 68:31–40. doi: 10.1016/j.jfca.2017.07.031.
  • Brandelli, A. 2020. The interaction of nanostructured antimicrobials with biological systems:Cellular uptake, trafficking and potential toxicity. Food Science and Human 9 (1):8–20. doi: 10.1016/j.fshw.2019.12.003.
  • Brodkorb, A., L. Egger, M. Alminger, P. Alvito, R. Assunção, S. Ballance, T. Bohn, C. Bourlieu-Lacanal, R. Boutrou, F. Carrière, et al. 2019. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nature Protocols 14 (4):991–1014. doi: 10.1038/s41596-018-0119-1.
  • Bub, A., B. Watzl, D. Heeb, G. Rechkemmer, and K. Briviba. 2001. Malvidin-3-glucosidebioavailability in humans after ingestion of red wine, dealcoholized red wine and red grape juice. European Journal of Nutrition 40 (3):113–20. doi: 10.1007/s003940170011.
  • Buniowska, M., J. M. Carbonell-Capella, A. Frigola, and M. J. Esteve. 2017. Bioaccessibility of bioactive compounds after non-thermal processing of an exotic fruit juice blend sweetened with Stevia rebaudiana. Food Chemistry 221:1834–42. doi: 10.1016/j.foodchem.2016.10.093.
  • Camps, G., M. Mars, C. de Graaf, and P. A. M. Smeets. 2016. Empty calories and phantomfullness: A randomized trial studying the relative effects of energy density and viscosity on gastric emptying determined by MRI and satiety. The American Journal of Clinical Nutrition 104 (1):73–80. doi: 10.3945/ajcn.115.129064.
  • Capuano, E., T. Oliviero, V. Fogliano, and N. Pellegrini. 2018. Role of the food matrix and digestionon calculation of the actual energy content of food. Nutrition Reviews 76 (4):274–89. doi: 10.1093/nutrit/nux072.
  • Carbonell-Capella, J. M., M. Buniowska, F. J. Barba, M. J. Esteve, and A. Ana. Frígola. 2014. Analytical methods for determining bioavailability and bioaccessibility of bioactive compounds from fruits and vegetables: A review. Comprehensive Reviews in Food Science and Food Safety 13 (2):155–71. doi: 10.1111/1541-4337.12049.
  • Castenmiller, J. J. M., and C. E. West. 1998. Bioavailability and bioconversion of carotenoids. Annual Review of Nutrition 18:19–38. doi: 10.1146/annurev.nutr.18.1.19.
  • Chen, J., J. Zheng, E. A. Decker, D. J. McClements, and H. Xia. 2015. Improving nutraceuticalbioavailability using mixedcolloidal delivery systems: Lipid nanoparticles increase tangeretin bioaccessibility and absorption from tangeretin-loaded zein nanoparticles. RSC Advances 5 (90):73892–900. doi: 10.1039/C5RA13503F.
  • Chen, L., Teng, H. Xie, Z. Cao, H. Cheang, W. S. Skalicka-Woniak, K. Georgiev, M. I., and Jianbo Xiao, J. 2018. Modifications of dietary flavonoids towards improvedbioactivity: An update on structure–activity relationship. Critical Reviews in Food Science and Nutrition 58 (4):513–27. doi: 10.1080/10408398.2016.1196334.
  • Chen, M., Z. Zhao, and S. Yu. 2016. Cytotoxicity and apoptotic effects of polyphenols from sugarbeet molasses on colon carcinoma cells in vitro. International Journal of Molecular Sciences. 17:993. doi: 10.3390/ijms17070993.
  • Chen, X., Z. Zhang, H. Yang, P. Qiu, H. Wang, F. Wang, Q. Zhao, J. Fang, and J. Nie., 2020. Consumption of ultra-processed foods and health outcomes: A systematic review of epidemiological studies. Nutrition Journal 19 (1):86. doi: 10.1186/s12937-020-00604-1.
  • Chen, W., F. Duša, J. Witos, S.-K. Ruokonen, and S. K. Wiedmer. 2018. Determination of the mainphase transition temperature of phospholipids by nanoplasmonic sensing. Scientific Reports 8 (1):14815. doi: 10.1038/s41598-018-33107-5.
  • Cheng, C., S. Peng, Z. Li, L. Zou, W. Liu, and C. Liu. 2017. Improved bioavailability of curcumin inliposomes prepared using a pH-driven, organic solvent-free, easily scalable process. RSC Advances 7 (42):25978–86. doi: 10.1039/C7RA02861J.
  • Chitchumroonchokchai, C., and M. L. Failla. 2017. Bioaccessibility and intestinal cell uptake ofastaxanthin from salmon and commercial supplements. Food Research International (Ottawa, Ont.) 99 (Pt 2):936–43. doi: 10.1016/j.foodres.2016.10.010.
  • Cho, E. C., J. Xie, P. A. Wurm, and Y. Xia. 2009. Understanding the role of surface charges in cellularadsorption versus internalization by selectively removing gold nanoparticles on the cell surface with a I2/KI etchant. Nano Letters 9 (3):1080–4. doi: 10.1021/nl803487r.
  • Choi, S. J., and D. J. McClements. 2020. Nanoemulsions as delivery systems for lipophilicnutraceuticals: Strategies for improving their formulation, stability, functionality and bioavailability. Food Science and Biotechnology 29 (2):149–68. doi: 10.1007/s10068-019-00731-4.
  • Cilla, A., A. Alegria, B. De Ancos, C. Sanchez-Moreno, M. P. Cano, L. Plaza, G. Clemente, M. J. Lagarda, and R. Barbera. 2012. Bioaccessibility of tocopherols, carotenoids, and ascorbic acid from milk- and soy-based fruit beverages: Influence of food matrix and processing. Journal of Agricultural and Food Chemistry 60 (29):7282–90. doi: 10.1021/jf301165r.
  • Cilla, A., L. Bosch, R. Barberá, and A. Alegría. 2018. Effect of processing on the bioaccessibility ofbioactive compounds.A review focusing on carotenoids, minerals, ascorbic acid, tocopherols and polyphenols. Journal of Food Composition and Analysis 68:3–15. doi: 10.1016/j.jfca.2017.01.009.
  • Codex alimentarius (FAO, WHO): General standard for contaminants and toxins in food andfeed cxs 193/1995. https://www.fao.org ' contaminants.
  • Colla, K., A. Costanzo, and S. Gamlath. 2018. Fat Replacers in baked food products. Foods 7 (12):192. doi: 10.3390/foods7120192.
  • Constantin, N., and W. Wahli. 2013. Nutrigenomic foods. Nutrafoods 12 (1):3–12. doi: 10.1007/s13749-013-0014-x.
  • Corte-Real, J., and T. Bohn. 2018. Interaction of divalent minerals with liposoluble nutrients andphytochemicals during digestion and influences on their bioavailability – A review. Food Chemistry 252:285–93. doi: 10.1016/j.foodchem.2018.01.113.
  • Cui, L., H. T. Cho, D. J. McClements, E. A. Decker, and Y. Park. 2016. Effects of salts on oxidative stability of lipids in Tween-20 stabilized oil-in-water emulsions. Food Chemistry 197 (Part B):30–35. doi: 10.1016/j.foodchem.2015.11.099.
  • Cuomo, F., M. Cofelice, F. Venditti, A. Ceglie, M. Miguel, B. Lindman, and F. Lopez. 2018. In-vitro digestion of curcumin loaded chitosan-coated liposomes. Colloids and Surfaces B: Biointerfaces 168:29–34. doi: 10.1016/j.colsurfb.2017.11.047.
  • Darling, N. J., C. L. Mobbs, A. L. González-Hau, M. Freer and S. Przyborski. 2020. Bioengineering novel in vitro co-culture models that represent the human intestinal mucosa with improved Caco-2 structure and barrier function. Frontiers in Bioengineering and Biotechnology. 8:992. doi: 10.3389/fbioe.2020.00992.
  • Das, T. K., S. Pradhan, S. Chakrabarti, K. C. Mondal, and K. Ghosh. 2022. Current status of probiotic and related health benefits. Applied Food Research 2 (2):100185. doi: 10.1016/j.afres.2022.100185.
  • de Aguiar Vallim, T. Q., E. J. Tarling, and P. A. Edwards. 2013. Pleiotropic roles of bile acids in metabolism. Cell Metabolism 17 (5):657–69. doi: 10.1016/j.cmet.2013.03.013.
  • Dima, C., E. Assadpour, S. Dima, and M. S. Jafari. 2020a. Bioavailability of nutraceuticals: Role of the food matrix, processing conditions, the gastrointestinal tract, and nanodelivery systems. Comprehensive reviews in Food Science and Food Safety, 1–41. doi: 10.1111/1541-4337.12547.
  • Dima, C., E. Assadpour, S. Dima, and S. M. Jafari. 2020b. Bioavailability and bioaccessibility of food bioactive compounds; overview and assessment by in vitro methods. Comprehensive Reviews in Food Science and Food Safety, 1–23. doi: 10.1111/1541-4337.12623.
  • Dima, C., E. Assadpour, S. Dima, and S. M. Jafari. 2020c. Bioactive-loaded nanocarriers for functional foods: From designing to bioavailability. Current Opinion in Food Science. 33:21–9. doi: 10.1016/j.cofs.2019.11.006.
  • Dima, C., E. Assadpour, S. Dima, and S. M. Jafari. 2021. Nutraceutical nanodelivery; an insightinto the bioaccessibility/bioavailability of different bioactive compounds loaded within nanocarriers. Critical Reviews in Food Science and Nutrition 61 (18):3031–65. doi: 10.1080/10408398.2020.1792409.
  • Dima, C., E. Assadpour, and S. M. Jafari. 2023. Encapsulation and colloidal systems as a way todeliver functionality in foods. In Food structure engineering and design for improved nutrition, health and well-being. Academic Press, eds. MAPR Cerqueira and LMP Casytro, 63–112. Elsevier.
  • Ding, X., X. Hu, Y. Chen, J. Xie, M. Ying, Y. Wang, and Q. Yu. 2021. Differentiated Caco-2 cellmodels in food-intestine interaction study: Current applications and future trends. Trends in Food Science and Technology. 107:455–65. doi: 10.1016/j.tifs.2020.11.015.
  • Dogan, K., and F. Tornuk. 2019. Improvement of bioavailability of bioactive compounds ofmedicinal herbs by drying and fermentation with Lactobacillus plantarum. Functional Foods in Health and Disease 9 (12):735. doi: 10.31989/ffhd.v9i12.648.
  • Domínguez-Avila, J. A., Wall-Medrano, A. Velderrain-Rodríguez, G. R. Chen, C.-Y. O. C Salazar-López, N. J. Robles-Sánchez, M, and González-Aguilar, G. A. 2017. Gastrointestinal interactions, absorption, splanchnic metabolism and pharmacokinetics of orally ingested phenolic compounds. Food & Function 8 (1):15–38. doi: 10.1039/C6FO01475E.
  • Dufour, C., M. Loonis, M. Delosière, C. Buffière, N. Hafnaoui, V. Santé-Lhoutellier, and D. Rémond. 2018. The matrix of fruit & vegetables modulates the gastrointestinal bioaccessibility of polyphenols and their impact on dietary protein digestibility. Food Chemistry 240:314–22. doi: 10.1016/j.foodchem.2017.07.104.
  • Dupont, D., M. Alric, S. Blanquet-Diot, G. Bornhorst, C. Cueva, A. Deglaire, S. Denis, M. Ferrua, R. Havenaar, J. Lelieveld, et al. 2019. Can dynamic in vitro digestion systemsmimic the physiological reality? Critical Reviews in Food Science and Nutrition 59 (10):1546–62. doi: 10.1080/10408398.2017.1421900.
  • Edelman, R., S. Engelberg, L. Fahoum, E. G. Meyron-Holtz, and Y. D. Livney. 2019. Potato protein-based carriers for enhancing bioavailability of astaxanthin. Food Hydrocolloids 96:72–80. doi: 10.1016/j.foodhyd.2019.04.058.
  • Efsa. 2021. Safety evaluation of a food enzyme containing trypsin, chymotrypsin, elastaseand carboxypeptidase from porcine pancreas. EFSA Journal 19(1):6368. 10.2903/j.efsa.2021.6368
  • Ertop, M. H., Bektaş, M. R, and Atasoy, R. 2020. Effect of cereals milling on the contents of phytic acid and digestibility of minerals and protein. Ukrainian Food Journal 9 (1):136–47. doi: 10.24263/2304-974X-2020-9-1-12.
  • Escrivá, L., L. Manyes, P. Vila-Donat, G. Font, G. Meca, and M. Lozano. 2021. Bioaccessibility andbioavailability of bioactive compounds from yellow mustard flour and milk whey fermented with lactic acid bacteria. Food & Function 12 (22):11250–61. doi: 10.1039/d1fo02059e.
  • Eshraq, B. K., M. Am, S. AF, and E. Aa. 2016. Effect of soaking, cooking andgermination on chemical constituents and bioactive compounds as well as their cytotoxic activities of black bean extracts. Natural Products Chemistry & Research 04 (06):237. doi: 10.4172/2329-6836.1000237.
  • Espinosa-Sandoval, L., C. Ochoa-Martínez, A. Ayala-Aponte, L. Pastrana, C. Gonçalves, and M. A. Miguel Cerqueira. 2021. Polysaccharide-based multilayer nano-emulsions loaded with oregano oil: Production, characterization, and in vitro digestion assessment. Nanomaterials 11:878. doi: 10.3390/nano11040878.
  • Etsuyankpa, M. B., C. E. Gimba, E. B. Agbaji, I. Omoniyi, M. M. Ndamitso, and J. T. Mathew. 2015. Assessment of the effects of microbial fermentation on selected anti-nutrients in the products of four local cassava varieties from Niger state, Nigeria. American Journal of Food Technology 3 (3):89–96. doi: 10.12691/ajfst-3-3-6.
  • Falavigna, M., M. Klitgaard, C. Brase, S. Ternullo, N. Skalko-Basnet, and G. E. Flaten. 2018. Mucus-PVPA (mucus-phospholipid vesicle-based permeation assay): An artificial permeability tool for drug screening and formulation development. International Journal of Pharmaceutics 537 (1-2):213–22. doi: 10.1016/j.ijpharm.2017.12.038.
  • Fedi, A., C. Vitale, G. Ponschin, S. Ayehunie, M. Fato, and S. Scaglione. 2021. In vitro models replicating the human intestinal epithelium for absorption and metabolism studies: A systematic review. Journal of Controlled Release: Official Journal of the Controlled Release Society 335:247–68. doi: 10.1016/j.jconrel.2021.05.028.
  • Feng, S., D. Wang, L. Gan, P. Shao, L. Jiang, and P. Sun. 2020. Preparation and characterization ofzein/pectin-based phytosterol nanodispersions and kinetic study of phytosterol release during simulated digestion in vitro. LWT 128:109446. doi: 10.1016/j.lwt.2020.109446.
  • Fernández-López, J. A., J. M. Angosto, P. J. Giménez, and G. León. 2013. Thermal stability of selected natural red extracts used as food colorants. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 68 (1):11–7. doi: 10.1007/s11130-013-0337-1.
  • Fogh, J., J. M. Fogh, and T. Orfeo. 1977. One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude Mice 23. Journal of the National Cancer Institute 59 (1):221–6. doi: 10.1093/jnci/59.1.221.
  • Food and Drug Administration. 2022. Assessing the effects of food on drugs in INDs andNDAs – Clinical Pharmacology Considerations Guidance for Industry.https://www.fda.gov/drugs/guidance-compliance-regulatory-information/guidances-drugs
  • Food, & Organization, A.O.W.H. 2001. Report of a joint FAO/WHO expert consultation onevaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Argentina: FAO/WHO Cordoba
  • Forde, C. G., and D. Bolhuis. 2022. Interrelations between food form, texture, and matrix influence energy intake and metabolic responses. Current Nutrition Reports 11(2):124–32. doi: 10.1007/s13668-022-00413-4.
  • Foroozandeh, P., and A. A. Aziz. 2018. Insight into cellular uptake and intracellular trafficking ofnanoparticles. Nanoscale Research Letters 13:339. doi: 10.1186/s11671-018-2728-6.
  • Franklin, M. R. 2012. Drug absorption, distribution, metabolism, and excretion. In: Essentials of pharmaceutics, ed. L. Felton, 748–54. , London: Pharmaceutical Press.
  • Fratianni, A., A. D’Agostino, S. Niro, A. Bufano, B. Paura, and G. Panfili. 2021. Loss or gain of lipophilic bioactive compounds in vegetables after domestic cooking? Effect of steaming and boiling. Foods 10:960. doi: 10.3390/foods10050960.
  • de Figueiredo Furtado, G., O. Ménard, X. Yu, J. Ossemond, G. Henry, J. Jardin, V. Briard-Bion, A. Deglaire, M. D. Hubinger, and D. Dupont. 2021. In vitro dynamic digestion of model infant formulae containing lactoferrin and medium chain triacylglycerols. Food Hydrocolloids 118:106787. doi: 10.1016/j.foodhyd.2021.106787.
  • Funai, Y., Y. Shirasaka, M. Ishihara, M. Takemura, K. Ichijo, H. Kishimoto, and K. Inoue., 2019. Effect ofosmolality on the pharmacokinetic interaction between apple juice and atenolol in rats. Drug Metabolism and Disposition: The Biological Fate of Chemicals 47 (4):386–91. doi: 10.1124/dmd.118.084483.
  • Gaudichon, C., and J. Calvez. 2021. Determinants of amino acid bioavailability fromingested protein in relation to gut health. Current Opinion in Clinical Nutrition and Metabolic Care 24 (1):55–61. doi: 10.1097/MCO.0000000000000708.
  • Gleeson, J. P., S. M. Ryan, and DJ. Brayden. 2016. Oral delivery strategies for nutraceuticals: Delivery vehicles and absorption enhancers. Trends in Food Science and Technology 53:90–101. doi: 10.1016/j.tifs.2016.05.007.
  • Goff, J. P. 2018. Invited review: Mineral absorption mechanisms, mineral interactions that affect acid-base and antioxidant status, and diet considerations to improve mineral status. Journal of Dairy Science 101 (4):2763–813. doi: 10.3168/jds.2017-13112.
  • Golding, M., and T. J. Wooster. 2010. The influence of emulsion structure and stability onlipid digestion. Current Opinion in Colloid and Interface Science 15 (1-2):90–101. doi: 10.1016/j.cocis.2009.11.006.
  • Gómez-Guillén, M. C., and M. P. Montero. 2021. Enhancement of oral bioavailability of natural compounds and probiotics by mucoadhesive tailored biopolymer-based nanoparticles: A review. Food Hydrocolloids 118:106772. doi: 10.1016/j.foodhyd.2021.106772.
  • Gomez-Juaristi, M., B. Sarria, L. Goya, L. Bravo-Clemente, and R. Mateos. 2020. Experimentalconfounding factors affecting stability, transport and metabolism of flavanols and hydroxycinnamic acids in Caco-2 cells. Food Research International (Ottawa, Ont.) 129:108797. doi: 10.1016/j.foodres.2019.108797.
  • Gonzalez-Izundegui, D., A. Campos, G. Calderon, M. L. Ricardo-Silgado, L. Cifuentes, P. A. Decker, E. J. Vargas, L. Tran, D. Burton, B. Abu Dayyeh, et al. 2021. Association of gastric emptying with postprandial appetite and satiety sensations in obesity. Obesity (Silver Spring, Md.) 29 (9):1497–507. doi: 10.1002/oby.23204.
  • Governa, P., F. Manetti, E. Miraldi, and M. Biagi. 2022. Effects of in vitro simulated digestion on the antioxidant activity of different Camellia sinensis (L.) Kuntze leaves extracts. European Food Research and Technology 248 (1):119–28. doi: 10.1007/s00217-021-03864-1.
  • Govindaraj, S., M. J. Daniel, S. S. Vasudevan, and J. V. Kumaran. 2019. Changes in salivary flow rate, pH, and viscosity among working men and women. Dentistry and Medical Research 7 (2):56–9. doi: 10.4103/dmr.dmr_20_19.
  • Goyal, R. K., Y. Guo, and H. Mashimo. 2019. Advances in the physiology of gastric emptying. Neurogastroenterology and Motility: The Official Journal of the European Gastrointestinal Motility Society 31 (4): E 13546. doi: 10.1111/nmo.13546.
  • Grimm, M., M. Koziolek, J. P. Kuhn, and W. Weitschies. 2018a. Interindividual and intra individual variability of fasted state gastric fluid volume and gastric emptying of water. European Journal of Pharmaceutics and Biopharmaceutics: Official Journal of Arbeitsgemeinschaft Fur Pharmazeutische Verfahrenstechnik e.V 127:309–17. doi: 10.1016/j.ejpb.2018.03.002.
  • Grimm, M., M. Koziolek, M. Saleh, F. Schneider, G. Garbacz, J. P. Kuhn, and W. Weitschies. 2018b. Gastric emptying and small bowel water content after administration of grapefruit juice compared to water and isocaloric solutions of glucose and fructose: A four-way crossover MRI pilot study in healthy subjects. Molecular Pharmaceutics 15 (2):548–59. doi: 10.1021/acs.molpharmaceut.7b00919.
  • Gu, Q., and P. Li. 2016. Biosynthesis of vitamins by probiotic bacteria. In Probiotics and prebiotics in human nutrition and help, eds. V. Rao and L. G. Rao. Intech Open. doi: 10.5772/63117.
  • Guo, Q., X. Shu, Y. Hu, J. Su, S. Chen, E. A. Decker, and Y. Gao. 2021. Formulated protein-polysaccharide-surfactant ternary complexes for co-encapsulation of curcumin and resveratrol: Characterization, stability and in vitro digestibility. Food Hydrocolloids 111:106265. doi: 10.1016/j.foodhyd.2020.106265.
  • Guo, W., B. Pan, S. Sakkiah, G. Yavas, W. Ge, W. Zou, W. Tong, and H. Hong. 2019. Persistent organicpollutants in food: Contamination sources, health effects and detection methods. International Journal of Environmental Research and Public Health 16 (22):4361. doi: 10.3390/ijerph16224361.
  • Guzior, D. V., and RA. Quinn. 2021. Review: Microbial transformations of human bile acids. Microbiome 9 (1):140. doi: 10.1186/s40168-021-01101-1.
  • Gupta, R. K., S. S. Gangoliya, and N. K. Singh. 2015. Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. Journal of Food Science and Technology 52 (2):676–84. doi: 10.1007/s13197-013-0978-y.
  • Halawi, H., Camilleri, M. Acosta, A. Vazquez-Roque, M. Oduyebo, I. Burton, D. Busciglio, I. A. R, and Zinsmeister, A. R. 2017. Relationship of gastric emptying or accommodation with satiation, satiety, and postprandial symptoms in health. American Journal of Physiology. Gastrointestinal and Liver Physiology 313 (5):G442–G447. doi: 10.1152/ajpgi.00190.2017.0193-1857/17
  • Hamed, M., D. G. Holm, M. Bartolo, P. Raigond, V. Sathuvalli, and S. S. Jayanty. 2021. The bioaccessibility of phenolics, flavonoids, carotenoids, and capsaicinoid compounds: A Comparative study of cooked potato cultivars mixed with roasted pepper varieties. Foods 10:1849. doi: 10.3390/foods10081849.
  • Han, F., H. Oliveira, N. F. Bras, I. Fernandes, L. Cruz, V. De Freitas, and N. Mateus. 2020. In vitro gastrointestinal absorption of red wine anthocyanins – Impact of structural complexity and phase II metabolization. Food Chemistry 317:126398. doi: 10.1016/j.foodchem.2020.126398.
  • Havenaar, R., B. Anneveld, L. M. Hanff, S. N. de Wildt, B. A. E. de Koning, M. G. Mooij, J. P. A. Lelieveld, and M. Minekus. 2013. In vitro gastrointestinal model (TIM) with predictive power, even for infants and children? International Journal of Pharmaceutics. doi: 10.1016/j.ijpharm.2013.07.053.
  • Hemalatha, S., K. Platel, and K. Srinivasan. 2007. Zinc and iron contents and their bioaccessibilityin cereals and pulses consumed in India. Food Chemistry 102 (4):1328–36. doi: 10.1016/j.foodchem.2006.07.015.
  • Hendek Ertop, M., and M. Bektaş. 2018. Enhancement of bioavailable micronutrients and reductionof antinutrients in foods with some processes. Food and Health 4 (3):159–65. doi: 10.3153/FH18016.
  • Hens, B., Y. Tsume, M. Bermejo, P. Paixao, M. J. Koenigsknecht, J. R. Baker, W. L. Hasler, R. Lionberger, J. Fan, J. Dickens, et al. 2017. Low buffer capacity and alternating motility along the human gastrointestinal tract: Implications for in vivo dissolution and absorption of ionizable drugs. Molecular Pharmaceutics 14 (12):4281–94. doi: 10.1021/acs.molpharmaceut.7b00426.
  • Hodgkinson, S. M., C. A. Montoya, P. T. Scholten, S. M. Rutherfurd, and P. J. Moughan. 2018. Cooking conditions affect the true ileal digestible amino acid content and digestible indispensable amino acid score (DIAAS) of bovine meat as determined in pigs. The Journal of Nutrition 148 (10):1564–9. doi: 10.1093/jn/nxy153.
  • Hoffmann, P., M. Burmester, M. Langeheine, R. Brehm, M. T. Empl, B. Seeger, and G. Breves. 2021. Caco-2/HT29-MTX co-cultured cells as a model for studying physiological properties and toxin-induced effects on intestinal cells. PLoS ONE 16 (10):e0257824. doi: 10.1371/journal.pone.0257824.
  • Holmes, J. L., A. Biella, T. Morck, J. Rostorfer, and B. Schneeman. 2021. Medical foods: Science, regulation, and practical aspects. Summary of a workshop. Current Developments in Nutrition 5 (Suppl 1):nzaa172. doi: 10.1093/cdn/nzaa172.
  • Honda, S., R. Ishida, K. Hidaka, and T. Masuda. 2019. Stability of polyphenols under alkaline conditions and the formation of a xanthine oxidase inhibitor from gallic acid in a solution at pH 7.4. Food Science and Technology Research 25 (1):123–9. doi: 10.3136/fstr.25.123.
  • Hotz, C., and R. S. Gibson. 2007. Traditional food-processing and preparation practices to enhance the bioavailability of micronutrients in plant-based diets. The Journal of Nutrition 137 (4):1097–100. doi: 10.1093/jn/137.4.1097.
  • Hu, S., B. M. Ogle, and K. Cheng. 2018. Body builder: From synthetic cells to engineered tissues. Current Opinion in Cell Biology 54:37–42. doi: 10.1016/j.ceb.2018.04.010.
  • Huang, Y., Q. Yu, Z. Chen, W. Wu, Q. Zhu, and Y. Lu. 2021. In vitro and in vivo correlation for lipid-based formulations: Current status and future perspectives. Acta Pharmaceutica Sinica B 11:2469–87. doi: 10.1016/j.apsb.2021.03.025.
  • Hühn, D., K. Kantner, C. Geidel, S. Brandholt, I. De Cock, S. J. H. Soenen, P. Rivera Gil, J.-M. Montenegro, K. Braeckmans, K. Müllen, et al. 2013. Polymer-coated nanoparticles interacting withproteins and cells: Focusing on the sign of the net charge. ACS Nano 7 (4):3253–63. doi: 10.1021/nn3059295.
  • Hur, S. J., B. O. Lim, A. E. Decker, and D. J. McClements. 2011. In vitro human digestion models forfood applications. Food Chemistry. 125 (1):1–12. doi: 10.1016/j.foodchem.2010.08.036.
  • Ichijo, K., R. Oda, M. Ishihara, R. Okada, Y. Moteki, Y. Funai, T. Horiuchi, H. Kishimoto, Y. Shirasaka, and K. Inoue. 2017. Osmolality of orally administered solutions influences luminal water volume and drug absorption in intestine. Journal of Pharmaceutical Sciences 106 (9):2889–94. doi: 10.1016/j.xphs.2017.04.030.
  • Iddir, M., G. Dingeo, J. F. Porras Yaruro, F. Hammaz, P. Borel, T. Schleeh, C. Desmarchelier, Y. Larondelle, and T. Bohn. 2020. Influence of soy and whey protein, gelatin and sodium caseinate on carotenoid bioaccessibility. Food & Function 11 (6):5446–59. doi: 10.1039/d0fo00888e.
  • Ilhan, Z. E., A. K. Marcus, D.-W. Kang, B. E. Rittmann, and R. Krajmalnik-Brown. 2017. pH-mediated microbial and metabolic interactions in fecal enrichment cultures. mSphere 2 (3):e00047-17. doi: 10.1128/mSphere.00047-17.
  • Jafari, S. M., and D. J. McClements. 2017. Nanotechnology approaches for increasing nutrient bioavailability. In: Advances in food and nutrition research (Vol. 81), ed. F. Oldrá, 1–30. Amsterdam: Elsevier.
  • Jafari, S. M. 2017. An overview of nanoencapsulation techniques and their classification. In Nanoencapsulation technologies for the food and nutraceutical industries, ed. S. M. Jafari, 1–34. London, UK: Academic Press.
  • Jain, S., T. Winuprasith, and M. Suphantharika. 2020. Encapsulation of lycopene in emulsions andhydrogel beads using dual modified rice starch: Characterization, stability analysis and release behaviour during in-vitro digestion. Food Hydrocolloids 104:105730. doi: 10.1016/j.foodhyd.2020.105730.
  • Jayathunge, K. G. L. R., A. C. Stratakos, O. Cregenzán-Albertia, I. R. Grant, J. Lyng, and A. Koidis. 2017. Enhancing the lycopene in vitro bioaccessibility of tomato juice synergistically applying thermal and non-thermal processing technologies. Food Chemistry 221:698–705. doi: 10.1016/j.foodchem.2016.11.117.
  • Jeong, S.-J., S. Kim, E. Echeverria-Jaramillo, and W.-S. Shin. 2021. Effect of the emulsifier type onthe physicochemical stability and in vitro digestibility of a lutein/zeaxanthin-enriched emulsion. Food Science and Biotechnology 30 (12):1509–18. doi: 10.1007/s10068-021-00987-9.
  • Jing, B., Z. A. Wang, C. Zhang, Q. Deng, J. Wei, Y. Luo, X. Zhang, J. Li, and Y. Du. 2020. Establishment and application of peristaltic human gut-vessel microsystem for studying host–microbial interaction. Frontiers in Bioengineering and Biotechnology 8:272. doi: 10.3389/fbioe.2020.00272.
  • Johnson, S. B. 2012. Bioavailability and bioequivalence testing. In Remington. Essentials of pharmaceutics, ed. A. L. Felton, 51–61. London: Pharmaceutical Press.
  • Kalantzi, L., K. Goumas, V. Kalioras, B. Abrahamsson, J. B. Dressman, and C. Reppas. 2006. Characterization of the human upper gastrointestinal contents under conditions simulating bioavailability/bioequivalence studies. Pharmaceutical Research 23 (1):165–76. doi: 10.1007/s11095-005-8476-1.
  • Kamiya, Y., H. Takaku, R. Yamada, C. Akase, Y. Abe, Y. Sekiguchi, N. Murayama, M. Shimizu, M. Kitajima, F. Shono, et al. 2020. Determination and prediction of permeabilityacross intestinal epithelial cell monolayer of a diverse range of industrial chemicals/drugs for estimation of oral absorption as a putative marker of hepatotoxicity. Toxicology Reports 7:149–54. doi: 10.1016/j.toxrep.2020.01.004.
  • Kastl, A. J., N. A. Terry, G. D. Wu, and L. G. Albenberg. 2020. The structure and function of the human small intestinal microbiota: Current understanding and future directions. Cellular and Molecular Gastroenterology and Hepatology 9 (1):33–45. doi: 10.1016/j.jcmgh.2019.07.006.
  • Kelle, B. 1993. Structural cell wall proteins. Plant Physiology 101:1127–30.
  • Kim, M. W., T. Niidome, and R. Lee. 2019. Glycol chitosan-docosahexaenoic acid liposomes fordrug delivery: Synergistic efect of doxorubicin-rapamycin in drug-resistant breast cancer. Marine Drugs. 17:581. doi: 10.3390/md17100581.
  • Kharat, M., Z. Du, G. Guodong Zhang, and D. J. McClements. 2017. Physical and chemical stabilityof curcumin in aqueous solutions and emulsions: Impact of pH, temperature, and molecular environment. Journal of Agricultural and Food Chemistry 65 (8):1525–32. doi: 10.1021/acs.jafc.6b04815.
  • Khotimchenko, M. 2020. Pectin polymers for colon-targeted antitumor drug delivery. International Journal of Biological Macromolecules. 158:1110–24. doi: 10.1021/acs.jafc.6b04815.
  • Khoury, D. E., S. Balfour-Ducharme, and I. J. Joye. 2018. A review on the gluten-free diet: Technological and nutritional challenges. Nutrients 10 (10):1410. doi: 10.3390/nu10101410.
  • Klurfeld, D. M. 2022. The whole food beef matrix is more than the sum of its parts. Critical Reviews in Food Science and Nutrition :1–9. doi: 10.1080/10408398.2022.2142931.
  • Konishi, Y., and S. Kobayashi. 2004. Microbial metabolites of ingested caffeic acid are absorbed bythe monocarboxylic acid transporter (MCT) in intestinal Caco-2 cell monolayers. Journal of Agricultural and Food Chemistry 52 (21):6418–24. doi: 10.1021/jf049560y.
  • Konishi, Y., Z. Zhao, and M. Shimizu. 2006. Phenolic acids are absorbed from the rat stomach withdifferent absorption rates. Journal of Agricultural and Food Chemistry 54:7539–43. doi: 10.1021/jf061554.
  • Koshani, R., and S. M. Jafari. 2019. Ultrasound-assisted preparation of different nanocarriers loadedwith food bioactive ingredients. Advances in Colloid and Interface Science 270:123–46. doi: 10.1016/j.cis.2019.06.005.
  • Kregiel, D., J. Berlowska, I. Witonska, H. Antolak, C. Proestos, M. Babic, L. Babic, and B. Zhang. 2017. Saponin-based, biological-active surfactants from plants. In: Application and characterization of surfactants, ed. Reza Najjar. IntechOpen. doi: 10.5772/68062.
  • Kubala, E., P. Strzelecka, M. Grzegocka, D. Lietz-Kijak, H. Gronwald, P. Skomro, and E. Kijak., 2018. A review of selected studies that determinethe physical and chemical properties of saliva in the field of dental treatment. BioMed Research International 2018:6572381. doi: 10.1155/2018/6572381.
  • Kumar, V., and A. K. Sinha. 2018. General aspects of phytates. In Enzymes in human and animal nutrition. Principles and perspectives, eds. C. S. Nunes and V. Kumar, 53–72. Elsevier Inc.
  • Kumar, N., A. Singh, D. K. Sharma, and K. Kishore. 2019. Toxicity of food additives. In Food safety and human health, eds. R. L. Sing and S. Mondal, 67–98. Elsevier. doi: 10.1016/B978-0-12-816333-7.00003-5.
  • Lai, S. K., Y.-Y. Wang, and J. Hanes. 2009. Mucus-penetrating nanoparticles for drug and genedelivery to mucosal tissues. Advanced Drug Delivery Reviews 61 (2):158–71. doi: 10.1016/j.addr.2008.11.002.
  • Lambert, J. D., S. Sang, and C. S. Yang. 2007. Possible controversy over dietary polyphenols: Benefits vs risks. Chemical Research in Toxicology 20 (4):583–5. doi: 10.1021/tx7000515.
  • Lange, K. W., Y. Nakamura, A. M. Gosslau, and S. Li. 2019. Are there serious adverse effects ofomega-3 polyunsaturated fatty acid supplements. Journal of Food Bioactives 7:1–6. doi: 10.31665/JFB.2019.7192.
  • Lee, S., J. K. Jeong, H. G. Choi, Y.-S. Yong, H. I, and Jung, S. 2021. Understanding protein digestionin infants and the elderly: Current in vitro digestion models. Critical Reviews in Food Science and Nutrition. 63 (7):975–92. doi: 10.1080/10408398.2021.1957765.
  • Li, N., Z. Sui, Y. Liu, D. Wang, G. Ge, and L. Yang. 2018. A fast screening model for drug permeabilityassessment based on native small intestinal extracellular matrix. RSC Advances 8 (60):34514–24. doi: 10.1039/c8ra05992f.
  • Li, R., L. Chang, G. Hou, Z. Song, Z. Fan, X. He, and D.-X. Hou. 2019. Colonic microbiota and metabolites response to different dietary protein sources in a piglet model. Frontiers in Nutrition 6:151. doi: 10.3389/fnut.2019.00151.
  • Li, S., and N. Malmstadt. 2013. Deformation and poration of lipid bilayer membranes by cationicnanoparticles. Soft Matter 9 (20):4969–76. doi: 10.1039/c3sm27578g.
  • Li, X.-M., X. Li, Z. Wu, Y. Wang, J.-S. Cheng, T. Wang, and B. Zhang. 2020. Chitosan hydrochloride/carboxymethyl starch complex nanogels stabilized pickering emulsions for oral delivery of β-carotene: Protection effect and in vitro digestion study. Food Chemistry 315:126288. doi: 10.1016/j.foodchem.2020.126288.
  • Li, Y., and F. Kong. 2022. Simulating human gastrointestinal motility in dynamicin vitromodels. Comprehensive Reviews in Food Science and Food Safety 21 (5):3804–33. doi: 10.1111/1541-4337.13007.
  • Lipinski, C. A., F. Lombardo, B. W. Dominy, and P. J. Feeney. 1997. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews 23 (1-3):3–25. doi: 10.1016/S0169-409X(96)00423-1.
  • Liu, F., C. Ma, R. Zhang, Y. Gao, and D. J. McClements. 2017. Controlling the potential gastrointestinal fate of b-carotene emulsions using interfacial engineering: Impact of coating lipid droplets with polyphenol-protein-carbohydrate conjugate. Food Chemistry 221:395–403. doi: 10.1016/j.foodchem.2016.10.057.
  • Liu, W., Y. Jin, P. J. Wilde, Y. Hou, Y. Wang, and J. Han. 2020. Mechanisms, physiology, and recent research progress of gastric emptying. Critical Reviews in Food Science and Nutrition 61 (16):2742–2755. doi: 10.1080/10408398.2020.1784841.
  • Liu, W., Y. Hou, Y. Jin, Y. Wang, X. Xu, and J. Han. 2020. Research progress on liposomes: Application in food, digestion behavior and absorption mechanism. Trends in Food Science and Technology. 104:177–89. doi: 10.1016/j.tifs.2020.08.012.
  • Liu, W., F. Wei, A. Ye, M. Tian, and J. Han. 2017. Kinetic stability and membrane structure of liposomes during in vitro infant intestinal digestion: Effect of cholesterol andlactoferrin. Food Chemistry 230:6–13. doi: 10.1016/j.foodchem.2017.03.021.
  • Lozoya-Agullo, I., F. Araújo, I. González-Álvarez, M. Merino-Sanjuán, M. González-Álvarez, M. Bermejo, and B. Sarmento. 2017. Usefulness of Caco-2/HT29-MTX and Caco-2/HT29-MTX/Raji B coculture models to predict intestinal and colonic permeability compared to Caco-2 monoculture. Molecular Pharmaceutics 14 (4):1264–70. doi: 10.1021/acs.molpharmaceut.6b01165.
  • Lu, W., A. L. Kelly, and S. Miao. 2017. Improved bioavailability of encapsulated bioactive nutrientsdelivered through monoglyceride-structured O/W emulsions. Journal of Agricultural and Food Chemistry 65 (14):3048–55. doi: 10.1021/acs.jafc.6b05644.
  • Lucas-González, R., M. Viuda-Martos, J. A. Pérez-Alvarez, and J. Fernández-López. 2018. In vitro digestion models suitable for foods: Opportunities for new fields of application and challenges. Food Research International (Ottawa, Ont.) 107:423–36. doi: 10.1016/j.foodres.2018.02.055.
  • Luo, J., H. Yang, and B. L. Song. 2020. Mechanisms and regulation of cholesterolhomeostasis. Nature Reviews. Molecular Cell Biology 21 (4):225–45. doi: 10.1038/s41580-019-0190-7.
  • Luo, M., D.-D. Zhou, A. Shang, R.-Y. Gan, and H.-B. Li. 2021. Influences of food contaminants andadditives on gut microbiota as well as protective effects of dietary bioactive compounds. Trends in Food Science & Technology 113:180–92. doi: 10.1016/j.tifs.2021.05.006.
  • Mackie, A. R., H. Rafiee, P. Malcolm, L. Salt, and G. van Aken. 2013. Specific food structures supress appetite through reduced gastric emptying rate. American Journal of Physiology. Gastrointestinal and Liver Physiology 304 (11):G1038–G1043. doi: 10.1152/ajpgi.00060.2013.
  • Maher, S., and DJ. Brayden. 2021. Formulation strategies to improve the efficacy of intestinal permeation enhancers. Advanced Drug Delivery Reviews 177:113925. doi: 10.1016/j.addr.2021.113925.
  • Marciani, L., R. Faulks, M. S. J. Wickham, D. Bush, B. Pick, J. Wright, E. F. Cox, A. Fillery-Travis, P. A. Gowland, and R. C. Spiller. 2009. Effectof intragastric acid stability of fat emulsions on gastric emptying, plasma lipid profile and postprandial satiety. The British Journal of Nutrition 101 (6):919–28., . doi: 10.1017/S0007114508039986.
  • Marco, M. L., D. Heeney, S. Binda, C. J. Cifelli, P. D. Cotter, B. Foligné, M. Gänzle, R. Kort, G. Pasin, A. Pihlanto, et al. 2017. Health benefits of fermented foods: Microbiota and beyond. Current Opinion in Biotechnology 44:94–102. doi: 10.1016/j.copbio.2016.11.010.
  • Martínez-Ballesta, M. C., Á. Gil-Izquierdo, C. García-Viguera, and R. Domínguez-Perles. 2018. Nanoparticles and controlled delivery for bioactive compounds: Outlining challenges for new “Smart-Foods” for health. Foods 7 (5):72. doi: 10.3390/foods7050072.
  • Martirosyan, D., T. Lampert, and M. Lee. 2022. A comprehensive review on the role of food bioactive compounds in functional food science. Functional Food Science 2 (3):64–78. doi: 10.31989/ffs.v2i3.906.
  • Marze, S. 2017. Bioavailability of nutrients and micronutrients: Advances in modeling and invitro approaches. Annual Review of Food Science and Technology 8 (1):35–55. doi: 10.1146/annurev-food-030216-030055.
  • McClements, D. J., E. A. Decker, and Y. Park. 2009. Controlling lipid bioavailability through physicochemical and structural approaches. Critical Reviews in Food Science and Nutrition 49 (1):48–67. doi: 10.1080/10408390701764245.
  • McClements, D. J., L. Zou, R. Zhang, L. Salvia-Trujillo, T. Kumosani, and H. Xiao. 2015. Enhancing nutraceutical performance using excipient foods: Designing food structuresand compositions to increase bioavailability. Comprehensive Reviews in Food Science and Food Safety 14 (6):824–47. doi: 10.1111/1541-4337.12170.
  • McClements, D. J., F. Li, and H. Xiao. 2015. The nutraceutical bioavailability classification scheme: Classifying nutraceuticals according to factors limiting their oral bioavailability. Annual Review of Food Science and Technology 6 (1):299–327. doi: 10.1146/annurev-food-032814-014043.
  • McClements, D. J., L. Bai, and C. Chung. 2017. Recent advances in the utilization of natural emulsifiers to form and stabilize emulsions. Annual Review of Food Science and Technology 8:205–36. doi: 10.1146/annurev-food-030216-030154.
  • McClements, D. J. 2018. Encapsulation, protection, and delivery of bioactive proteins and peptides using nanoparticle and microparticle systems: A review. Advances in Colloid and Interface Science 253:1–22. doi: 10.1016/j.cis.2018.02.002.
  • McClements, D. J. 2020. Advances in nanoparticle and microparticle delivery systems for increasing the dispersibility, stability, and bioactivity of phytochemicals. Biotechnology Advances 38:107287. doi: 10.1016/j.biotechadv.2018.08.004.
  • McClements, D. J. 2021. Advances in edible nanoemulsions: Digestion, bioavailability, and potential toxicity. Progress in Lipid Research 81:101081. doi: 10.1016/j.plipres.2020.101081.
  • McClements, D. J., and O. Bengü. 2021. Utilization of nanotechnology to improve the handling, storage and biocompatibility of bioactive lipids in food applications. Foods 10 (2):365. doi: 10.3390/foods10020365.
  • McDonald, D. E., D. W. Pethick, B. P. Mullan, and D. J. Hampson. 2001. Increasing viscosity of theintestinal contents alters small intestinal structure and intestinal growth, and stimulates proliferation of enterotoxigenic Escherichia coli in newly-weaned pigs. The British Journal of Nutrition 86 (4):487–98. doi: 10.1079/bjn2001416.
  • Menard, O. T., H. Cattenoz, I. Guillemin, A. Souchon, D. Deglaire, D. Dupont, and D. Picque. 2014. Validation of a new in vitro dynamic system to simulate infant digestion. Food Chemistry 145:1039–45. doi: 10.1016/j.foodchem.2013.09.036.
  • Meng, Q., P. Long, J. Zhou, C.-T. Ho, X. Zou, B. Chen, and L. Zhang. 2019. Improved absorption of β-carotene by encapsulation in an oil-in-water nanoemulsion containing tea polyphenols in the aqueous phase. Food Research International (Ottawa, Ont.) 116:731–6. doi: 10.1016/j.foodres.2018.09.004.
  • Mennah-Govela, Y. A., H. Cai, J. Chu, K. Kim, M.-K. Maborang, W. Sun, and G. M. Bornhorst. 2020. Buffering capacity of commercially available foods is influenced by composition and initial properties in the context of gastric digestion. Food & Function 11 (3):2255–67. doi: 10.1039/c9fo03033f.
  • Mentes, J. C., M. A. DeVost, and K. Nandy. 2019. Salivary osmolality. Function, and hydration habits in community-dwelling older adults. SAGE Open Nursing 5:2377960819826253. doi: 10.1177/2377960819826253.
  • Miguel, A., A. Araújo, E. Pinto, C. Oliveira, M. T. Oliva-Teles, A. Almeida, C. Delerue-Matos, and I. M. Ferreira., 2018. Bioaccessibility and intestinal uptake of minerals from different types of home-cooked and ready-to-eat beans. Journal of Functional Foods 50:201–9. doi: 10.1016/j.jff.2018.10.001.
  • Minekus, M., M. Alminger, P. Alvito, S. Ballance, T. Bohn, C. Bourlieu, F. Carrière, R. Boutrou, M. Corredig, D. Dupont, et al. 2014. A standardised static in vitro digestion method suitable for food – An international consensus. Food & Function 5 (6):1113–24. doi: 10.1039/c3fo60702j.
  • Mohapatra, D., A. S. Patel, A. Kar, S. S. Deshpande, and M. K. Tripathi. 2019. Effect of different processing conditions on proximate composition, anti-oxidants, anti-nutrients and amino acid profile of grain sorghum. Food Chemistry 271:129–35. doi: 10.1016/j.foodchem.2018.07.196.
  • Molteni, C., C. La Motta, and F. Fabio Valoppi. 2022. Improving the bioaccessibility and bioavailability of carotenoids by means of nanostructured delivery systems: A comprehensive review. Antioxidants 11(10):1931. doi: 10.3390/antiox11101931.
  • Moran, N. E., M. J. Cichon, K. M. Riedl, E. M. Grainger, S. J. Schwartz, J. A. Novotny, J. W. Erdman, Jr., and S. K. Clinton. 2015. Compartmental and noncompartmental modeling of 13C-lycopene absorption, isomerization, and distribution kinetics in healthy adults. The American Journal of Clinical Nutrition 102 (6):1436–49. doi: 10.3945/ajcn.114.103143.
  • Müller, M., E. E. Canfora, and E. E. Blaak. 2018. Gastrointestinal transit time, glucose homeostasis and metabolic health: Modulation by dietary fibers. Nutrients 10:275. doi: 10.3390/nu10030275.
  • Murray, K., V. Wilkinson-Smith, C. Hoad, C. Costigan, E. Cox, C. Lam, L. Marciani, P. Gowland, and R. C. Spiller., 2014. Differential effects of FODMAPs (fermentable oligo-, di-, mono- saccharides and polyols) on small and large intestinal contents in healthy subjects shown by MRI. The American Journal of Gastroenterology 109 (1):110–9. doi: 10.1038/ajg.2013.386.
  • Mutsokoti, L., A. Panozzo, E. T. Musabe, A. Van Loey, and M. Hendrickx. 2015. Carotenoid transfer to oil upon high pressure homogenisation of tomato and carrot based matrices. Journal of Functional Foods. 19 (Part A):775–85. doi: 10.1016/j.jff.2015.10.017.
  • Naderkhani, E., J. Isaksson, A. Ryzhakov, and G. E. Flaten. 2014. Development of abiomimetic phospholipid vesicle-based permeation assay for the estimation of intestinal drug permeability. Journal of Pharmaceutical Sciences 103 (6):1882–90. doi: 10.1002/jps.23954.
  • Nagar, E. E., Z. Okun, and A. Shpigelman. 2020. Digestive fate of polyphenols: Updated view of the influence of chemical structure and the presence of cell wall material. Curr Opin Food Sci 31:38–46. doi: 10.1016/j.cofs.2019.10.009.
  • Napiórkowska, A., and M. Kurek. 2022. Coacervation as a novel method of microencapsulation ofessential oils—A review. Molecules 27 (16):5142. doi: 10.3390/molecules27165142.
  • Nkhata, S. G., E. Ayua, E. H. Kamau, and J-B. Shingiro. 2018. Fermentation and germination improvenutritional value of cereals and legumes through activation of endogenous enzymes. Food science & nutrition 6 (8):2446–58. doi: 10.1002/fsn3.846.
  • Noothalapati, H., K. Iwasaki, C. Yoshimoto, K. Yoshikiyo, T. Nishikawa, M. Ando, H.-O. Hamaguchi, and T. Yamamoto. 2017. Imaging phospholipid conformational disorder and packing in giant multilamellar liposome by confocal Raman microspectroscopy. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 187:186–90. doi: 10.1016/j.saa.2017.06.060.
  • Nsairat, H., D. Khater, U. Sayed, F. Odeh, A. Al Bawab, and W. Alshaer. 2022. Liposomes: Structure,composition, types, and clinical applications. Heliyon 8 (5):e09394. doi: 10.1016/j.heliyon.2022.e09394.
  • Ogodo, A.C., D. I. Agwaranze, N. V. Aliba, A. Chukwuma, and C. Blessing. 2018. Fermentation by lacticacid Bacteria consortium and its effect on antinutritional factors in maize flour. Journal of Biological Sciences 19 (1):17–23. doi: 10.3923/jbs.2019.17.23.
  • Oliveira, C. L., B. Brychkova, A. A. Esteves-Ferreira, P. McKeown, M. S. Gomes, W. R. Maluf, L. A. A. Gomes, and C. Spillane. 2020. Thermal disruption of the food matrix of biofortified lettuce varieties modifies absorption of carotenoids by Caco-2 cells. Food Chemistry 308:125443. doi: 10.1016/j.foodchem.2019.125443.
  • Ortiz, D., S. Nkhata, A. Buechler, T. Rocheford, and M. G. Ferruzzi. 2017. Nutritional changes duringbiofortified maize fermentation (steeping) for ogi production. The FASEB Journal 31 (S1):1. doi: 10.1096/fasebj.31.1_supplement.32.4.
  • O’Shea, J. P., P. Augustijns, M. Brandl, D. J. Brayden, J. Brouwers, B. T. Griffin, R. Holm, A.-C. Jacobsen, H. Lennernäs, Z. Vinarov, et al. 2022. Best practices in current models mimicking drug permeability in the gastrointestinal tract – An UNGAP review. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences 170 (2022):106098., . doi: 10.1016/j.ejps.2021.106098.
  • Ozturk, B., S. Argin, M. Ozilgen, and D. J. McClements. 2015. Nanoemulsion delivery systems foroil-soluble vitamins: Influence of carrier oil type on lipid digestion and vitamin D3 bioaccessibility. Food Chemistry 187:499–506. doi: 10.1016/j.foodchem.2015.04.065.
  • Padhye, T., K. S. Maravajjala, K. L. Swetha, S. Sharma, and A. Roy. 2021. A comprehensive reviewof the strategies to improve oral drug absorption with special emphasis on the cellular and molecular mechanisms. Journal of Drug Delivery Science and Technology 61:102178. doi: 10.1016/j.jddst.2020.102178.
  • Palmero, P., I. Colle, L. Lemmens, A. Panozzo, T. T. M. Nguyen, M. Hendrickx, and A. Van Loey. 2016. Enzymatic cell wall degradation of high-pressure homogenized tomato puree and its effect on lycopene bioaccessibility. Journal of the Science of Food and Agriculture 96 (1):254–61. doi: 10.1002/jsfa.7088.
  • Parada, J., and M. Aguilera. 2007. Food microstructure affects the bioavailability of severalnutrients. Journal of Food Science 72 (2):R21–R32. doi: 10.1111/j.1750-3841.2007.00274.x.
  • Peate, I. 2008. Body fluids: Composition and disorders of pancreatic and intestinal juices. British Journal of Healthcare Assistants 2 (7):339–41. doi: 10.12968/bjha.2008.2.7.30575.
  • Patterson, C. A., J. Curran, and T. Der. 2017. Effect of processing on antinutrient compounds inpulses. Cereal Chemistry 94 (1):2–10. doi: 10.1094/CCHEM-05-16-0144-FI.
  • Peñalva, R., Morales, J. González-Navarro, C. J. Larrañeta, E. Quincoces, G., and Peñuelas I. I. 2018. Increased oral bioavailability of resveratrol by its encapsulation in casein nanoparticles. International Journal of Molecular Sciences 19:2816. doi: 10.3390/ijms19092816.
  • Pentafragka, C., M. Vertzoni, J. Dressman, M. Symillides, K. Goumas, and C. Reppas. 2020. Characteristicsof contents in the upper gastrointestinal lumen after a standard high-calorie high-fat meal and implications for the in vitro drug product performance testing conditions. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences 155:105535. doi: 10.1016/j.ejps.2020.105535.
  • Pereira de Sousa, I., B. Cattoz, M. D. Wilcox, P. C. Griffiths, R. Dalgliesh, S. Rogers, and A. Bernkop- Schnurch. 2015. Nanoparticles decorated with proteolytic enzymes, a promising strategy to overcome the mucus barrier. European Journal of Pharmaceutics and Biopharmaceutics: Official Journal of Arbeitsgemeinschaft Fur Pharmazeutische Verfahrenstechnik e.V 97 (Pt A):257–64. doi: 10.1016/j.ejpb.2015.01.008.
  • Pérez, A. A., Marín-Peñalver, D. Fernández de Palencia, P. Gómez-Guillén, and M. C. GarcíaPM. 2022. Anti-Inflammatory properties, bioaccessibility and intestinal absorption of sea fennel (Crithmum maritimum) extract encapsulated in soy phosphatidylcholine liposomes. Nutrients 14:210. doi: 10.3390/nu14010210.
  • Phorbee, O. O., I. O. Olayiwola, and S. A. Sanni. 2013. Bioavailability of beta carotene in traditionalfermented, roasted granules, gari from bio‐fortified cassava roots. Food and Nutrition Sciences 04 (12):1247–54. doi: 10.4236/fns.2013.412159.
  • Polia, F., M. Pastor-Belda, A. Martínez-Blázquez, M.-N. Horcajada, F. A. Tomás-Barberán, and R. RocíoGarcía-Villalba. 2022. Technological and biotechnological processes to enhance the bioavailability of dietary (poly)phenols in humans. Journal of Agricultural and Food Chemistry 70 (7):2092–107. doi: 10.1021/acs.jafc.1c07198.
  • Pressman, P., R. Clemens, W. Hayes, and C. Reddy. 2017. Food additive safety: A review oftoxicologic and regulatory issues. Toxicology Research and Application 1:239784731772357. doi: 10.1177/2397847317723572.
  • Przybylla, R., C. S. Mullins, M. Krohn, S. Oswald, and M. Linnebacher. 2022. Establishment and characterization of novel human intestinal in vitro models for absorption and first-pass metabolism studies. International Journal of Molecular Sciences. 23:9861. doi: 10.3390/ijms23179861.
  • Qian, C., E. A. Decker, H. Xiao, and D. J. McClements. 2012. Nanoemulsion delivery systems: Influence of carrier oil on b-carotene bioaccessibility. Food Chemistry 135 (3):1440–7. doi: 10.1016/j.foodchem.2012.06.047.
  • Qin, D., X. Yang, S. Gao, J. Yao, and D. J. McClements. 2017. Influence of dietary fibers on lipiddigestion: Comparison of single-stage and multiple-stage gastrointestinal models. Food Hydrocolloids 69:382–92. doi: 10.1016/j.foodhyd.2017.03.004.
  • Quan, W., Y. Tao, X. Qie, M. Zeng, F. Qin, J. Chen, and Z. He. 2020. Effects of high-pressure homogenization, thermal processing, and milk matrix on the in vitro bioaccessibility of phenolic compounds in pomelo and kiwi juices. Journal of Functional Foods 64:103633. doi: 10.1016/j.jff.2019.103633.
  • Raikos, V. 2017. Food matrix: Natural barrier or vehicle for effective delivery of carotenoidsfrom processed foods? Insights in Nutrition and Metabolism 01 (01):1–6. doi: 10.35841/Insights-Nutrition.1000102.
  • Rana, S., S. Arora, C. Gupta, and S. Kapila. 2019. Effect of sodium caseinate and vitamin Acomplexation on bioaccessibility and bioavailability of vitamin A in Caco-2 cells. Food Research International (Ottawa, Ont.) 121:910–8. doi: 10.1016/j.foodres.2019.01.019.
  • Reale, O., A. Huguet, and V. Fessard. 2021. Co-culture model of Caco-2/HT29-MTX cells: Apromising tool for investigation of phycotoxins toxicity on the intestinal barrier. Chemosphere 273:128497. doi: 10.1016/j.chemosphere.2020.128497.
  • Reboul, E. 2019. Mechanisms of carotenoid intestinal absorption: Where do we stand? Nutrients 11 (4):838. doi: 10.3390/nu11040838.
  • Regulation (EU) No. 609/2013 of the European Parliament and of the Council on foodintended for infants and young children, food for special medical purposes, and total diet replacement for weight control. http://faolex.fao.org/docs/pdf/eur125448.pdf
  • Rehman, A., Q. Tong, S. M. Jafari, E. Assadpour, Q. Shehzad, R. M. Aadil, M. W. Iqbal, M. M. A. Rashed, B. S. Mushtaq, and W. Ashraf. 2020. Carotenoid-loaded nanocarriers: A comprehensivereview. Advances in Colloid and Interface Science 275:102048. doi: 10.1016/j.cis.2019.102048.
  • Rein, M. J., M. Renouf, C. Cruz-Hernandez, L. Actis-Goretta, S. K. Thakkar, and M. da Silva Pinto. 2013. Bioavailability of bioactive food compounds: A challenging journey to bioefficacy. British Journal of Clinical Pharmacology 75 (3)/:588–602. doi: 10.1111/j.1365-2125.2012.04425.x.
  • Rezaei, A., M. Fathi, and S. M. Seid Mahdi Jafari. 2019. Nanoencapsulation of hydrophobic and low-soluble food bioactive compounds within different nanocarriers. Food Hydrocolloids 88:146–62. doi: 10.1016/j.foodhyd.2018.10.003.
  • Ribas-Agustí, A., O. Martín-Belloso, R. Soliva-Fortuny, and P. Elez-Martínez. 2019. Influence ofpulsed electric fields processing on the bioaccessible and non-bioaccessible fractions of apple phenolic compounds. Journal of Functional Foods. 59:206–14. doi: 10.1016/j.jff.2019.05.041.
  • Ribnicky, D. M., D. E. Roopchand, A. Oren, M. Grace, A. Poulev, M. A. Lila, R. Havenaar, and I. Raskin. 2014. Effects of a high fat meal matrix andprotein complexation on t he bioaccessibility of blueberry anthocyanins using the TNO gastrointestinal model (TIM-1). Food Chemistry 142:349–57. doi: 10.1016/j.foodchem.2013.07.073.
  • Riethorst, D., R. Mols, G. Duchateau, J. Tack, J. Brouwers, and P. Augustijns. 2016. Characterizationof human duodenal fluids in fasted and fed state conditions. Journal of Pharmaceutical Sciences 105 (2):673–81. doi: 10.1002/jps.24603.
  • Riezzo, G., G. Chimienti, C. Clemente, B. D’Attoma, A. O. Orlando, C. M. Rinaldi, and F. Russo. 2017. Colonic transit time and gut peptides in adult patients with slow and normal colonic transit constipation. BioMed Research International 2017:3178263. doi: 10.1155/2017/3178263.
  • Rinninella, E., P. Raoul, M. Cintoni, F. Franceschi, G. A. Donato, D. G. A. Miggiano, A. Gasbarrini, and M. C. Mele. 2019. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms 7 (1):14. doi: 10.3390/microorganisms7010014.
  • Rodricks, J. V., D. Turnbull, F. Chowdhury, and F. Wu. 2020. Food constituents and contaminants. In: Environmentals toxicants human expures and their health effects, eds. M. Lippmann and G. D. Leikauf, 4th ed., 149–204. Wiley & Sons.
  • Rodríguez-Roque, M. J., M. A. Rojas-Graü, P. Elez-Martínez, and O. Martín-Belloso. 2014. In vitrobioaccessibility of health-related compounds as affected by the formulation of fruit juice-and milk-based beverages. Food Research International. 62:771–8. doi: 10.1016/j.foodres.2014.04.037.
  • Rodríguez-Roque, M. J., B. de Ancos, C. Sánchez-Moreno, M. P. Cano, P. Elez-Martínez, and B. Martín. 2015. Impact of food matrix and processing on the in vitro bioaccessibility of vitamin C, phenoliccompounds, and hydrophilic antioxidant activityfrom fruit juice-based beverages. Journal of Functional Foods. 14:33–43. doi: 10.1016/j.jff.2015.01.020.
  • Rohmah, M., A. Rahmadi, and S. Raharjo. 2022. Bioaccessibility and antioxidant activity of β-carotene loaded nanostructured lipid carrier (NLC) from binary mixtures of palm stearin and palm olein. Heliyon 8 (2):e08913. doi: 10.1016/j.heliyon.2022.e08913.
  • Rommasi, F., and N. Esfandiari. 2021. Liposomal nanomedicine: Applications for drug delivery incancer therapy. Nanoscale Research Letters 16 (1):95. doi: 10.1186/s11671-021-03553-8.
  • Rostamabadi, H., S. R. Falsafi, and S. M. Jafari. 2019. Nanoencapsulation of carotenoids within lipid-based nanocarriers. Journal of Controlled Release: Official Journal of the Controlled Release Society 298:38–67. doi: 10.1016/j.jconrel.2019.02.005.
  • Saghir, S. A. 2014. Absorption. In Encyclopedia of toxicology, ed. P. Wexler, 1–6. doi: 10.1016/B978-0-12-386454-3.00361-4.
  • Salas, C. E., D. Dittz, and M. J. Torres. 2018. Plant proteolytic enzymes: Their role as naturalpharmacophores. In: Biotechnological applications of plant proteolytic enzymes, eds. M. G. Guevara and G. R. Daleo, 107–27. Springer.
  • Salvia-Trujillo, L., C. Qian, O. Martin-Belloso, and D. J. McClements. 2013. Modulatingbeta-carotene bioaccessibility by controlling oil composition and concentration in edible nanoemulsions. Food Chemistry 139 (1-4):878–84. doi: 10.1016/j.foodchem.2013.02.024.
  • Salvia-Trujillo, L., S. H. E. Verkempinck, L. Sun, A. M. Van Loey, T. Grauwet, and M. E. Hendrickx. 2017. Lipid digestion, micelle formation and carotenoid bioaccessibility kinetics: Influence of emulsion droplet size. Food Chemistry 229:653–62. doi: 10.1016/j.foodchem.2017.02.146.
  • Sams, L., J. Paume, J. Giallo, and F. Carriere. 2016. Relevant pH and lipase for in vitro models ofgastric digestion. Food & Function 7 (1):30–45. doi: 10.1039/c5fo00930h.
  • Samtiya, M., R. E. Aluko, and T. Dhewa. 2020. Plant food anti-nutritional factors and theirreduction strategies: An overview. Food Prod. Proces Nutr 2:6. doi: 10.1186/s43014-020-0020-5.
  • Sánchez, A., and A. Vázquez. 2017. Bioactive peptides: A review. Food Quality and Safety 1 (1):29–46. doi: 10.1093/fqsafe/fyx006.
  • Sarabandi, K., S. M. Jafari, M. Mohammadi, Z. Akbarbaglu, A. Pezeshki, and M. K. Heshmati. 2019. Production of bioavailability of nutraceuticals reconstitutable nanoliposomes loaded with flaxseed protein hydrolysates:Stability and characterization. Food Hydrocolloids 96:442–50. doi: 10.1016/j.foodhyd.2019.05.047.
  • Satora, O., M. Skotniczny, S. Strnad, and W. Piechowicz. 2021. Chemical composition andsensory quality of sauerkraut produced from different cabbage varieties. LWT 136 (1):110325. doi: 10.1016/j.lwt.2020.110325.
  • Schiller, C., C. P. Fröhlich, T. Giessmann, W. Siegmund, H. Mönnikes, N. Hosten, and W. Weitschies. 2005. Intestinal fluid volumes and transit of dosage forms as assessed by magnetic resonance imaging. Alimentary Pharmacology & Therapeutics 22 (10):971–9. doi: 10.1111/j.1365-2036.2005.02683.x.
  • Sekton, B. 2010. Food nanotechnology – An overview. Nanotechnology, Science and Applications 3:1–15. doi: 10.2147/NSA.S8677.
  • Sensoy, I. 2021. A review on the food digestion in the digestive tract and the used in vitromodels. Current Research in Food Science 4:308–19. doi: 10.1016/j.crfs.2021.04.004.
  • Sewell, F., M. Corvaro, A. Andrus, J. Burke, G. Daston, B. Delaney, J. Domoradzki, C. Forlini, M. L. Green, T. Hofmann, et al. 2022. Recommendations on dose level selection forrepeat dose toxicity studies. Archives of Toxicology 96 (7):1921–34. doi: 10.1007/s00204-022-03293-3.
  • Shahidi, F., V. V. Ramakrishnam, and W. Y. Oh. 2019. Bioavailability and metabolism of foodbioactives and their health effects: A review. Journal of Food Bioactives 8:6–41. doi: 10.31665/JFB.2019.8204.
  • Shani-Levi, C., P. Alvito, A. Andrés, R. Assunção, R. Barberá, S. Blanquet-Diot, C. Bourlieu, A. Brodkorb, A. Cilla, A. Deglaire, et al. 2017. Extending in vitro digestion models to specifichuman populations: Perspectives, practical tools and bio-relevant information. Trends in Food Science and Technology. 60:52–63. doi: 10.1016/j.tifs.2016.10.017.
  • Sharma, K., A. Tayade, J. Singh, and S. Walia. 2020. Bioavailability of nutrients and safety measurements. In: Functional Foods and Nutraceuticals, eds. C. Egbuna and G. Dable-Tupas, 543–93. Springer Nature Switzerland AG.
  • Shen, L., and H. F. Ji. 2019. Bidirectional interactions between dietary curcumin and gutmicrobiota. Critical Reviews in Food Science and Nutrition 59 (18):2896–902. doi: 10.1080/10408398.2018.1478388.
  • Shi, J., and M. Le Maguer. 2000. Lycopene in tomatoes: Chemical and physical properties affected byfood processing. Critical Reviews in Food Science and Nutrition 40 (1):1–42. doi: 10.1080/10408690091189275.
  • Silva, H. D., E. Beldíková, J. Poejo, L. Abrunhosa, A. T. Serra, C. M. Duarte, T. Brányik, M. A. Cerqueira, A. C. Pinheiro, and A. A. Vicente. 2019. Evaluating the effect of chitosan layer onbioaccessibility and cellular uptake of curcumin nanoemulsions. Journal of Food Engineering 243:89–100. doi: 10.1016/j.jfoodeng.2018.09.007.
  • Singh, A., Y. R. Neupane, B. Mangla, S. Shafi, and K. Kohli. 2020. PEGylated nanoliposomespotentiated oral combination therapy for effective cancer treatment. Current Drug Delivery 17 (9):728–35. doi: 10.2174/1567201817666200724170708.
  • Sinko, P. J. 2006. Martin’s. Physical pharmacy and pharmaceutical sciences. Physical chemical and biopharmaceutical principles in the pharmaceutical sciences (5th ed.). Lippincott Williams &Wilkins, 2006, 360–70.
  • Southwell, B. R., C. C. Melanie, M. C. C. Clarke, J. Sutcliffe, and JM. Hutson. 2009. Colonic transitstudies: Normal values for adults and children with comparison of radiological and scintigraphic methods. Pediatric Surgery International 25 (7):559–72. doi: 10.1007/s00383-009-2387-x.
  • Stanforth, K. J., M. D. Wilcox, P. I. Chater, I. A. Brownlee, M. I. Zakhour, K. M. R. M. Banecki, and J. P. Pearson. 2022. Pepsin properties, structure, and its accurate measurement: A narrative review. Annals of Esophagus 5:31– . doi: 10.21037/aoe-20-95.
  • Strugari, A. F. G., M. S. Stan, S. Gharbia, A. Hermenean, and A. Dinischiotu. 2018. Characterization ofnanoparticle intestinal transport using an in vitro co-culture model. Nanomaterials (Basel) 9 (1):5. doi: 10.3390/nano9010005.
  • Stübler, A.-S., U. Lesmes, A. Juadjur, V. Heinz, C. Rauh, A. Shpigelman, and K. Aganovic. 2020. Impact of pilot-scale processing (thermal, PEF, HPP) on the stability and bioaccessibility of polyphenols and proteins in mixed protein- and polyphenol-rich juice systems. Innovative Food Science & Emerging Technologies 64:102426. doi: 10.1016/j.ifset.2020.102426.
  • Takemura, M., Y. Tanaka, K. Inoue, I. Tamai, and Y. Shirasaka. 2021. Influence of osmolality ongastrointestinal fluid volume and drug absorption: Potential impact on oral salt supplementation. Journal of Pharmaceutical Health Care and Sciences 7 (1):29. doi: 10.1186/s40780-021-00212-z.
  • Tan, Y., Z. Zhang, H. Zhou, H. Xiao, and D. J. McClements. 2020. Factors impacting lipid digestionand β-carotene bioaccessibility assessed by standardized gastrointestinal model (INFOGEST): Oil droplet concentration. Food & Function 11 (8):7126–37. doi: 10.1039/d0fo01506g.
  • Thakur, P., K. Kumar, N. Ahmed, D. Chauhan, Qurat Ul Eain Hyder Rizvi, D. Jan, T. P. Singh, and H. S. Dhaliwal. 2021. Effect of soaking and germination treatments on nutritional, anti-nutritional, and bioactive properties of amaranth (Amaranthus hypochondriacus L.), quinoa (Chenopodium quinoa L.), and buckwheat (Fagopyrum esculentum L.). Current Research in Food Science 4:917–925. doi: 10.1016/j.crfs.2021.11.019.
  • Tokle, T., U. Lesmes, E. A. Decker, and D. J. McClements. 2012. Impact of dietary fiber coatings onbehavior of protein-stabilized lipid droplets under simulated gastrointestinal conditions. Food & Function 3 (1):58–66. doi: 10.1039/c1fo10129c.
  • Tomas, M., J. Beekwilder, R. D. Hall, C. D. Simon, O. Sagdic, and E. Capanoglu. 2018. Effect of dietary fiber (inulin) addition on phenolics and in vitro bioaccessibility oftomato sauce. Food Research International. 1061:29–135. doi: 10.1016/j.foodres.2017.12.050.
  • Tomas, M., G. Rocchetti, S. Ghisoni, G. Giuberti, E. Capanoglu, and L. Lucini. 2020. Effect of different soluble dietary fibres on the phenolic profile of blackberry pureesubjected to in vitro gastrointestinal digestion and large intestine fermentation. Food Research International (Ottawa, Ont.) 130:108954. doi: 10.1016/j.foodres.2019.108954.
  • Toydemir, G., B. G. Subasi, R. D. Hall, J. Beekwilder, D. Boyacioglu, and E. Capanoglu. 2022. Effectof food processing on antioxidants, their bioavailability and potential relevance to human health. Food Chemistry: X 14:100334. doi: 10.1016/j.fochx.2022.100334.
  • Turgeon, S. L., and G. Brisson. 2020. Symposium review:The dairy matrix—Bioaccessibility andbioavailability of nutrients and physiological effects. Journal of Dairy Science 103 (7):6727–36. doi: 10.3168/jds.2019-17308.
  • Ude, V. C., D. M. Brown, V. Stone, and HJ. Johnston. 2019. Using 3D gastrointestinal tract in vitromodels with microfold cells and mucus secreting ability to assess the hazard of copper oxide nanomaterials. Journal of Nanobiotechnology 17 (1):70. doi: 10.1186/s12951-019-0503-1.
  • Van Den Abeele, J., J. Rubbens, J. Brouwers, and P. Augustijns. 2017. The dynamic gastricenvironment and its impact on drug and formulation behaviour. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences 96:207–31. doi: 10.1016/j.ejps.2016.08.060.
  • Van Den Boer, J., M. Werts, E. Siebelink, C. de Graaf, and M. Mars. 2017. The availability of slowand fast calories in the Dutch diet: The current situation and opportunities for interventions. Foods 6 (10):87. doi: 10.3390/foods6100087.
  • Veber, D. F., S. R. Johnson, H.-Y. Cheng, B. R. Smith, K. W. Ward, and KD. Kopple. 2002. Mole.cularproperties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry 45 (12):2615–23. doi: 10.1021/jm020017n.
  • Verhoeckx, K. C. M., Y. M. Vissers, J. L. Baumert, R. Faludi, M. Feys, S. Flanagan, C. Herouet-Guicheney, T. Holzhauser, R. Shimojo, N. van der Bolt, et al. 2015. Food processing andallergenicity. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 80:223–40. doi: 10.1016/j.fct.2015.03.005.
  • Verkempinck, S., L. Salvia Trujillo, L. Moens, C. Carrillo, A. Van Loey, M. Hendrickx, and T. Grauwet. 2018. Kinetic approach to study the relation between in vitro lipid digestion and carotenoid bioaccessibility in emulsions with different oil unsaturation degree. Journal of Functional Foods 41:135–47. doi: 10.1016/j.jff.2017.12.030.
  • Vertzoni, M., P. Augustijns, M. Grimm, M. Koziolek, G. Lemmens, N. Parrott, C. Pentafragka, C. Reppas, J. Rubbens, J. Van Den Αbeele, et al. 2019. Impact of regional differences along thegastrointestinal tract of healthy adults on oral drug absorption: An UNGAP review. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences 134:153–75. doi: 10.1016/j.ejps.2019.04.013.
  • Vidal, V. A. S., J. M. Lorenzo, P. E. S. Munekata, and M. A. R. Pollonio. 2021. Challenges to reduce orreplace NaCl by chloride salts in meat products made from whole pieces – A review. Critical Reviews in Food Science and Nutrition. 61 (13):2194–206. doi: 10.1080/10408398.2020.1774495.
  • Villar, M. A. L., M. L. P. Vidallon, and EB. Rodriguez. 2022. Nanostructured lipid carrier for bioactiverice bran gamma-oryzanol. Food Biosciences 50:102064. doi: 10.1016/j.fbio.2022.102064.
  • Vinarov, Z., M. Abdallah, J. A. G. Agundez, K. Allegaert, A. W. Basit, M. Braeckmans, J. Ceulemans, M. Corsetti, B. T. Griffin, M. Grimm, et al. 2021. Impact of gastrointestinal tractvariability on oral drug absorption and pharmacokinetics: An UNGAP review. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences 162:105812. doi: 10.1016/j.ejps.2021.105812.
  • Voronin, G. L., G. Ning, J. N. Coupland, R. Roberts, and FM. Harte. 2021. Freezing kinetics andmicrostructure of ice cream from high-pressure-jet processing of ice cream mix. Journal of Dairy Science 104 (3):2843–54. doi: 10.3168/jds.2020-19011.
  • Walczak, C. C., C. A. Jones, and TM. McCulloch. 2017. Pharyngeal pressure and timing during bolustransit. Dysphagia 32 (1):104–14. doi: 10.1007/s00455-016-9743-5.
  • Wesch, R. 2011. Absolute and relative bioavailability. In: Drug discovery and evaluation: Methods in clinical pharmacology, eds. H. G. Vogel, J. Maas, and A. Gebauer. Berlin, Heidelberg: Springer. doi: 10.1007/978-3-540-89891-7.
  • Winuprasith, T., P. Khomein, W. Mitbumrung, M. Suphantharika, A. Nitithamyong, and D. J. McClements. 2018. Encapsulation of vitamin D3 in pickering emulsions stabilized by nanofibrillated mangosteen cellulose: Impact on in vitro digestion and bioaccessibility. Food Hydrocolloids 83:153–164. doi: 10.1016/j.foodhyd.2018.04.047.
  • Woting, A., and M. Blaut. 2016. The intestinal microbiota in metabolic disease. Nutrients 8 (4):202. doi: 10.3390/nu8040202.
  • Wydro, P., B. Krajewska, and K. Hac-Wydro. 2007. Chitosan as a lipid binder: A langmuirmonolayer study of chitosan–lipid interactions. Biomacromolecules 8 (8):2611–7. doi: 10.1021/bm700453x.
  • Wu, C.-Y., and L. Z. Benet. 2005. Predicting drug disposition via application of BCS: Transport/absorption/elimination interplay and development of a Biopharmaceutics Drug Disposition Classification System. Pharmaceutical Research 22 (1):11–23. doi: 10.1007/s11095-004-9004-4.
  • Xiao, L., T. Yi, M. Chen, C. W. K. Lam, and H. Zhou. 2016. A new mechanism for increasing the oralbioavailability of scutellarin with Cremophor EL: Activation of MRP3 with concurrent inhibition of MRP2 and BCRP. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences 93:456–67. doi: 10.1016/j.ejps.2016.08.054.
  • Xiong, K., L. Zhou, J. Wang, A. Ma, D. Fang, L. Xiong, and Q. Sun. 2020. Construction of food-grade pH-sensitive nanoparticles for delivering functional food ingredients. Trends in Food Science and Technology. 96:102–13. doi: 10.1016/j.tifs.2019.12.019.
  • Xu, X., Q. Sun, and D. J. McClements. 2020. Effects of anionic polysaccharides on the digestion offish oil-in-water emulsions stabilized by hydrolyzed rice glutelin. Food Research International (Ottawa, Ont.) 127:108768. doi: 10.1016/j.foodres.2019.108768.
  • Yang, M., X. Lu, J. Xu, X. Liu, W. Zhang, R. Guan, and H. Zhong. 2022. Cellular uptake,transport mechanism and anti-inflammatory effect of cyanidin-3-glucoside nanoliposomes in Caco-2/RAW 264.7 co-culture model. Frontiers in Nutrition 9:995391. doi: 10.3389/fnut.2022.995391.
  • Yao, M. F., D. J. McClements, F. Q. Zhao, R. W. Craig, and H. Xiao. 2017. Controlling thegastrointestinal fate of nutraceutical and pharmaceutical-enriched lipid nanoparticles: From mixed micelles to chylomicrons. NanoImpact 5:13–21. doi: 10.1016/j.impact.2016.12.001.
  • Yao, Y., J. J. Lin, X. Y. J. Chee, M. H. Liu, S. A. Khan, and J. E. Kim. 2021. Encapsulation of lutein viamicrofluidic technology: Evaluation of stability and in vitro bioaccessibility. Foods 10:2646. doi: 10.3390/foods10112646.
  • Yao, Y., Y. Zhou, L. Liu, Y. Xu, Q. Chen, Y. Wang, S. Wu, Y. Deng, J. Zhang, and A. Shao. 2020. Nanoparticle-based drugdelivery in cancer therapy and its role in overcoming drug resistance. Frontiers in Molecular Biosciences 7:193. doi: 10.3389/fmolb.2020.00193.
  • Yi, J., F. Zhong, Y. Zhang, W. Yokoyama, and L. Zhao. 2015. Effects of lipids on in vitro release and cellular uptake of β-carotene in nanoemulsion-based delivery systems. Journal of Agricultural and Food Chemistry 63 (50):10831–7. doi: 10.1021/acs.jafc.5b04789.
  • Yoshii, K., K. Hosomi, K. Sawane, and J. Kunisawa. 2019. Metabolism of dietary and microbialvitamin B family in the regulation of host immunity. Frontiers in Nutrition 6:48. doi: 10.3389/fnut.2019.00048.
  • Youhanna, S., and V. M. Lauschke. 2021. The Past, present and future of intestinal in vitro cellsystems for drug absorption studies. Journal of Pharmaceutical Sciences 110 (1):50–65. doi: 10.1016/j.xphs.2020.07.001.
  • Yuan, L., F. Zhang, S. Jia, J. Xie, and M. Shen. 2020. Differences between phytosterols with differentstructures in regulating cholesterol synthesis, transport and metabolism in Caco-2 cells. Journal of Functional Foods 65:103715. doi: 10.1016/j.jff.2019.103715.
  • Yuan, X., J. Xiao, X. Liu, D. J. McClements, Y. Cao, and H. Xiao. 2019. The gastrointestinal behaviorof emulsifiers used to formulate excipient emulsions impact the bioavailability ofβ-carotene from spinach. Food Chemistry 278:811–9. doi: 10.1016/j.foodchem.2018.11.135.
  • Yuan, Y., M. Ma, X. Xu, and D. Wang. 2022. Surface coating of zein nanoparticles to improve theapplication of bioactive compounds: A review. Trends In Food Science And Technology 120:1–15. doi: 10.1016/j.tifs.2021.12.025.
  • Zabot, G. L., F. S. Rodrigues, L. P. Ody, M. V. Tres, E. Herrera, H. Palacin, J. S. Córdova-Ramos, I. Best, and L. Olivera-Montenegro. 2022. Encapsulation of bioactive compounds for food and agricultural applications. Polymers 14:4194. doi: 10.3390/polym14194194.
  • Zhang, D., X. Wang, and J. Chen. 2022. Saliva: Properties and functions in food oral processing. In: Oral Processing and consumer perception: Biophysics, food microstructures and health, eds. B. Wolf, S. Bakalis, and J. Chen, 1–24. Royal Society of Chemistry. doi: 10.1039/9781839160622.
  • Zhang, F., F. He, L. Li, L. Guo, B. Zhang, S. Yu, and W. Zhao. 2020. Bioavailability based on thegut microbiota: A new perspective. Microbiology and Molecular Biology Reviews. 84:e00072-19. doi: 10.1128/MMBR.00072-19.
  • Zhang, J., H. F. Chan, H. Wang, D. Shao, Y. Tao, and M. Li. 2021. Stem cell therapy and tissue engineering strategies using cell aggregates and decellularized scaffolds for the rescue of liver failure. Journal of Tissue Engineering 12:1–22. doi: 10.1177/2041731420986711.
  • Zhang, R., Z. Zhang, H. Zhang, E. A. Decker, and D. J. McClements. 2015. Influence of lipid type on gastrointestinal fate of oil-in-water emulsions: In vitro digestion study. Food Research International (Ottawa, Ont.) 75:71–8. doi: 10.1016/j.foodres.2015.05.014.
  • Zhang, S., X. Xu, J. Yang, and J. Ren. 2022. Impact of emulsifier structure and concentration onlipolysis dynamics and curcumin bioaccessibility in the nanoemulsions stabilized by polyglycerol fatty acid esters. Food Biophysics 17 (4):575–85. doi: 10.1007/s11483-021-09681-z.
  • Zhang, Z., R. Zhang, and D. J. McClements. 2019. Establishing the impact of food matrix effects onthe bioaccessibility of nutraceuticals and pesticides using a standardized food model. Food & Function 10 (3):1375–85. doi: 10.1039/c8fo02368a.
  • Zhang, W., Y. Yu, F. Xie, X. Gu, J. Wu, and Z. Wang. 2019. High pressure homogenization versusultrasound treatment of tomato juice: Effects on stability and in vitro bioaccessibility of carotenoids. Lwt 116:108597. doi: 10.1016/j.lwt.2019.108597.
  • Zhou, H., T. Dai, J. Liu, Y. Tan, L. Bai, O. J. Rojas, and D. J. McClements. 2021. Chitinnanocrystals reduce lipid digestion and β-carotene bioaccessibility: An in-vitro INFOGEST gastrointestinal study. Food Hydrocolloids 113:106494. doi: 10.1016/j.foodhyd.2020.106494.
  • Zhou, H., B. Zheng, and D. J. McClements. 2021. Encapsulation of lipophilic polyphenols inplant-based 2 nanoemulsions: Impact of carrier oil on lipid digestion and 3 curcumin, resveratrol and quercetin bioaccessibility. Food & Function 12 (8):3420–32. doi: 10.1039/d1fo00275a.
  • Zhuo, S., F. Zhang, J. Yu, X. Zhang, G. Yang, and X. Liu. 2020. pH-Sensitive biomaterials for drug delivery. Molecules 25:5649. doi: 10.3390/molecules25235649.
  • Zimmermann, M., M. Zimmermann-Kogadeeva, R. Wegmann, and A. L. Goodman. 2019. Mappinghuman microbiome drug metabolism by gut bacteria and their genes. Nature 570 (7762):462–7. doi: 10.1038/s41586-019-1291-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.