642
Views
0
CrossRef citations to date
0
Altmetric
Review

Novel insight into the role of sulfur dioxide in fruits and vegetables: Chemical interactions, biological activity, metabolism, applications, and safety

, , , , , , , & show all

References

  • Abeli, P. J., P. D. Fanning, R. Isaacs, and R. M. Beaudry. 2021. Blueberry fruit quality and control of blueberry maggot (Rhagoletis mendax Curran) larvae after fumigation with sulfur dioxide. Postharvest Biology and Technology 179:111568. doi: 10.1016/j.postharvbio.2021.111568.
  • Agathokleous, E., M. Kitao, and E. J. Calabrese. 2019. Hormesis: A compelling platform for sophisticated plant science. Trends in Plant Science 24 (4):318–27. doi: 10.1016/j.tplants.2019.01.004.
  • Ahmed, M., A. M. Sorifa, and J. B. Eun. 2010. Effect of pretreatments and drying temperatures on sweet potato flour. International Journal of Food Science & Technology 45 (4):726–32. doi: 10.1111/j.1365-2621.2010.02191.x.
  • Ahmed, S., S. R. Roberto, A. R. Domingues, M. Shahab, O. J. Junior, C. H. Sumida, and R. T. De Souza. 2018. Effects of different sulfur dioxide pads on Botrytis mold in ‘Italia’ table grapes under cold storage. Horticulturae 4 (4):29. doi: 10.3390/horticulturae4040029.
  • Al-Amrani, M., A. Al-Alawi, and I. Al-Marhobi. 2020. Assessment of enzymatic browning and evaluation of antibrowning methods on dates. International Journal of Food Science 2020:8380461. doi: 10.1155/2020/8380461.
  • Altındağ, M., M. Türkyılmaz, and M. Özkan. 2018. Changes in polyphenol profile of dried apricots containing SO2 at various concentrations during storage. Journal of the Science of Food and Agriculture 98 (7):2530–9. doi: 10.1002/jsfa.8740.
  • And, G. L., and D. M. Barrett. 2006. Influence of pre-drying treatments on quality and safety of sun-dried tomatoes. Part II. Effects of storage on nutritional and sensory quality of sun-dried tomatoes pretreated with sulfur, sodium metbisulfite, or salt. Journal of Food Science 71 (1):S32–S37. doi: 10.1111/j.1365-2621.2006.tb12402.x.
  • Andorrà, I., L. Martín, E. Nart, M. Puxeu, C. Hidalgo, and R. Ferrer-Gallego. 2018. Effect of grape juice composition and nutrient supplementation on the production of sulfur dioxide and carboxylic compounds by Saccharomyces cerevisiae. Australian Journal of Grape and Wine Research 24 (2):260–6. doi: 10.1111/ajgw.12325.
  • Andrew, L., W. S. Gavin, L. J, and David, W. 2016. Understanding wine chemistry. Chichester, UK: John Wiley & Sons, Ltd.
  • Arapitsas, P., G. Guella, and F. Mattivi. 2018. The impact of SO2 on wine flavanols and indoles in relation to wine style and age. Scientific Reports 8 (1):858. doi: 10.1038/s41598-018-19185-5.
  • Arapitsas, P., M. Ugliano, D. Perenzoni, A. Angeli, P. Pangrazzi, and F. Mattivi. 2016. Wine metabolomics reveals new sulfonated products in bottled white wines, promoted by small amounts of oxygen. Journal of Chromatography. A 1429:155–65. doi: 10.1016/j.chroma.2015.12.010.
  • Bai, X., Q. Xiao, L. Zhou, Y. Tang, and Y. He. 2020. Detection of sulfite dioxide residue on the surface of fresh-cut potato slices using near-infrared hyperspectral imaging system and portable near-infrared spectrometer. Molecules 25 (7):1651. doi: 10.3390/molecules25071651.
  • Belaidi, A. A., J. Röper, S. Arjune, S. Krizowski, A. Trifunovic, and G. Schwarz. 2015. Oxygen reactivity of mammalian sulfite oxidase provides a concept for the treatment of sulfite oxidase deficiency. The Biochemical Journal 469 (2):211–21. doi: 10.1042/BJ20140768.
  • Bloem, E., S. Haneklaus, and E. Schnug. 2015. Milestones in plant sulfur research on sulfur-induced-resistance (SIR) in Europe. Frontiers in Plant Science 5:779. doi: 10.3389/fpls.2014.00779.
  • Bonaldo, F., G. Guella, F. Mattivi, D. Catorci, and P. Arapitsas. 2020. Kinetic investigations of sulfite addition to flavanols. Scientific Reports 10 (1):12792. doi: 10.1038/s41598-020-69483-0.
  • Brychkova, G., Z. Xia, G. Yang, Z. Yesbergenova, Z. Zhang, O. Davydov, R. Fluhr, and M. Sagi. 2007. Sulfite oxidase protects plants against sulfur dioxide toxicity. The Plant Journal 50 (4):696–709. doi: 10.1111/j.1365-313X.2007.03080.x.
  • Brychkova, G., D. Yarmolinsky, R. Fluhr, and M. Sagi. 2012. The determination of sulfite levels and its oxidation in plant leaves. Plant Science 190:123–30. doi: 10.1016/j.plantsci.2012.04.004.
  • Cantín, C. M., I. S. Minas, V. Goulas, M. Jiménez, G. A. Manganaris, T. J. Michailides, and C. H. Crisosto. 2012. Sulfur dioxide fumigation alone or in combination with CO2-enriched atmosphere extends the market life of highbush blueberry fruit. Postharvest Biology and Technology 67:84–91. doi: 10.1016/j.postharvbio.2011.12.006.
  • Cantín, C. M., L. Palou, V. Bremer, T. J. Michailides, and C. H. Crisosto. 2011. Evaluation of the use of sulfur dioxide to reduce postharvest losses on dark and green figs. Postharvest Biology and Technology 59 (2):150–8. doi: 10.1016/j.postharvbio.2010.09.016.
  • Cao, X., L. Ding, Z. Xie, Y. Yang, M. Whiteman, P. K. Moore, and J. Bian. 2019. A review of hydrogen sulfide synthesis, metabolism, and measurement: Is modulation of hydrogen sulfide a novel therapeutic for cancer? Antioxidants & Redox Signaling 31 (1):1–38. doi: 10.1089/ars.2017.7058.
  • Carocho, M., M. F. Barreiro, P. Morales, and I. C. F. R. Ferreira. 2014. Adding molecules to food, pros and cons: A review on synthetic and natural food additives. Comprehensive Reviews in Food Science and Food Safety 13 (4):377–99. doi: 10.1111/1541-4337.12065.
  • Carter, M. Q., M. H. Chapman, F. Gabler, and M. T. Brandl. 2015. Effect of sulfur dioxide fumigation on survival of foodborne pathogens on table grapes under standard storage temperature. Food Microbiology 49:189–96. doi: 10.1016/j.fm.2015.02.002.
  • Carter, M. Q., D. Feng, M. H. Chapman, and F. Gabler. 2018. Survival of foodborne pathogens on commercially packed table grapes under simulated refrigerated transit conditions. Food Microbiology 72:199–205. doi: 10.1016/j.fm.2017.12.004.
  • Cassino, C., C. Tsolakis, F. Gulino, E. Vaudano, and D. Osella. 2021. The effects of sulphur dioxide on wine metabolites: New insights from 1H NMR spectroscopy based in-situ screening, detection, identification and quantification. LWT - Food Science and Technology 145:111296. doi: 10.1016/j.lwt.2021.111296.
  • Chen, M., X. Chen, S. Ray, and K. Yam. 2020. Stabilization and controlled release of gaseous/volatile active compounds to improve safety and quality of fresh produce. Trends in Food Science & Technology 95:33–44. doi: 10.1016/j.tifs.2019.11.005.
  • Chen, R., P. Wu, D. Cao, H. Tian, C. Chen, and B. Zhu. 2019. Edible coatings inhibit the postharvest berry abscission of table grapes caused by sulfur dioxide during storage. Postharvest Biology and Technology 152:1–8. doi: 10.1016/j.postharvbio.2019.02.012.
  • Chen, Y., Z. Li, F-e Ettoumi, D. Li, L. Wang, X. Zhang, Q. Ma, Y. Xu, L. Li, B. Wu, et al. 2022. The detoxification of cellular sulfite in table grape under SO2 exposure: Quantitative evidence of sulfur absorption and assimilation patterns. Journal of Hazardous Materials 439:129685. doi: 10.1016/j.jhazmat.2022.129685.
  • Clydesdale, F. M., C. T. Ho, C. Y. Lee, N. I. Mondy, R. L. Shewfelt, and K. Lee. 1991. The effects of postharvest treatment and chemical interactions on the bioavailability of ascorbic acid, thiamin, vitamin a, carotenoids, and minerals. Critical Reviews in Food Science and Nutrition 30 (6):599–638. doi: 10.1080/10408399109527558.
  • Considine, M. J., and C. H. Foyer. 2015. Metabolic responses to sulfur dioxide in grapevine (Vitis vinifera L.): Photosynthetic tissues and berries. Frontiers in Plant Science 6:60. doi: 10.3389/fpls.2015.00060.
  • Corte, L., L. Roscini, C. Zadra, L. Antonielli, B. Tancini, A. Magini, C. Emiliani, and G. Cardinali. 2012. Effect of pH on potassium metabisulphite biocidic activity against yeast and human cell cultures. Food Chemistry 134 (3):1327–36. doi: 10.1016/j.foodchem.2012.03.025.
  • D’Amore, T., A. Di Taranto, G. Berardi, V. Vita, G. Marchesani, A. E. Chiaravalle, and M. Iammarino. 2020. Sulfites in meat: Occurrence, activity, toxicity, regulation, and detection. A comprehensive review. Comprehensive Reviews in Food Science and Food Safety 19 (5):2701–20. doi: 10.1111/1541-4337.12607.
  • Danilewicz, J. C. 2007. Interaction of sulfur dioxide, polyphenols, and oxygen in a wine-model system: Central role of iron and copper. American Journal of Enology and Viticulture 58 (1):53–60. doi: 10.5344/ajev.2007.58.1.53.
  • Danilewicz, J. C., J. T. Seccombe, and J. Whelan. 2008. Mechanism of interaction of polyphenols, oxygen, and sulfur dioxide in model wine and wine. American Journal of Enology and Viticulture 59 (2):128–36. doi: 10.5344/ajev.2008.59.2.128.
  • Danilewicz, J. C., and M. J. Standing. 2018. Reaction mechanisms of oxygen and sulfite in red wine. American Journal of Enology and Viticulture 69 (3):189–95. doi: 10.5344/ajev.2018.17095.
  • de Azevedo, L. C., M. M. Reis, L. F. Motta, G. O. d Rocha, L. A. Silva, and J. B. de Andrade. 2007. Evaluation of the formation and stability of hydroxyalkylsulfonic acids in wines. Journal of Agricultural and Food Chemistry 55 (21):8670–80. doi: 10.1021/jf0709653.
  • Deng, A., C. Kang, L. Kang, C. Lyu, W. Zhang, S. Wang, H. Wang, T. Nan, L. Zhou, L. Huang, et al. 2022. Practical protocol for comprehensively evaluating sulfur-fumigation of Baizhi based on metabolomics, pharmacology, and cytotoxicity. Frontiers in Pharmacology 12:799504. doi: 10.3389/fphar.2021.799504.
  • Deng, L.-Z., A. S. Mujumdar, Q. Zhang, X.-H. Yang, J. Wang, Z.-A. Zheng, Z.-J. Gao, and H.-W. Xiao. 2019. Chemical and physical pretreatments of fruits and vegetables: Effects on drying characteristics and quality attributes - a comprehensive review. Critical Reviews in Food Science and Nutrition 59 (9):1408–32. doi: 10.1080/10408398.2017.1409192.
  • Divol, B., M. Du Toit, and E. Duckitt. 2012. Surviving in the presence of sulphur dioxide: Strategies developed by wine yeasts. Applied Microbiology and Biotechnology 95 (3):601–13. doi: 10.1007/s00253-012-4186-x.
  • Domingues, A. R., S. R. Roberto, S. Ahmed, M. Shahab, O. José Chaves Junior, C. H. Sumida, and R. T. De Souza. 2018. Postharvest techniques to prevent the incidence of Botrytis mold of ‘BRS Vitoria’ seedless grape under cold storage. Horticulturae 4 (3):17. doi: 10.3390/horticulturae4030017.
  • Duarte-Sierra, A., E. Aispuro-Hernández, I. Vargas-Arispuro, M. A. Islas-Osuna, G. A. González-Aguilar, and M. Á. Martínez-Téllez. 2016. Quality and PR gene expression of table grapes treated with ozone and sulfur dioxide to control fungal decay. Journal of the Science of Food and Agriculture 96 (6):2018–24. doi: 10.1002/jsfa.7312.
  • EFSA. 2016. Scientific opinion on the re-evaluation of sulfur dioxide (E 220), sodium sulfite (E 221), sodium bisulfite (E 222), sodium metabisulfite (E 223), potassium metabisulfite (E 224), calcium sulfite (E 226), calcium bisulfite (E 227) and potassium bisulfite (E 228) as food additives. EFSA Journal 14 (4):4438. doi: 10.2903/j.efsa.2016.4438.
  • El-Beltagy, A., G. R. Gamea, and A. H. A. Essa. 2007. Solar drying characteristics of strawberry. Journal of Food Engineering 78 (2):456–64. doi: 10.1016/j.jfoodeng.2005.10.015.
  • FAO/WHO 2009. WHO food additives series 60: Safety evaluation of certain food additives and contaminants, IPCS—International Programme on Chemical Safety, ed. p. Geneva, 634. Switzerland: WHO Press.
  • FAO/WHO 2011. Codex Alimentarius: General standard for food additives. Rome, Italy: Food & Agriculture Organization of the United Nations.
  • Fontes, N., S. Delrot, and H. Gerós. 2012. Grape cell vacuoles: Structure-function and solute transport across the tonoplast. In The biochemistry of the grape berry, eds. H. Gerós, M. M. Chaves, S. Delrot, 160–71. Sharjah, UAE: Bentham Science Publisher.
  • Foyer, C. H., and G. Noctor. 2011. Ascorbate and glutathione: The heart of the redox hub. Plant Physiology 155 (1):2–18. doi: 10.1104/pp.110.167569.
  • Garcia-Fuentes, A., S. Wirtz, E. Vos, and H. Verhagen. 2015. Short review of sulphites as food additives. European Journal of Nutrition & Food Safety 5 (2):113–20. doi: 10.9734/EJNFS/2015/11557.
  • Giraud, E., A. Ivanova, C. S. Gordon, J. Whelan, and M. J. Considine. 2012. Sulphur dioxide evokes a large scale reprogramming of the grape berry transcriptome associated with oxidative signalling and biotic defence responses. Plant, Cell & Environment 35 (2):405–17. doi: 10.1111/j.1365-3040.2011.02379.x.
  • Gould, G. W. 2000. The use of other chemical preservatives: Sulfite and nitrite. In Microbiological safety and quality of food, ed. B. M. Lund, T. C. Baird-Parker, & G. W. Gould (Eds.), 200–213. New York, NY: Springer.
  • Grignon, C., and H. Sentenac. 1991. pH and ionic conditions in the apoplast. Annual Review of Plant Physiology and Plant Molecular Biology 42 (1):103–28. doi: 10.1146/annurev.pp.42.060191.000535.
  • Gu, G., S. Yang, X. Yin, Y. Long, Y. Ma, R. Li, and G. Wang. 2021. Sulfur induces resistance against canker caused by Pseudomonas syringae pv. actinidae via phenolic components increase and ­morphological structure modification in the kiwifruit stems. International Journal of Molecular Sciences 22 (22):12185. doi: 10.3390/ijms222212185.
  • Guerrero, R. F., and E. Cantos-Villar. 2015. Demonstrating the efficiency of sulphur dioxide replacements in wine: A parameter review. Trends in Food Science & Technology 42 (1):27–43. doi: 10.1016/j.tifs.2014.11.004.
  • Guido, L. F. 2016. Sulfites in beer: Reviewing regulation, analysis and role. Scientia Agricola 73 (2):189–97. doi: 10.1590/0103-9016-2015-0290.
  • Gunnison, A. F., D. W. Jacobsen, and H. J. Schwartz. 1987. Sulfite hypersensitivity. A critical review. CRC Critical Reviews in Toxicology 17 (3):185–214. doi: 10.3109/10408448709071208.
  • Guzev, L., A. Danshin, T. Zahavi, A. Ovadia, and A. Lichter. 2008. The effects of cold storage of table grapes, sulphur dioxide and ethanol on species of black Aspergillus producing ochratoxin A. International Journal of Food Science & Technology 43 (7):1187–94. doi: 10.1111/j.1365-2621.2007.01589.x.
  • Hamisch, D., D. Randewig, S. Schliesky, A. Bräutigam, A. P. M. Weber, R. Geffers, C. Herschbach, H. Rennenberg, R. R. Mendel, and R. Hänsch. 2012. Impact of SO2 on Arabidopsis thaliana transcriptome in wildtype and sulfite oxidase knockout plants analyzed by RNA deep sequencing. The New Phytologist 196 (4):1074–85. doi: 10.1111/j.1469-8137.2012.04331.x.
  • Han, D., T. Luo, L. Zhang, J. Wu, H. Wu, Z. Wu, J. Li, J. Wang, and X. Pan. 2020. Optimized precooling combined with SO2-released paper treatment improves the storability of longan (Dimocarpus longan Lour.) fruits stored at room temperature. Food Science & Nutrition 8 (6):2827–38. doi: 10.1002/fsn3.1577.
  • Hayasaka, Y., C. A. Black, J. Hack, and P. Smith. 2017. Structural characterization of reaction products of caftaric acid and bisulfite present in a commercial wine using high resolution mass spectrometric and nuclear magnetic resonance techniques. Food Chemistry 230:99–107. doi: 10.1016/j.foodchem.2017.03.005.
  • HFPC. 2014. Food additives using standards. GB 2760-2014. Beijing, China: Health and Family Planning Commission of China.
  • Hu, L., S. Hu, J. Wu, Y. Li, J. Zheng, Z. Wei, J. Liu, H. Wang, Y. Liu, and H. Zhang. 2012. Hydrogen sulfide prolongs postharvest shelf life of strawberry and plays an antioxidative role in fruits. Journal of Agricultural and Food Chemistry 60 (35):8684–93. doi: 10.1021/jf300728h.
  • Huang, Y., Z. Li, L. Zhang, H. Tang, H. Zhang, C. Wang, S. Y. Chen, D. Bu, Z. Zhang, Z. Zhu, et al. 2021. Endogenous SO2-dependent Smad3 redox modification controls vascular remodeling. Redox Biology 41:101898. doi: 10.1016/j.redox.2021.101898.
  • Huang, Y., C. Tang, J. Du, and H. Jin. 2016. Endogenous sulfur dioxide: A new member of gasotransmitter family in the cardiovascular system. Oxidative Medicine and Cellular Longevity 2016:8961951. doi: 10.1155/2016/8961951.
  • Huang, Y., H. Zhang, B. Lv, C. Tang, J. Du, and H. Jin. 2021a. Endogenous sulfur dioxide is a new gasotransmitter with promising therapeutic potential in cardiovascular system. Science Bulletin 66 (16):1604–7. doi: 10.1016/j.scib.2021.04.003.
  • Huang, Y., H. Zhang, B. Lv, C. Tang, J. Du, and H. Jin. 2021b. Sulfur dioxide: Endogenous generation, biological effects, detection, and therapeutic potential. Antioxidants & Redox Signaling 36 (4-6):256–74. doi: 10.1089/ars.2021.0213.
  • Irwin, S. V., P. Fisher, E. Graham, A. Malek, and A. Robidoux. 2017. Sulfites inhibit the growth of four species of beneficial gut bacteria at concentrations regarded as safe for food. PloS One 12 (10):e0186629. doi: 10.1371/journal.pone.0186629.
  • Jackowetz, J. N., and R. Mira de Orduña. 2013. Survey of SO2 binding carbonyls in 237 red and white table wines. Food Control. 32 (2):687–92. doi: 10.1016/j.foodcont.2013.02.001.
  • Jia, X., M. Du, Y. Zheng, L. Chen, J. Song, X. Tang, H. Liu, J. Li, and X. Li. 2021. Automatic periodical SO2 fumigation improves the storage quality of tender ginger. Journal of Food Processing and Preservation 45 (4):e14949. doi: 10.1111/jfpp.14949.
  • Jia, X., X. Hao, Y. Zheng, J. Zhang, Y. Li, X. Li, and Z. Zhao. 2020. Storage quality of “Red Globe” table grape (Vitis vinifera L.): Comparison between automatic periodical gaseous SO2 treatments and MAP combined with SO2 pad. Journal of Food Processing and Preservation 44 (8):e14507. doi: 10.1111/jfpp.14507.
  • Jiang, Y., Y. Wang, L. Song, H. Liu, A. Lichter, O. Kerdchoechuen, D. Joyce, and J. Shi. 2006. Postharvest characteristics and handling of litchi fruit - An overview. Australian Journal of Experimental Agriculture 46 (12):1541–56. doi: 10.1071/EA05108.
  • Joradol, A., J. Uthaibutra, P. Lithanatudom, and K. Saengnil. 2019. Induced expression of NOX and SOD by gaseous sulfur dioxide and chlorine dioxide enhances antioxidant capacity and maintains fruit quality of ‘Daw’ longan fruit during storage through H2O2 signaling. Postharvest Biology and Technology 156:110938. doi: 10.1016/j.postharvbio.2019.110938.
  • Junior, O. J., K. Youssef, R. Koyama, S. Ahmed, A. R. Dominguez, D. T. Mühlbeier, and S. R. Roberto. 2019. Control of gray mold on clamshell-packaged ‘Benitaka’ table grapes using sulphur dioxide pads and perforated liners. Pathogens 8 (4):271. doi: 10.3390/pathogens8040271.
  • Kang, C., C. Lai, D. Zhao, T. Zhou, D. Liu, C. Lv, S. Wang, L. Kang, J. Yang, Z. Zhan, et al. 2017. A practical protocol for comprehensive evaluation of sulfur-fumigation of Gastrodia Rhizoma using metabolome and health risk assessment analysis. Journal of Hazardous Materials 340:221–30. doi: 10.1016/j.jhazmat.2017.07.003.
  • Kang, C., C. Lv, J. Yang, L. Kang, W. Ma, W. Zhang, S. Wang, T. Wang, J. Sun, Y. Ge, et al. 2020. A practical protocol for a comprehensive evaluation of sulfur fumigation of trichosanthis radix based on both non-targeted and widely targeted metabolomics. Frontiers in Plant Science 11:1446. doi: 10.3389/fpls.2020.578086.
  • Karabulut, I., A. Topcu, A. Duran, S. Turan, and B. Ozturk. 2007. Effect of hot air drying and sun drying on color values and β-carotene content of apricot (Prunus armenica L.). LWT - Food Science and Technology 40 (5):753–8. doi: 10.1016/j.lwt.2006.05.001.
  • Karbowiak, T., R. D. Gougeon, J.-B. Alinc, L. Brachais, F. Debeaufort, A. Voilley, and D. Chassagne. 2009. Wine oxidation and the role of cork. Critical Reviews in Food Science and Nutrition 50 (1):20–52. doi: 10.1080/10408390802248585.
  • Kingsly, R. P., R. K. Goyal, M. R. Manikantan, and S. M. Ilyas. 2007. Effects of pretreatments and drying air temperature on drying behaviour of peach slice. International Journal of Food Science & Technology 42 (1):65–9. doi: 10.1111/j.1365-2621.2006.01210.x.
  • Kopriva, S., M. Malagoli, and H. Takahashi. 2019. Sulfur nutrition: Impacts on plant development, metabolism, and stress responses. Journal of Experimental Botany 70 (16):4069–73. doi: 10.1093/jxb/erz319.
  • Krokida, M. K., C. T. Kiranoudis, Z. B. Maroulis, and D. Marinos-Kouris. 2000. Effect of pretreatment on color of dehydrated products. Drying Technology 18 (6):1239–50. doi: 10.1080/07373930008917774.
  • Kuijpers, T. F. M., H. Gruppen, S. Sforza, W. J. H. van Berkel, and J.-P. Vincken. 2013. The antibrowning agent sulfite inactivates Agaricus bisporus tyrosinase through covalent modification of the copper-B site. The FEBS Journal 280 (23):6184–95. doi: 10.1111/febs.12539.
  • Kuijpers, T. F. M., C.-E. Narváez-Cuenca, J.-P. Vincken, A. J. W. Verloop, W. J. H. van Berkel, and H. Gruppen. 2012. Inhibition of enzymatic browning of chlorogenic acid by sulfur-containing compounds. Journal of Agricultural and Food Chemistry 60 (13):3507–14. doi: 10.1021/jf205290w.
  • Kumar, A., M. Triquigneaux, J. Madenspacher, K. Ranguelova, J. J. Bang, M. B. Fessler, and R. P. Mason. 2018. Sulfite-induced protein radical formation in LPS aerosol-challenged mice: Implications for sulfite sensitivity in human lung disease. Redox Biology 15:327–34. doi: 10.1016/j.redox.2017.12.014.
  • Künstler, A., G. Gullner, A. L. Ádám, J. Kolozsváriné Nagy, and L. Király. 2020. The versatile roles of sulfur-containing biomolecules in plant defense—A road to disease resistance. Plants 9 (12):1705. doi: 10.3390/plants9121705.
  • Lagunas-Solar, M. C., A. Demateo, J. E. Fernandez, J. I. Oyarzun, O. F. Carvacho, R. A. Arancibia, and P. O. Delgado. 1992. Radiotracer studies on the uptake and retention (conversion) of 35S-sulfur dioxide in table grapes. American Journal of Enology and Viticulture 43 (3):266–74. doi: 10.5344/ajev.1992.43.3.266.
  • Li, D., L. Li, Z. Ge, J. Limwachiranon, Z. Ban, D. Yang, and Z. Luo. 2017. Effects of hydrogen sulfide on yellowing and energy metabolism in broccoli. Postharvest Biology and Technology 129:136–42. doi: 10.1016/j.postharvbio.2017.03.017.
  • Li, L., and H. Yi. 2012a. Differential expression of Arabidopsis defense-related genes in response to sulfur dioxide. Chemosphere 87 (7):718–24. doi: 10.1016/j.chemosphere.2011.12.064.
  • Li, L., and H. Yi. 2012b. Effect of sulfur dioxide on ROS production, gene expression and antioxidant enzyme activity in Arabidopsis plants. Plant Physiology and Biochemistry 58:46–53. doi: 10.1016/j.plaphy.2012.06.009.
  • Li, Y., T. Chuang, P. Chang, L. Lin, C. Su, L. Chien, and H. Chiou. 2021. Long-term exposure to ozone and sulfur dioxide increases the incidence of type 2 diabetes mellitus among aged 30 to 50 adult population. Environmental Research 194:110624. doi: 10.1016/j.envres.2020.110624.
  • Li, Z., J. Huang, H. Chen, M. Yang, D. Li, Y. Xu, L. Li, J. Chen, B. Wu, and Z. Luo. 2023. Sulfur dioxide maintains storage quality of table grape (Vitis vinifera cv ‘Kyoho’) by altering cuticular wax composition after simulated transportation. Food Chemistry 408:135188. doi: 10.1016/j.foodchem.2022.135188.
  • Li, Z., X. Li, and H. Chen. 2022. Sulfur dioxide: An emerging signaling molecule in plants. Frontiers in Plant Science 13:891626. doi: 10.3389/fpls.2022.891626.
  • Liang, Y., N. Chen, and L. S. Ke. 2012. Influence of dipping in sodium metabisulfite on pericarp browning of litchi cv. Yu Her Pau (Feizixiao). Postharvest Biology and Technology 68:72–7. doi: 10.1016/j.postharvbio.2012.02.005.
  • Lien, K.-W., D. P. H. Hsieh, H.-Y. Huang, C.-H. Wu, S.-P. Ni, and M.-P. Ling. 2016. Food safety risk assessment for estimating dietary intake of sulfites in the Taiwanese population. Toxicology Reports 3:544–51. doi: 10.1016/j.toxrep.2016.06.003.
  • Lisanti, M. T., G. Blaiotta, C. Nioi, and L. Moio. 2019. Alternative methods to SO2 for microbiological stabilization of wine. Comprehensive Reviews in Food Science and Food Safety 18 (2):455–79. doi: 10.1111/1541-4337.12422.
  • Liu, Z., C. Liao, K. Golson, S. Phillips, and L. Wang. 2021. Survival of common foodborne pathogens on dried apricots made with and without sulfur dioxide treatment. Food Control. 121:107569. doi: 10.1016/j.foodcont.2020.107569.
  • Luo, T., S. Li, D. Han, X. Guo, L. Shuai, and Z. Wu. 2019. The effect of desulfurization on the postharvest quality and sulfite metabolism in pulp of sulfitated “Feizixiao” Litchi (Litchi chinensis Sonn.) fruits. Food Science & Nutrition 7 (5):1715–26. doi: 10.1002/fsn3.1008.
  • Ma, G., Z. Luo, M. Yang, H. Wu, J. Yang, X. Xing, X. Sun, and X. Xu. 2021. An integrated strategy for evaluation of sulfur-fumigated edible herb Astragali Radix based on UPLC-MS/MS platforms and pharmacological analysis. Food & Function 12 (12):5539–50. doi: 10.1039/D0FO02567D.
  • Ma, L., A. A. Watrelot, B. Addison, and A. L. Waterhouse. 2018. Condensed tannin reacts with SO2 during wine aging, yielding flavan-3-ol sulfonates. Journal of Agricultural and Food Chemistry 66 (35):9259–68. doi: 10.1021/acs.jafc.8b01996.
  • Maiti, B. K. 2022. Cross-talk between (hydrogen)sulfite and metalloproteins: Impact on human health. Chemistry (Weinheim an Der Bergstrasse, Germany) 28 (23):e202104342. doi: 10.1002/chem.202104342.
  • Manzocco, L., S. Calligaris, D. Mastrocola, M. C. Nicoli, and C. R. Lerici. 2000. Review of non-enzymatic browning and antioxidant capacity in processed foods. Trends in Food Science & Technology 11 (9-10):340–6. doi: 10.1016/S0924-2244(01)00014-0.
  • Martínez-Blay, V., V. Taberner, M. B. Pérez-Gago, and L. Palou. 2020. Control of major citrus postharvest diseases by sulfur-containing food additives. International Journal of Food Microbiology 330:108713. doi: 10.1016/j.ijfoodmicro.2020.108713.
  • Mattivi, F., P. Arapitsas, D. Perenzoni, and G. Guella. 2015. Influence of storage conditions on the composition of red wines. In Advances in Wine Research, ed. S. B. Ebeler, G. Sacks, S. Vidal, P. Winterhalter, 1203: 29–49. San Francisco, CA: ACS Press.
  • Mir, M. A., P. R. Hussain, S. Fouzia, and A. H. Rather. 2009. Effect of sulphiting and drying methods on physico-chemical and ­sensorial quality of dried apricots during ambient storage. International Journal of Food Science & Technology 44 (6):1157–66. doi: 10.1111/j.1365-2621.2009.01936.x.
  • Mittler, R. 2017. ROS are good. Trends in Plant Science 22 (1):11–9. doi: 10.1016/j.tplants.2016.08.002.
  • Mittler, R., S. I. Zandalinas, Y. Fichman, and F. Van Breusegem. 2022. Reactive oxygen species signalling in plant stress responses. Nature Reviews Molecular Cell Biology 23 (10):663–79. doi: 10.1038/s41580-022-00499-2.
  • Møller, I. M., P. E. Jensen, and A. Hansson. 2007. Oxidative modifications to cellular components in plants. Annual Review of Plant Biology 58 (1):459–81. doi: 10.1146/annurev.arplant.58.032806.103946.
  • Moon, K., M. E.-B. Kwon, B. Lee, and C. Y. Kim. 2020. Recent trends in controlling the enzymatic browning of fruit and vegetable products. Molecules 25 (12):2754. doi: 10.3390/molecules25122754.
  • Mujumdar, A. S. 2006. Handbook of industrial drying, Third Edition. Boca Raton (USA): Taylor & Francis.
  • Nadai, C., L. Treu, S. Campanaro, A. Giacomini, and V. Corich. 2016. Different mechanisms of resistance modulate sulfite tolerance in wine yeasts. Applied Microbiology and Biotechnology 100 (2):797–813. doi: 10.1007/s00253-015-7169-x.
  • Narváez-Cuenca, C.-E., T. F. M. Kuijpers, J.-P. Vincken, P. de Waard, and H. Gruppen. 2011. New insights into an ancient antibrowning agent: Formation of sulfophenolics in sodium hydrogen sulfite-treated potato extracts. Journal of Agricultural and Food Chemistry 59 (18):10247–55. doi: 10.1021/jf202624q.
  • Nikolantonaki, M., P. Magiatis, and A. L. Waterhouse. 2015. Direct analysis of free and sulfite-bound carbonyl compounds in wine by two-dimensional quantitative proton and carbon nuclear magnetic resonance spectroscopy. Analytical Chemistry 87 (21):10799–806. doi: 10.1021/acs.analchem.5b01682.
  • Nikolantonaki, M., and A. L. Waterhouse. 2012. A method to quantify quinone reaction rates with wine relevant nucleophiles: A key to the understanding of oxidative loss of varietal thiols. Journal of Agricultural and Food Chemistry 60 (34):8484–91. doi: 10.1021/jf302017j.
  • Nimet İzgüt-Uysal, V., V. Küçükatay, M. Bülbül, R. Tan, P. Yargıçoğlu, and A. Ağar. 2005. Effect of sulfite on macrophage functions of normal and sulfite oxidase-deficient rats. Food and Chemical Toxicology 43 (4):599–605. doi: 10.1016/j.fct.2005.01.003.
  • Oliveira, C. M., A. S. Barros, A. C. S. Ferreira, and A. M. S. Silva. 2016. Study of quinones reactions with wine nucleophiles by cyclic voltammetry. Food Chemistry 211:1–7. doi: 10.1016/j.foodchem.2016.05.020.
  • Omolola, A. O., A. I. O. Jideani, and P. F. Kapila. 2017. Quality properties of fruits as affected by drying operation. Critical Reviews in Food Science and Nutrition 57 (1):95–108. doi: 10.1080/10408398.2013.859563.
  • Oshimo, M., F. Nakashima, K. Kai, H. Matsui, T. Shibata, and M. Akagawa. 2021. Sodium sulfite causes gastric mucosal cell death by inducing oxidative stress. Free Radical Research 55 (6):606–18. doi: 10.1080/10715762.2021.1937620.
  • Palou, L., C. H. Crisosto, D. Garner, L. M. Basinal, J. L. Smilanick, and J. P. Zoffoli. 2002. Minimum constant sulfur dioxide emission rates to control gray mold of cold-stored table grapes. American Journal of Enology and Viticulture 53 (2):110–5. doi: 10.5344/ajev.2002.53.2.110.
  • Pateraki, M., A. Dekanea, D. Mitchell, D. Lydakis, and N. Magan. 2007. Influence of sulphur dioxide, controlled atmospheres and water availability on in vitro germination, growth and ochratoxin A production by strains of Aspergillus carbonarius isolated from grapes. Postharvest Biology and Technology 44 (2):141–9. doi: 10.1016/j.postharvbio.2006.11.016.
  • Pisoschi, A. M., A. Pop, I. Gajaila, F. Iordache, R. Dobre, I. Cazimir, and A. I. Serban. 2020. Analytical methods applied to the assay of sulfur-containing preserving agents. Microchemical Journal 155:104681. doi: 10.1016/j.microc.2020.104681.
  • Pols, S., A. Botes, E. Williams, and F. Vries. 2019. Combined treatments of MAP and SO2 to decrease postharvest losses in tomatoes. Acta Horticulturae 1256 (1256):427–34. doi: 10.17660/ActaHortic.2019.1256.61.
  • Prabhakar, K., and E. N. Mallika. 2014. PRESERVATIVES | Permitted preservatives - Sulfur dioxide. In Encyclopedia of Food Microbiology (Second Edition), ed. C. A. Batt & M. L. Tortorello, 108–12. Amsterdam: Elsevier.
  • Pundir, C. S., and R. Rawal. 2013. Determination of sulfite with emphasis on biosensing methods: A review. Analytical and Bioanalytical Chemistry 405 (10):3049–62. doi: 10.1007/s00216-013-6753-0.
  • Qin, G., and Z. Meng. 2009. Effects of sulfur dioxide derivatives on expression of oncogenes and tumor suppressor genes in human bronchial epithelial cells. Food and Chemical Toxicology 47 (4):734–44. doi: 10.1016/j.fct.2009.01.005.
  • Qin, G., M. Wu, and N. Sang. 2015. Sulfur dioxide and benzo(a)pyrene trigger apoptotic and anti-apoptotic signals at different post-exposure times in mouse liver. Chemosphere 139:318–25. doi: 10.1016/j.chemosphere.2015.06.052.
  • Ran, Y., Y. Zheng, M. Du, X. Jia, X. Wang, L. Wang, and X. Li. 2022. Automatic periodical sulfur dioxide fumigation in combination with CO2-enriched atmosphere extends the storage life of durian (Durio zibethinus Murr.). Journal of Food Processing and Preservation 46 (5):e16382. doi: 10.1111/jfpp.16382.
  • Randewig, D., D. Hamisch, C. Herschbach, M. Eiblmeier, C. Gehl, J. Jurgeleit, J. Skerra, R. R. Mendel, H. Rennenberg, and R. HÄNsch. 2012. Sulfite oxidase controls sulfur metabolism under SO2 exposure in Arabidopsis thaliana. Plant, Cell & Environment 35 (1):100–15. doi: 10.1111/j.1365-3040.2011.02420.x.
  • Ribéreau-Gayon, P., D. Dubourdieu, B. Doneche, and A. Lonvaud. 2006. Handbook of enology: The microbiology of wine and vinifications. Chichester, England: John Wiley & Sons, Ltd.
  • Rivera, S. A., J. P. Zoffoli, and B. A. Latorre. 2013. Determination of optimal sulfur dioxide time and concentration product for postharvest control of gray mold of blueberry fruit. Postharvest Biology and Technology 83:40–6. doi: 10.1016/j.postharvbio.2013.03.007.
  • Robbins, K. S., R. Shah, S. MacMahon, and L. S. de Jager. 2015. Development of a liquid chromatography-tandem mass spectrometry method for the determination of sulfite in food. Journal of Agricultural and Food Chemistry 63 (21):5126–32. doi: 10.1021/jf505525z.
  • Rodriguez, J., and J. P. Zoffoli. 2016. Effect of sulfur dioxide and modified atmosphere packaging on blueberry postharvest quality. Postharvest Biology and Technology 117:230–8. doi: 10.1016/j.postharvbio.2016.03.008.
  • Romanazzi, G., A. Lichter, F. M. Gabler, and J. L. Smilanick. 2012. Recent advances on the use of natural and safe alternatives to conventional methods to control postharvest gray mold of table grapes. Postharvest Biology and Technology 63 (1):141–7. doi: 10.1016/j.postharvbio.2011.06.013.
  • Romanazzi, G., S. M. Sanzani, Y. Bi, S. Tian, P. Gutiérrez Martínez, and N. Alkan. 2016. Induced resistance to control postharvest decay of fruit and vegetables. Postharvest Biology and Technology 122:82–94. doi: 10.1016/j.postharvbio.2016.08.003.
  • Ruiz-Capillas, C., and F. Jiménez-Colmenero. 2009. Application of flow injection analysis for determining sulphites in food and beverages: A review. Food Chemistry 112 (2):487–93. doi: 10.1016/j.foodchem.2008.05.085.
  • Saito, S., D. Obenland, and C. Xiao. 2020. Influence of sulfur dioxide-emitting polyethylene packaging on blueberry decay and quality during extended storage. Postharvest Biology and Technology 160:111045. doi: 10.1016/j.postharvbio.2019.111045.
  • Saito, S., and C. L. Xiao. 2017. Evaluation of sulfur dioxide-generating pads and modified atmosphere packaging for control of postharvest diseases in blueberries. Acta Horticulturae 1180 (1180):123–8. doi: 10.17660/ActaHortic.2017.1180.17.
  • Salur-Can, A., M. Türkyılmaz, and M. Özkan. 2017. Effects of sulfur dioxide concentration on organic acids and β-carotene in dried apricots during storage. Food Chemistry 221:412–21. doi: 10.1016/j.foodchem.2016.10.081.
  • Scotter, M. J., and L. Castle. 2004. Chemical interactions between additives in foodstuffs: A review. Food Additives and Contaminants 21 (2):93–124. doi: 10.1080/02652030310001636912.
  • Sharma, U., A. Bekturova, Y. Ventura, and M. Sagi. 2020. Sulfite oxidase activity level determines the sulfite toxicity effect in leaves and fruits of tomato plants. Agronomy 10 (5):694. doi: 10.3390/agronomy10050694.
  • Shen, J., Y. Zeng, X. Zhuang, L. Sun, X. Yao, P. Pimpl, and L. Jiang. 2013. Organelle pH in the Arabidopsis endomembrane system. Molecular Plant 6 (5):1419–37. doi: 10.1093/mp/sst079.
  • Shuai, L., D. Han, and Z. Wu. 2018. Advances in postharvest sulfur handling technology on longan fruit. Acta Horticulturae 1211 (1211):221–6. doi: 10.17660/ActaHortic.2018.1211.32.
  • Simon, J., and P. M. H. Kroneck. 2013. Chapter two-microbial sulfite respiration. In Advances in Microbial Physiology, ed. R. K. Poole, 62: 45–117. Amsterdam: Elsevier.
  • Singh, S. P., and A. L. Schwan. 2019. 4.18 - Sulfur Metabolism in Plants and Related Biotechnologies. In Comprehensive Biotechnology (Third Edition), ed. M. Moo-Young, 221–36. Amsterdam: Elsevier.
  • Smilanick, J. L., and D. J. Henson. 1992. Minimum gaseous sulphur dioxide concentrations and exposure periods to control Botrytis cinerea. Crop Protection 11 (6):535–40. doi: 10.1016/0261-2194(92)90171-Z.
  • Song, Y., H. Peng, D. Bu, X. Ding, F. Yang, Z. Zhu, X. Tian, L. Zhang, X. Wang, C. Tang, et al. 2020. Negative auto-regulation of sulfur dioxide generation in vascular endothelial cells: AAT1 S-sulfenylation. Biochemical and Biophysical Research Communications 525 (1):231–7. doi: 10.1016/j.bbrc.2020.02.040.
  • Tachtalidou, S., N. Sok, F. Denat, L. Noret, P. Schmit-Kopplin, M. Nikolantonaki, and R. D. Gougeon. 2022. Direct NMR evidence for the dissociation of sulfur-dioxide-bound acetaldehyde under acidic conditions: Impact on wines oxidative stability. Food Chemistry 373 (Pt B):131679. doi: 10.1016/j.foodchem.2021.131679.
  • Takahashi, H., S. Kopriva, M. Giordano, K. Saito, and R. Hell. 2011. Sulfur assimilation in photosynthetic organisms: Molecular functions and regulations of transporters and assimilatory enzymes. Annual Review of Plant Biology 62 (1):157–84. doi: 10.1146/annurev-arplant-042110-103921.
  • Türkyılmaz, M., Ş. Tağı, and M. Özkan. 2013. Changes in chemical and microbial qualities of dried apricots containing sulphur dioxide at different levels during storage. Food and Bioprocess Technology 6 (6):1526–38. doi: 10.1007/s11947-012-0884-8.
  • USFDA. 2011. Food and drug administration compliance program guidance manual. doi: http://www.fda.gov/
  • Valero, E., J. Tronchoni, P. Morales, and R. Gonzalez. 2020. Autophagy is required for sulfur dioxide tolerance in Saccharomyces cerevisiae. Microbial Biotechnology 13 (2):599–604. doi: 10.1111/1751-7915.13495.
  • Vally, H., N. L. A. Misso, and V. Madan. 2009. Clinical effects of sulphite additives.Clinical and Experimental Allergy 39 (11):1643–51. doi: 10.1111/j.1365-2222.2009.03362.x.
  • van Boekel, M. A. J. S. 2006. Formation of flavour compounds in the Maillard reaction. Biotechnology Advances 24 (2):230–3. doi: 10.1016/j.biotechadv.2005.11.004.
  • Walker, R., M. A. Mendoza-Garcia, C. Ioannides, and E. Quattrucci. 1983. Acute toxicity of 3-deoxy-4-sulphohexosulose in rats and mice, and in vitro mutagenicity in the ames test. Food and Chemical Toxicology 21 (3):299–303. doi: 10.1016/0278-6915(83)90064-9.
  • Wang, W., and B. Wang. 2018. SO2 donors and prodrugs, and their possible applications: A review. Frontiers in Chemistry 6:559. doi: 10.3389/fchem.2018.00559.
  • Wedzicha, B. L. 1992. Chemistry of sulphiting agents in food. Food Additives and Contaminants 9 (5):449–59. doi: 10.1080/02652039209374097.
  • Wedzicha, B. L., and S. J. Goddard. 1991. The state of sulphur dioxide at high concentration and low water activity. Food Chemistry 40 (2):119–36. doi: 10.1016/0308-8146(91)90096-7.
  • WHO. 2009. Evaluation of certain food additives: Sixty‐ninth report of the joint FAO/WHO expert committee on food additives. In WHO technical report series, 952.
  • Wu, C., M. Kong, W. Zhang, F. Long, J. Zhou, S. Zhou, J. Xu, J. Xu, and S. Li. 2018. Impact of sulphur fumigation on the chemistry of ginger. Food Chemistry 239:953–63. doi: 10.1016/j.foodchem.2017.07.033.
  • Xiao, X., Z. Fu, Z. Zhu, and X. Zhang. 2019. Improved preservation process for table grapes cleaner production in cold chain. Journal of Cleaner Production 211:1171–9. doi: 10.1016/j.jclepro.2018.11.279.
  • Xu, Y., Z. Tong, X. Zhang, X. Zhang, Z. Luo, W. Shao, L. Li, Q. Ma, X. Zheng, and W. Fang. 2021. Plant volatile organic compound (E)-2-hexenal facilitates Botrytis cinerea infection of fruits by inducing sulfate assimilation. The New Phytologist 231 (1):432–46. doi: 10.1111/nph.17378.
  • Xue, M., and H. Yi. 2017. Induction of disease resistance providing new insight into sulfur dioxide preservation in Vitis vinifera L. Scientia Horticulturae 225:567–73. doi: 10.1016/j.scienta.2017.07.055.
  • Xue, M., H. Yi, and H. Wang. 2018. Identification of miRNAs involved in SO2 preservation in Vitis vinifera L. by deep sequencing. Environmental and Experimental Botany 153:218–28. doi: 10.1016/j.envexpbot.2018.05.021.
  • Yang, K., C. Zhou, C. Liao, J. Sun, Y. Wang, R. Guan, J. Neng, and P. Sun. 2021. The desulfite mechanism exploration in a mode: Interaction between casein and sulfite by multi-spectrometry. LWT - Food Science and Technology 144:111225. doi: 10.1016/j.lwt.2021.111225.
  • Yao, G.-F., Z.-Z. Wei, T.-T. Li, J. Tang, Z.-Q. Huang, F. Yang, Y.-H. Li, Z. Han, F. Hu, L.-Y. Hu, et al. 2018. Modulation of enhanced antioxidant activity by hydrogen sulfide antagonization of ethylene in tomato fruit ripening. Journal of Agricultural and Food Chemistry 66 (40):10380–7. doi: 10.1021/acs.jafc.8b03951.
  • Yarmolinsky, D., G. Brychkova, R. Fluhr, and M. Sagi. 2013. Sulfite reductase protects plants against sulfite toxicity. Plant Physiology 161 (2):725–43. doi: 10.1104/pp.112.207712.
  • Young, C. A., R. A. Choudhury, C. H. Crisosto, and W. D. Gubler. 2020. Brown spot in table grape Redglobe controlled in study with sulfur dioxide and temperature treatments. California Agriculture 74:163–8. doi: 10.3733/ca.2020a0022.
  • Youssef, K., O. J. Junior, D. T. Mühlbeier, and S. R. Roberto. 2020. Sulphur dioxide pads can reduce gray mold while maintaining the quality of clamshell-packaged ‘BRS Nubia’ seeded table grapes grown under protected cultivation. Horticulturae 6 (2):20. doi: 10.3390/horticulturae6020020.
  • Youssef, K., S. R. Roberto, F. Chiarotti, R. Koyama, I. Hussain, and R. T. de Souza. 2015. Control of Botrytis mold of the new seedless grape ‘BRS Vitoria’ during cold storage. Scientia Horticulturae 193:316–21. doi: 10.1016/j.scienta.2015.07.026.
  • Yuan, Y., J. Wei, S. Xing, Z. Zhang, B. Wu, and J. Guan. 2022. Sulfur dioxide (SO2) accumulation in postharvest grape: The role of pedicels of four different varieties. Postharvest Biology and Technology 190:111953. doi: 10.1016/j.postharvbio.2022.111953.
  • Zhang, D., X. Wang, X. Tian, L. Zhang, G. Yang, Y. Tao, C. Liang, K. Li, X. Yu, X. Tang, et al. 2018. The increased endogenous sulfur dioxide acts as a compensatory mechanism for the downregulated endogenous hydrogen sulfide pathway in the endothelial cell inflammation. Frontiers in Immunology 9:882. doi: 10.3389/fimmu.2018.00882.
  • Zhang, J., H. Zhang, H. Wang, J. Zhang, P. Luo, L. Zhu, and Z. Wang. 2014. Risk analysis of sulfites used as food additives in China. Biomedical and Environmental Sciences 27 (2):147–54. doi: 10.3967/bes2014.032.
  • Zhang, L., H. Shen, J. Xu, J. Xu, Z. Li, J. Wu, Y. Zou, L. Liu, and S. Li. 2018. UPLC-QTOF-MS/MS-guided isolation and purification of sulfur-containing derivatives from sulfur-fumigated edible herbs, a case study on ginseng. Food Chemistry 246:202–10. doi: 10.1016/j.foodchem.2017.10.151.
  • Zhang, W., and W. Jiang. 2019. UV treatment improved the quality of postharvest fruits and vegetables by inducing resistance. Trends in Food Science & Technology 92:71–80. doi: 10.1016/j.tifs.2019.08.012.
  • Zhang, X., N. Kontoudakis, and A. C. Clark. 2019. Rapid quantitation of 12 volatile aldehyde compounds in wine by LC-QQQ-MS: A combined measure of free and hydrogen-sulfite-bound forms. Journal of Agricultural and Food Chemistry 67 (12):3502–10. doi: 10.1021/acs.jafc.8b07021.
  • Zhang, X., D. Li, Y. Wang, F-e Ettoumi, H. Jia, J. Fang, Y. Chen, L. Li, Y. Xu, L. Gong, et al. 2022. Fumigation of SO2 in combination with elevated CO2 regulate sugar and energy metabolism in postharvest strawberry fruit. Postharvest Biology and Technology 192:112021. doi: 10.1016/j.postharvbio.2022.112021.
  • Zhang, X., N. Tao, X. Wang, F. Chen, and M. Wang. 2015. The colorants, antioxidants, and toxicants from nonenzymatic browning reactions and the impacts of dietary polyphenols on their thermal formation. Food & Function 6 (2):345–55. doi: 10.1039/C4FO00996G.
  • Zhang, Z., T. Liu, Y. Xu, Y. Chen, T. Chen, B. Li, and S. Tian. 2022. Sodium pyrosulfite inhibits the pathogenicity of Botrytis cinerea by interfering with antioxidant system and sulfur metabolism pathway. Postharvest Biology and Technology 189:111936. doi: 10.1016/j.postharvbio.2022.111936.
  • Zhang, Z., J. Wei, M. Wang, J. Zhang, and B. Wu. 2022. Induced sulfur metabolism by sulfur dioxide maintains postharvest quality of ‘Thompson Seedless’ grape through increasing sulfite content. Journal of the Science of Food and Agriculture 102 (3):1174–84. doi: 10.1002/jsfa.11454.
  • Zhang, Z., Z. Wu, Y. Yuan, J. Zhang, J. Wei, and B. Wu. 2022. Sulfur dioxide mitigates oxidative damage by modulating hydrogen peroxide homeostasis in postharvest table grapes. Postharvest Biology and Technology 188:111877. doi: 10.1016/j.postharvbio.2022.111877.
  • Zhao, Y., Y. Ma, and W. Lin. 2019. A near-infrared and two-photon ratiometric fluorescent probe with a large Stokes shift for sulfur dioxide derivatives detection and its applications in vitro and in vivo. Sensors and Actuators B: Chemical 288:519–26. doi: 10.1016/j.snb.2019.01.170.
  • Zhou, L., T. Liao, W. Liu, L. Zou, C. Liu, and N. S. Terefe. 2020. Inhibitory effects of organic acids on polyphenol oxidase: From model systems to food systems. Critical Reviews in Food Science and Nutrition 60 (21):3594–621. doi: 10.1080/10408398.2019.1702500.
  • Zhou, S., J. Hu, M. Kong, J. Xu, H. Shen, H. Chen, M. Shen, J. Xu, and S. Li. 2019. Less SO2 residue may not indicate higher quality, better efficacy and weaker toxicity of sulfur-fumigated herbs: Ginseng, a pilot study. Journal of Hazardous Materials 364:376–87. doi: 10.1016/j.jhazmat.2018.10.038.
  • Zoffoli, J. P., B. A. Latorre, and P. Naranjo. 2008. Hairline, a postharvest cracking disorder in table grapes induced by sulfur dioxide. Postharvest Biology and Technology 47 (1):90–7. doi: 10.1016/j.postharvbio.2007.06.013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.