1,183
Views
1
CrossRef citations to date
0
Altmetric
Review

Gamma-aminobutyric acid (GABA): a comprehensive review of dietary sources, enrichment technologies, processing effects, health benefits, and its applications

ORCID Icon, , , , , & show all

References

  • Ali, M. S., E.-B. Lee, S.-J. Lee, S.-P. Lee, N. Boby, K. Suk, B. T. Birhanu, and S.-C. Park. 2021. Aronia melanocarpa extract fermented by Lactobacillus plantarum EJ2014 modulates immune response in mice. Antioxidants 10 (8):1276. doi: 10.3390/antiox10081276.
  • Bai, Q., R. Yang, L. Zhang, and Z. Gu. 2013. Salt stress induces accumulation of γ–aminobutyric acid in germinated foxtail millet (Setaria italica L.). Cereal Chemistry Journal 90 (2):145–9. doi: 10.1094/CCHEM-06-12-0071-R.
  • Benson, K. L., R. Bottary, L. Schoerning, L. Baer, A. Gonenc, J. Eric Jensen, and J. W. Winkelman. 2020. 1H MRS measurement of cortical GABA and glutamate in primary insomnia and major depressive disorder: Relationship to sleep quality and depression severity. Journal of Affective Disorders 274:624–31. doi: 10.1016/j.jad.2020.05.026.
  • Bhinder, S., A. Kaur, B. Singh, M. P. Yadav, and N. Singh. 2020. Proximate composition, amino acid profile, pasting and process characteristics of flour from different Tartary buckwheat varieties. Food Research International (Ottawa, Ont.) 130:108946. doi: 10.1016/j.foodres.2019.108946.
  • Boby, N., E.-B. Lee, M. A. Abbas, N.-H. Park, S.-P. Lee, M. S. Ali, S.-J. Lee, and S.-C. Park. 2021. Ethanol-induced hepatotoxicity and alcohol metabolism regulation by GABA-enriched fermented smilax China root extract in rats. Foods 10 (10):2381. doi: 10.3390/foods10102381.
  • Byun, J. I., Y. Y. Shin, S. E. Chung, and W. C. Shin. 2018. Safety and efficacy of gamma-aminobutyric acid from fermented rice germ in patients with insomnia symptoms: A randomized, double-blind trial. Journal of Clinical Neurology (Seoul, Korea) 14 (3):291–5. doi: 10.3988/jcn.2018.14.3.291.
  • Carafa, I., G. Stocco, T. Nardin, R. Larcher, G. Bittante, K. Tuohy, and E. Franciosi. 2019. Production of naturally γ-aminobutyric acid-enriched cheese using the dairy strains Streptococcus thermophilus 84C and Lactobacillus brevis DSM 32386. Frontiers in Microbiology 10:93. doi: 10.3389/fmicb.2019.00093.
  • Cataldo, P. G., J. Villena, M. Elean, G. Savoy de Giori, L. Saavedra, and E. M. Hebert. 2020. Immunomodulatory properties of a γ-aminobutyric acid-enriched strawberry juice produced by Levilactobacillus brevis CRL 2013. Frontiers in Microbiology 11:610016. doi: 10.3389/fmicb.2020.610016.
  • Chaiyasut, C., S. Woraharn, B. S. Sivamaruthi, N. Lailerd, P. Kesika, and S. Peerajan. 2018. Lactobacillus fermentum HP3–mediated fermented hericium erinaceus juice as a health promoting food supplement to manage diabetes mellitus. Journal of Evidence-Based Integrative Medicine 23:2515690X18765699. doi: 10.1177/2515690x18765699.
  • Chaturvedi, R., T. Stork, C. Yuan, M. R. Freeman, and P. Emery. 2022. Astrocytic GABA transporter controls sleep by modulating GABAergic signaling in Drosophila circadian neurons. Current Biology: CB 32 (9):1895–908.e5. doi: 10.1016/j.cub.2022.02.066.
  • Chen, J., J. Wu, K. Lin, H. Si, Z. Gu, and Y. Li. 2018. Optimization of culture conditions and culture solution compositions for γ-aminobutyric acid accumulation in germinating mung bean (Vigna radiata L). Journal of Biobased Materials and Bioenergy 12 (1):115–21. doi: 10.1166/jbmb.2018.1745.
  • Chen, L., H. Zhao, C. Zhang, Y. Lu, X. Zhu, and Z. Lu. 2016. γ-Aminobutyric acid-rich yogurt fermented by Streptococcus salivarius subsp. thermophiles fmb5 apprars to have anti-diabetic effect on streptozotocin-induced diabetic mice. Journal of Functional Foods 20:267–75. doi: 10.1016/j.jff.2015.10.030.
  • Chen, Q., M-s Li, W. Ding, M-m Tao, M-r Li, Q. Qi, Y-h Li, J. Li, and L. Zhang. 2020. Effects of high N2/CO2 in package treatment on polyamine-derived 4-Aminobutyrate (GABA) biosynthesis in cold-stored white mushrooms (Agaricus bisporus). Postharvest Biology and Technology 162:111093. doi: 10.1016/j.postharvbio.2019.111093.
  • Chen, Q., Y. Zhang, M. Tao, M. Li, Y. Wu, Q. Qi, H. Yang, and X. Wan. 2018. Comparative metabolic responses and adaptive strategies of tea leaves (Camellia sinensis) to N2 and CO2 anaerobic treatment by a nontargeted metabolomics approach. Journal of Agricultural and Food Chemistry 66 (36):9565–72. doi: 10.1021/acs.jafc.8b03067.
  • Chen, W., W. Li, Y. Yang, H. Yu, S. Zhou, J. Feng, X. Li, and Y. Liu. 2015. Analysis and evaluation of tasty components in the pileus and stipe of lentinula edodes at different growth stages. Journal of Agricultural and Food Chemistry 63 (3):795–801. doi: 10.1021/jf505410a.
  • Cherng, S.-H., C.-Y. Huang, W.-W. Kuo, S.-E. Lai, C.-Y. Tseng, Y.-M. Lin, F.-J. Tsai, and H.-F. Wang. 2014. GABA tea prevents cardiac fibrosis by attenuating TNF-alpha and Fas/FasL-mediated apoptosis in streptozotocin-induced diabetic rats. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 65:90–6. doi: 10.1016/j.fct.2013.12.022.
  • Chittrakhani, C., S. Songsermpong, S. Trevanich, and R. Sukor. 2022. Effect of Levilactobacillus brevis TISTR 860 and Lactiplantibacillus plantarum TISTR 951 on gamma-aminobutyric acid content in fermented rice flour and rice noodles (Kanomjeen). International Journal of Food Science & Technology 57 (6):3410–8. doi: 10.1111/ijfs.15664.
  • Choi, H., M. Baek, S. Tilahun, and C. Jeong. 2022. Long-term cold storage affects metabolites, antioxidant activities, and ripening and stress-related genes of kiwifruit cultivars. Postharvest Biology and Technology 189:111912. doi: 10.1016/j.postharvbio.2022.111912.
  • Coda, R., C. G. Rizzello, and M. Gobbetti. 2010. Use of sourdough fermentation and pseudo-cereals and leguminous flours for the making of a functional bread enriched of γ-aminobutyric acid (GABA). International Journal of Food Microbiology 137 (2-3):236–45. doi: 10.1016/j.ijfoodmicro.2009.12.010.
  • Cui, Y., K. Miao, S. Niyaphorn, and X. Qu. 2020. Production of gamma-aminobutyric acid from lactic acid bacteria: A systematic review. International Journal of Molecular Sciences 21 (3):995. doi: 10.3390/ijms21030995.
  • Daglia, M., A. Di Lorenzo, S. F. Nabavi, A. Sureda, S. Khanjani, A. H. Moghaddam, N. Braidy, and S. M. Nabavi. 2017. Improvement of antioxidant defences and mood status by oral GABA tea administration in a mouse model of post-stroke depression. Nutrients 9 (5):446. doi: 10.3390/nu9050446.
  • Dai, W., D. Xie, Z. Lin, C. Yang, Q. Peng, J. Tan, and Z. Lin. 2020. A nontargeted and targeted metabolomics study on the dynamic changes in metabolite levels during the anaerobic treatment of γ-aminobutyric acid (GABA) tea. LWT 126:109313. doi: 10.1016/j.lwt.2020.109313.
  • Deewatthanawong, R., J. F. Nock, and C. B. Watkins. 2010. γ-Aminobutyric acid (GABA) accumulation in four strawberry cultivars in response to elevated CO2 storage. Postharvest Biology and Technology 57 (2):92–6. doi: 10.1016/j.postharvbio.2010.03.003.
  • Di Lorenzo, A., S. F. Nabavi, A. Sureda, A. H. Moghaddam, S. Khanjani, P. Arcidiaco, S. M. Nabavi, and M. Daglia. 2016. Antidepressive-like effects and antioxidant activity of green tea and GABA green tea in a mouse model of post-stroke depression. Molecular Nutrition & Food Research 60 (3):566–79. doi: 10.1002/mnfr.201500567.
  • Diana, M., J. Quílez, and M. Rafecas. 2014. Gamma-aminobutyric acid as a bioactive compound in foods: A review. Journal of Functional Foods 10:407–20. doi: 10.1016/j.jff.2014.07.004.
  • Diez-Gutiérrez, L., L. San Vicente, L. J. R. Barrón, M. d C. Villarán, and M. Chávarri. 2020. Gamma-aminobutyric acid and probiotics: Multiple health benefits and their future in the global functional food and nutraceuticals market. Journal of Functional Foods 64:103669. doi: 10.1016/j.jff.2019.103669.
  • Ding, J., G. G. Hou, B. V. Nemzer, S. Xiong, A. Dubat, and H. Feng. 2018. Effects of controlled germination on selected physicochemical and functional properties of whole-wheat flour and enhanced γ-aminobutyric acid accumulation by ultrasonication. Food Chemistry 243:214–21. doi: 10.1016/j.foodchem.2017.09.128.
  • Ding, J., A. V. Ulanov, M. Dong, T. Yang, B. V. Nemzer, S. Xiong, S. Zhao, and H. Feng. 2018. Enhancement of gama-aminobutyric acid (GABA) and other health-related metabolites in germinated red rice (Oryza sativa L.) by ultrasonication. Ultrasonics Sonochemistry 40 (Pt A):791–7. doi: 10.1016/j.ultsonch.2017.08.029.
  • Ding, J., T. Yang, H. Feng, M. Dong, M. Slavin, S. Xiong, and S. Zhao. 2016. Enhancing contents of γ-aminobutyric acid (GABA) and other micronutrients in dehulled rice during germination under normoxic and hypoxic conditions. Journal of Agricultural and Food Chemistry 64 (5):1094–102. doi: 10.1021/acs.jafc.5b04859.
  • Elbaloula, M. F., and A. B. Hassan. 2022. Effect of different salt concentrations on the gamma-aminobutyric-acid content and glutamate decarboxylase activity in germinated sorghum (Sorghum bicolor L. Moench) grain. Food Science & Nutrition 10 (6):2050–6. doi: 10.1002/fsn3.2821.
  • Fan, X., L. Yu, Z. Shi, C. Li, X. Zeng, Z. Wu, and D. Pan. 2023. Characterization of a novel flavored yogurt enriched in γ-aminobutyric acid fermented by Levilactobacillus brevis CGMCC1.5954. Journal of Dairy Science 106 (2):852–67. doi: 10.3168/jds.2022-22590.
  • Ferreira, C., V. Bubolz, J. da Silva, C. Dittgen, V. Ziegler, C. de Oliveira Raphaelli, and M. de Oliveira. 2019. Changes in the chemical composition and bioactive compounds of chickpea (Cicer arietinum L.) fortified by germination. LWT 111:363–9. doi: 10.1016/j.lwt.2019.05.049.
  • Galli, V., M. Venturi, E. Mari, S. Guerrini, and L. Granchi. 2022. Gamma-aminobutyric acid (GABA) production in fermented milk by lactic acid bacteria isolated from spontaneous raw milk fermentation. International Dairy Journal 127:105284. doi: 10.1016/j.idairyj.2021.105284.
  • Golzarand, M., K. Toolabi, S. Eskandari Delfan, and P. Mirmiran. 2022. The effect of brown rice compared to white rice on adiposity indices, lipid profile, and glycemic markers: A systematic review and meta-analysis of randomized controlled trials. Critical Reviews in Food Science and Nutrition 62 (27):7395–412. doi: 10.1080/10408398.2021.1914541.
  • Guiyun, C., W. Yushan, Z. Mingyue, M. Wanxing, X. Xixian, and C. Ye. 2022. Cold atmospheric plasma treatment improves the γ-aminobutyric acid content of buckwheat seeds providing a new anti-hypertensive functional ingredient. Food Chemistry 388:133064. doi: 10.1016/j.foodchem.2022.133064.
  • Guo, Y., H. Chen, Y. Song, and Z. Gu. 2011. Effects of soaking and aeration treatment on γ-aminobutyric acid accumulation in germinated soybean (Glycine max L.). European Food Research and Technology 232 (5):787–95. doi: 10.1007/s00217-011-1444-6.
  • Gutiérrez-Gamboa, G., M. Carrasco-Quiroz, A. M. Martínez-Gil, E. P. Pérez-Álvarez, T. Garde-Cerdán, and Y. Moreno-Simunovic. 2018. Grape and wine amino acid composition from Carignan noir grapevines growing under rainfed conditions in the Maule Valley, Chile: Effects of location and rootstock. Food Research International (Ottawa, Ont.) 105:344–52. doi: 10.1016/j.foodres.2017.11.021.
  • Han, M., W. Liao, S. Wu, X. Gong, and C. Bai. 2020. Use of Streptococcus thermophilus for the in situ production of γ-aminobutyric acid-enriched fermented milk. Journal of Dairy Science 103 (1):98–105. doi: 10.3168/jds.2019-16856.
  • Hao, C., H. Lin, L. Ke, H. Yen, and K. Shen. 2019. Pre-germinated brown rice extract ameliorates high-fat diet-induced metabolic syndrome. Journal of Food Biochemistry 43 (3): E 12769. doi: 10.1111/jfbc.12769.
  • Hao, J., T. Wu, H. Li, W. Wang, and H. Liu. 2016. Dual effects of slightly acidic electrolyzed water (SAEW) treatment on the accumulation of γ-aminobutyric acid (GABA) and rutin in germinated buckwheat. Food Chemistry 201:87–93. doi: 10.1016/j.foodchem.2016.01.037.
  • Hepsomali, P., J. A. Groeger, J. Nishihira, and A. Scholey. 2020. Effects of oral gamma-aminobutyric acid (GABA) administration on stress and sleep in humans: A systematic review. Frontiers in Neuroscience 14:923. doi: 10.3389/fnins.2020.00923.
  • Hinton, T., H. F. Jelinek, V. Viengkhou, G. A. Johnston, and S. Matthews. 2019. Effect of GABA-fortified oolong tea on reducing stress in a university student cohort. Frontiers in Nutrition 6:27 doi: 10.3389/fnut.2019.00027.
  • Horanni, R., and U. H. Engelhardt. 2013. Determination of amino acids in white, green, black, oolong, pu-erh teas and tea products. Journal of Food Composition and Analysis 31 (1):94–100. doi: 10.1016/j.jfca.2013.03.005.
  • Hou, D., Q. Feng, J. Tang, Q. Shen, and S. Zhou. 2022. An update on nutritional profile, phytochemical compounds, health benefits, and potential applications in the food industry of pulses seed coats: A comprehensive review. Critical Reviews in Food Science and Nutrition :1–23. doi: 10.1080/10408398.2022.2105303.
  • Hou, D., Q. Zhao, B. Chen, X. Ren, L. Yousaf, and Q. Shen. 2021. Dietary supplementation with mung bean coat alleviates the disorders in serum glucose and lipid profile and modulates gut microbiota in high-fat diet and streptozotocin-induced prediabetic mice. Journal of Food Science 86 (9):4183–96. doi: 10.1111/1750-3841.15866.
  • Huang, C.-Y., W.-W. Kuo, H.-F. Wang, C.-J. Lin, Y.-M. Lin, J.-L. Chen, C.-H. Kuo, P.-K. Chen, and J.-Y. Lin. 2014. GABA tea ameliorates cerebral cortex apoptosis and autophagy in streptozotocin-induced diabetic rats. Journal of Functional Foods 6:534–44. doi: 10.1016/j.jff.2013.11.020.
  • Huang, G., W. Cai, and B. Xu. 2017. Improvement in beta-carotene, vitamin B2, GABA, free amino acids and isoflavones in yellow and black soybeans upon germination. LWT 75:488–96. doi: 10.1016/j.lwt.2016.09.029.
  • Hung, C., and S. Chen. 2022. Study of inducing factors on resveratrol and antioxidant content in germinated peanuts. Molecules 27 (17):5700. doi: 10.3390/molecules27175700.
  • Hussain, S., R. Jabeen, B. Naseer, and A. Shikari. 2020. Effect of soaking and germination conditions on γ-aminobutyric acid and gene expression in germinated brown rice. Food Biotechnology 34 (2):132–50. doi: 10.1080/08905436.2020.1744448.
  • Irwin, M., C. Carrillo, N. Sadeghi, M. Bjurstrom, E. Breen, and R. Olmstead. 2022. Prevention of incident and recurrent major depression in older adults with insomnia: A randomized clinical trial. JAMA Psychiatry 79 (1):33–41. doi: 10.1001/jamapsychiatry.2021.3422.
  • Islam, M., M. Shim, S. Jeong, and Y. Lee. 2022. Effects of soaking and sprouting on bioactive compounds of black and red pigmented rice cultivars. International Journal of Food Science & Technology 57 (1):201–9. doi: 10.1111/ijfs.15105.
  • Ismail, N., M. Ismail, S. F. Fathy, S. N. A. Musa, M. U. Imam, J. B. Foo, and S. Iqbal. 2012. Neuroprotective effects of germinated brown rice against hydrogen peroxide induced cell death in human SH-SY5Y cells. International Journal of Molecular Sciences 13 (8):9692–708. doi: 10.3390/ijms13089692.
  • Jiang, X., Q. Xu, A. Zhang, Y. Liu, L. Zhao, L. Gu, J. Yuan, H. Jia, X. Shen, Z. Li, et al. 2021. Optimization of γ-aminobutyric acid (GABA) accumulation in germinating adzuki beans (Vigna angularis) by vacuum treatment and monosodium glutamate, and the molecular mechanisms. Frontiers in Nutrition 8:693862. doi: 10.3389/fnut.2021.693862.
  • Kamjijam, B., P. Suwannaporn, H. Bednarz, K. Na Jom, and K. Niehaus. 2021. Elevation of gamma-aminobutyric acid (GABA) and essential amino acids in vacuum impregnation mediated germinated rice traced by MALDI imaging. Food Chemistry 365:130399. doi: 10.1016/j.foodchem.2021.130399.
  • Kanehira, T., Y. Nakamura, K. Nakamura, K. Horie, N. Horie, K. Furugori, Y. Sauchi, and H. Yokogoshi. 2011. Relieving occupational fatigue by consumption of a beverage containing γ-amino butyric acid. Journal of Nutritional Science and Vitaminology 57 (1):9–15. doi: 10.3177/jnsv.57.9.
  • Kanklai, J., T. C. Somwong, P. Rungsirivanich, and N. Thongwai. 2020. Screening of GABA-producing lactic acid bacteria from Thai fermented foods and probiotic potential of levilactobacillus brevis F064A for GABA-fermented mulberry juice production. Microorganisms 9 (1):33. doi: 10.3390/microorganisms9010033.
  • Khanlari, Z., A. Moayedi, P. Ebrahimi, M. Khomeiri, and A. Sadeghi. 2021. Enhancement of γ-aminobutyric acid (GABA) content in fermented milk by using Enterococcus faecium and Weissella confusa isolated from sourdough. Journal of Food Processing and Preservation 45 (10):e15869. doi: 10.1111/jfpp.15869.
  • Khwanchai, P., N. Chinprahast, R. Pichyangkura, and S. Chaiwanichsiri. 2014. Gamma-aminobutyric acid and glutamic acid contents, and the GAD activity in germinated brown rice (Oryza sativa L.): Effect of rice cultivars. Food Science and Biotechnology 23 (2):373–9. doi: 10.1007/s10068-014-0052-1.
  • Kim, M., H. Kwak, and S. Kim. 2018. Effects of germination on protein, γ-aminobutyric acid, phenolic acids, and antioxidant capacity in wheat. Molecules 23 (9):2244. doi: 10.3390/molecules23092244.
  • Kim, S., and M. Rhee. 2018. Environment-friendly mild heat and relative humidity treatment protects sprout seeds (radish, mung bean, mustard, and alfalfa) against various foodborne pathogens. Food Control 93:17–22. doi: 10.1016/j.foodcont.2018.05.035.
  • Lee, H., S. Y. Ji, H. Hwangbo, M. Y. Kim, D. H. Kim, B. S. Park, J.-H. Park, B.-J. Lee, G.-Y. Kim, Y.-J. Jeon, et al. 2022. Protective effect of gamma aminobutyric acid against aggravation of renal injury caused by high salt intake in cisplatin-induced nephrotoxicity. International Journal of Molecular Sciences 23 (1):502. doi: 10.3390/ijms23010502.
  • Lee, S., W. Yoon, J. Lee, and C. Garcia. 2022. Fermented milk product enriched with γ-PGA, peptides and GABA by novel co-fermentation with Bacillus subtilis and Lactiplantibacillus plantarum. Fermentation 8 (8):404. doi: 10.3390/fermentation8080404.
  • Lee, X., J. Tan, and L. Cheng. 2022. Gamma aminobutyric acid (GABA) enrichment in plant-based food – A mini review. Food Reviews International :1–22. doi: 10.1080/87559129.2022.2097257.
  • Lee, Y., and K. T. Hwang. 2017. Changes in physicochemical properties of mulberry fruits (Morus alba L.) during ripening. Scientia Horticulturae 217:189–96. doi: 10.1016/j.scienta.2017.01.042.
  • Li, E., X. Luo, S. Liao, W. Shen, Q. Li, F. Liu, and Y. Zou. 2018. Accumulation of γ-aminobutyric acid during cold storage in mulberry leaves. International Journal of Food Science & Technology 53 (12):2664–72. doi: 10.1111/ijfs.13875.
  • Li, R., Z. Li, N. Wu, and B. Tan. 2023. The effect of cold plasma pretreatment on GABA, γ-oryzanol, phytic acid, phenolics, and antioxidant capacity in brown rice during germination. Cereal Chemistry 100 (2):321–32. doi: 10.1002/cche.10609.
  • Li, W., M. Wei, J. Wu, X. Rui, and M. Dong. 2016. Novel fermented chickpea milk with enhanced level of γ-aminobutyric acid and neuroprotective effect on PC12 cells. PeerJ. 4:e2292. doi: 10.7717/peerj.2292.
  • Li, X., L. Chen, X. Zhu, Z. Lu, and Y. Lu. 2020. Effect of γ-aminobutyric acid-rich yogurt on insulin sensitivity in a mouse model of type 2 diabetes mellitus. Journal of Dairy Science 103 (9):7719–29. doi: 10.3168/jds.2019-17757.
  • Li, Y., Q. Bai, X. Jin, H. Wen, and Z. Gu. 2010. Effects of cultivar and culture conditions on γ‐aminobutyric acid accumulation in germinated fava beans (Vicia faba L.). Journal of the Science of Food and Agriculture 90 (1):52–7. doi: 10.1002/jsfa.3778.
  • Liang, L., L. Chen, G. Liu, F. Zhang, R. J. Linhardt, B. Sun, Q. Li, and Y. Zhang. 2022. Optimization of germination and ultrasonic-assisted extraction for the enhancement of γ-aminobutyric acid in pumpkin seed. Food Science & Nutrition 10 (6):2101–10. doi: 10.1002/fsn3.2826.
  • Liao, J., X. Wu, Z. Xing, Q. Li, Y. Duan, W. Fang, and X. Zhu. 2017. γ-aminobutyric acid (GABA) accumulation in tea (Camellia sinensis L.) through the GABA shunt and polyamine degradation pathways under anoxia. Journal of Agricultural and Food Chemistry 65 (14):3013–8. doi: 10.1021/acs.jafc.7b00304.
  • Liao, W.-C., C.-Y. Wang, Y.-T. Shyu, R.-C. Yu, and K.-C. Ho. 2013. Influence of preprocessing methods and fermentation of adzuki beans on γ-aminobutyric acid (GABA) accumulation by lactic acid bacteria. Journal of Functional Foods 5 (3):1108–15. doi: 10.1016/j.jff.2013.03.006.
  • Liu, C. F., Y. T. Tung, C. L. Wu, B.-H. Lee, W.-H. Hsu, and T. M. Pan. 2011. Antihypertensive effects of Lactobacillus-fermented milk orally administered to spontaneously hypertensive rats. Journal of Agricultural and Food Chemistry 59 (9):4537–43. doi: 10.1021/jf104985v.
  • Liu, S., W. Wang, H. Lu, Q. Shu, Y. Zhang, and Q. Chen. 2022. New perspectives on physiological, biochemical and bioactive components during germination of edible seeds: A review. Trends in Food Science & Technology 123:187–97. doi: 10.1016/j.tifs.2022.02.029.
  • Lünemann, J., S. Malhotra, M. Shinohara, X. Montalban, and M. Comabella. 2021. Targeting inflammasomes to treat neurological diseases. Annals of Neurology 90 (2):177–88. doi: 10.1002/ana.26158.
  • Luo, H., Z. Liu, F. Xie, M. Bilal, L. Liu, R. Yang, and Z. Wang. 2021. Microbial production of gamma-aminobutyric acid: Applications, state-of-the-art achievements, and future perspectives. Critical Reviews in Biotechnology 41 (4):491–512. doi: 10.1080/07388551.2020.1869688.
  • Ma, Y., L. Tong, J. Li, J. Ashraf, S. Wang, B. Zhao, L. Liu, C. Blecker, and S. Zhou. 2021. Comparison of γ-aminobutyric acid accumulation capability in different mung bean (Vigna radiata L.) varieties under heat and relative humidity treatment, and its correlation with endogenous amino acids and polyamines. International Journal of Food Science & Technology 56 (4):1562–73. doi: 10.1111/ijfs.14771.
  • Ma, Y., L. Tong, S. Wang, T. Liu, L. Wang, L. Liu, X. Zhou, S. Zhou, and C. Blecker. 2022. Effect of heat and relative humidity treatment on γ-aminobutyric acid accumulation, other micronutrients contents, antioxidant activities and physicochemical properties of mung bean (Vigna radiata L.). International Journal of Food Science & Technology 57 (1):590–600. doi: 10.1111/ijfs.15455.
  • Ma, Y., A. Wang, M. Yang, S. Wang, L. Wang, S. Zhou, and C. Blecker. 2022. Influences of cooking and storage on γ-aminobutyric acid (GABA) content and distribution in mung bean and its noodle products. LWT 154:112783. doi: 10.1016/j.lwt.2021.112783.
  • Ma, Y., S. Zhou, and J. Lu. 2022. Metabolomic analysis reveals changes of bioactive compounds in mung beans (Vigna radiata) during γ-aminobutyric acid enrichment treatment. Foods 11 (10):1423. doi: 10.3390/foods11101423.
  • Mabunga, D. F. N., E. L. T. Gonzales, H. J. Kim, and S. Y. Choung. 2015. Treatment of GABA from fermented rice germ ameliorates caffeine-induced sleep disturbance in mice. Biomolecules & Therapeutics 23 (3):268–74. doi: 10.4062/biomolther.2015.022.
  • Marseglia, A., G. Palla, and A. Caligiani. 2014. Presence and variation of γ-aminobutyric acid and other free amino acids in cocoa beans from different geographical origins. Food Research International 63:360–6. doi: 10.1016/j.foodres.2014.05.026.
  • Martínez-Villaluenga, C., Y. Kuo, F. Lambein, J. Frías, and C. Vidal-Valverde. 2006. Kinetics of free protein amino acids, free non-protein amino acids and trigonelline in soybean (Glycine max L.) and lupin (Lupinus angustifolius L.) sprouts. European Food Research and Technology 224 (2):177–86. doi: 10.1007/s00217-006-0300-6.
  • Moore, J., R. DuVivier, and S. Johanningsmeier. 2021. Formation of γ-aminobutyric acid (GABA) during the natural lactic acid fermentation of cucumber. Journal of Food Composition and Analysis 96:103711. doi: 10.1016/j.jfca.2020.103711.
  • Mori, T., T. Umeda, T. Honda, K. Zushi, T. Wajima, and N. Matsuzoe. 2013. Varietal differences in the chlorogenic acid, anthocyanin, soluble sugar, organic acid, and amino acid concentrations of eggplant fruit. The Journal of Horticultural Science and Biotechnology 88 (5):657–63. doi: 10.1080/14620316.2013.11513021.
  • Müller, C., J. Hoffmann, C. Ferreira, G. Diehl, R. Rossi, and V. Ziegler. 2021. Effect of germination on nutritional and bioactive properties of red rice grains and its application in cupcake production. International Journal of Gastronomy and Food Science 25:100379. doi: 10.1016/j.ijgfs.2021.100379.
  • Munarko, H., A. B. Sitanggang, F. Kusnandar, and S. Budijanto. 2022. Germination of five Indonesian brown rice: Evaluation of antioxidant, bioactive compounds, fatty acids and pasting properties. Food Science and Technology 42:19721. doi: 10.1590/fst.19721.
  • Nakatani, Y., T. Fukaya, S. Kishino, and J. Ogawa. 2022. Production of GABA-enriched tomato juice by Lactiplantibacillus plantarum KB1253. Journal of Bioscience and Bioengineering 134 (5):424–31. doi: 10.1016/j.jbiosc.2022.08.00.
  • Ngo, D., and T. Vo. 2019. An updated review on pharmaceutical properties of gamma-aminobutyric acid. Molecules 24 (15):2678. doi: 10.3390/molecules24152678.
  • Nishimura, M., S.-I. Yoshida, M. Haramoto, H. Mizuno, T. Fukuda, H. Kagami-Katsuyama, A. Tanaka, T. Ohkawara, Y. Sato, and J. Nishihira. 2016. Effects of white rice containing enriched gamma-aminobutyric acid on blood pressure. Journal of Traditional and Complementary Medicine 6 (1):66–71. doi: 10.1016/j.jtcme.2014.11.022.
  • Oh, S., H. Kim, S. Lim, and C. Reddy. 2019. Enhanced accumulation of gamma-aminobutyric acid in rice bran using anaerobic incubation with various additives. Food Chemistry 271:187–92. doi: 10.1016/j.foodchem.2018.07.175.
  • Oketch-Rabah, H., E. Madden, A. Roe, and J. Betz. 2021. United States pharmacopeia (USP) safety review of gamma-aminobutyric acid (GABA). Nutrients 13 (8):2742. doi: 10.3390/nu13082742.
  • Park, N.-H., S.-J. Lee, A. F. Mechesso, N. Boby, Q. Yixian, W.-K. Yoon, S.-P. Lee, J.-S. Lee, and S.-C. Park. 2020. Hepatoprotective effects of gamma-aminobutyric acid-enriched fermented Hovenia dulcis extract on ethanol-induced liver injury in mice. BMC Complementary Medicine and Therapies 20 (1):75. doi: 10.1186/s12906-020-2866-0.
  • Park, S., M. Valan Arasu, M.-K. Lee, J.-H. Chun, J. M. Seo, S.-W. Lee, N. A. Al-Dhabi, and S.-J. Kim. 2014. Quantification of glucosinolates, anthocyanins, free amino acids, and vitamin C in inbred lines of cabbage (Brassica oleracea L.). Food Chemistry 145:77–85. doi: 10.1016/j.foodchem.2013.08.010.
  • Paucar-Menacho, L., C. Martínez-Villaluenga, M. Dueñas, J. Frias, and E. Peñas. 2017. Optimization of germination time and temperature to maximize the content of bioactive compounds and the antioxidant activity of purple corn (Zea mays L.) by response surface methodology. LWT - Food Science and Technology 76:236–44. doi: 10.1016/j.lwt.2016.07.064.
  • Peng, L.-X., L. Zou, M.-L. Tan, Y.-Y. Deng, J. Yan, Z.-Y. Yan, and G. Zhao. 2017. Free amino acids, fatty acids, and phenolic compounds in tartary buckwheat of different hull colour. Czech Journal of Food Sciences 35 (3):214–22. doi: 10.17221/185/2016-CJFS.
  • Pu, Y., A. J. Sinclair, J. Zhong, D. Liu, and L. Song. 2019. Determination of ϒ-aminobutyric acid (GABA) in jujube fruit (Ziziphus jujuba Mill). CyTA - Journal of Food 17 (1):158–62. doi: 10.1080/19476337.2019.1566277.
  • Qiu, X., R. Reynolds, S. Johanningsmeier, and V.-D. Truong. 2020. Determination of free amino acids in five commercial sweetpotato cultivars by hydrophilic interaction liquid chromatography-mass spectrometry. Journal of Food Composition and Analysis 92:103522. doi: 10.1016/j.jfca.2020.103522.
  • Rathwa, N., N. Parmar, S. Palit, R. Patel, R. Bhaskaran, A. Ramachandran, and R. Begum. 2022. Calorie restriction potentiates the therapeutic potential of GABA in managing type 2 diabetes in a mouse model. Life Sciences 295:120382. doi: 10.1016/j.lfs.2022.120382.
  • Redruello, B., A. Szwengiel, V. Ladero, B. del Rio, and M. A. Alvarez. 2022. Are there profiles of cheeses with a high GABA and safe histamine content? Food Control 132:108491. doi: 10.1016/j.foodcont.2021.108491.
  • Reid, S., J. Ryu, Y. Kim, and B. Jeon. 2018. GABA-enriched fermented Laminaria japonica improves cognitive impairment and neuroplasticity in scopolamine- and ethanol-induced dementia model mice. Nutrition Research and Practice 12 (3):199–207. doi: 10.4162/nrp.2018.12.3.199.
  • Reis, N., A. Castanho, M. Lageiro, C. Pereira, C. M. Brites, and M. Vaz-Velho. 2022. Rice bran stabilisation and oil extraction using the microwave-assisted method and its effects on GABA and gamma-oryzanol compounds. Foods 11 (7):912. doi: 10.3390/foods11070912.
  • Rico, D., E. Peñas, M. d C. García, C. Martínez-Villaluenga, D. K. Rai, R. I. Birsan, J. Frias, and A. B. Martín-Diana. 2020. Sprouted barley flour as a nutritious and functional ingredient. Foods 9 (3):296. doi: 10.3390/foods9030296.
  • Sahab, N., E. Subroto, R. Balia, and G. Utama. 2020. γ-Aminobutyric acid found in fermented foods and beverages: Current trends. Heliyon 6 (11):e05526. doi: 10.1016/j.heliyon.2020.e05526.
  • Salvador, A., and J. Kipnis. 2022. Immune response after central nervous system injury. Seminars in Immunology 59:101629. doi: 10.1016/j.smim.2022.101629.
  • Santos-Espinosa, A., L. M. Beltrán-Barrientos, R. Reyes-Díaz, M. Á. Mazorra-Manzano, A. Hernández-Mendoza, G. A. González-Aguilar, S. G. Sáyago-Ayerdi, B. Vallejo-Cordoba, and A. F. González-Córdova. 2020. Gamma-aminobutyric acid (GABA) production in milk fermented by specific wild lactic acid bacteria strains isolated from artisanal Mexican cheeses. Annals of Microbiology 70 (1):12. doi: 10.1186/s13213-020-01542-3.
  • Shang, W., X. Si, Z. Zhou, P. Strappe, and C. Blanchard. 2018. Wheat bran with enriched gamma-aminobutyric acid attenuates glucose intolerance and hyperinsulinemia induced by a high-fat diet. Food & Function 9 (5):2820–8. doi: 10.1039/c8fo00331a.
  • Sharma, S., D. C. Saxena, and C. Riar. 2017. Using combined optimization, GC–MS and analytical technique to analyze the germination effect on phenolics, dietary fibers, minerals and GABA contents of Kodo millet (Paspalum scrobiculatum). Food Chemistry 233:20–8. doi: 10.1016/j.foodchem.2017.04.099.
  • Sharma, S., D. Saxena, and C. Riar. 2018. Changes in the GABA and polyphenols contents of foxtail millet on germination and their relationship with in vitro antioxidant activity. Food Chemistry 245:863–70. doi: 10.1016/j.foodchem.2017.11.093.
  • Simpson, C., C. Diaz-Arteche, D. Eliby, O. Schwartz, J. Simmons, and C. Cowan. 2021. The gut microbiota in anxiety and depression – A systematic review. Clinical Psychology Review 83:101943. doi: 10.1016/j.cpr.2020.101943.
  • Sirisoontaralak, P., N. Nakornpanom, K. Koakietdumrongkul, and C. Panumaswiwath. 2015. Development of quick cooking germinated brown rice with convenient preparation and containing health benefits. LWT - Food Science and Technology 61 (1):138–44. doi: 10.1016/j.lwt.2014.11.015.
  • Sita, K., and V. Kumar. 2020. Role of gamma amino butyric acid (GABA) against abiotic stress tolerance in legumes: A review. Plant Physiology Reports 25 (4):654–63. doi: 10.1007/s40502-020-00553-1.
  • Siucinska, E. 2019. Γ-Aminobutyric acid in adult brain: An update. Behavioural Brain Research 376:112224. doi: 10.1016/j.bbr.2019.112224.
  • Soi-Ampornkul, R., S. Junnu, S. Kanyok, S. Liammongkolkul, W. Katanyoo, and S. Umpornsirirat. 2012. Antioxidative and neuroprotective activities of the pre-germinated brown rice extract. Food and Nutrition Sciences 03 (01):135–40. doi: 10.4236/fns.2012.31020.
  • Sokovic Bajic, S., J. Djokic, M. Dinic, K. Veljovic, N. Golic, S. Mihajlovic, and M. Tolinacki. 2019. GABA-producing natural dairy isolate from artisanal Zlatar cheese attenuates gut inflammation and strengthens gut epithelial barrier in vitro. Frontiers in Microbiology 10:527. doi: 10.3389/fmicb.2019.00527.
  • Son, M., S. Oh, H. S. Lee, J. Choi, B.-J. Lee, J.-H. Park, C. H. Park, K. H. Son, and K. Byun. 2021. Gamma-aminobutyric acid-salt attenuated high cholesterol/high salt diet induced hypertension in mice. The Korean Journal of Physiology & Pharmacology: Official Journal of the Korean Physiological Society and the Korean Society of Pharmacology 25 (1):27–38. doi: 10.4196/kjpp.2021.25.1.27.
  • Song, H. Y., and R. C. Yu. 2018. Optimization of culture conditions for gamma-aminobutyric acid production in fermented adzuki bean milk. Journal of Food and Drug Analysis 26 (1):74–81. doi: 10.1016/j.jfda.2016.11.024.
  • Sun, Y., D. Ji, H. Ma, and X. Chen. 2022. Ultrasound accelerated γ-aminobutyric acid accumulation in coffee leaves through influencing the microstructure, enzyme activity, and metabolites. Food Chemistry 385:132646. doi: 10.1016/j.foodchem.2022.132646.
  • Syu, K., C. Lin, H. Huang, and J. Lin. 2008. Determination of theanine, GABA, and other amino acids in green, oolong, black, and pu-erh teas with dabsylation and high-performance liquid chromatography. Journal of Agricultural and Food Chemistry 56 (17):7637–43. doi: 10.1021/jf801795m.
  • Teng, J., W. Zhou, Z. Zeng, W. Zhao, Y. Huang, and X. Zhang. 2017. Quality components and antidepressant-like effects of GABA green tea. Food & Function 8 (9):3311–8. doi: 10.1039/C7FO01045A.
  • Tiansawang, K., P. Luangpituksa, W. Varanyanond, and C. Hansawasdi. 2016. GABA (γ-aminobutyric acid) production, antioxidant activity in some germinated dietary seeds and the effect of cooking on their GABA content. Food Science and Technology 36 (2):313–21. doi: 10.1590/1678-457X.0080.
  • Tilahun, S., H.-R. Choi, M.-W. Baek, L.-H. Cheol, K.-W. Kwak, D.-S. Park, T. Solomon, and C.-S. Jeong. 2021. Antioxidant properties, γ-aminobutyric acid (GABA) content, and physicochemical characteristics of tomato cultivars. Agronomy 11 (6):1204. doi: 10.3390/agronomy11061204.
  • Toyoizumi, T., T. Kosugi, Y. Toyama, and T. Nakajima. 2021. Effects of high-temperature cooking on the gamma-aminobutyric acid content and antioxidant capacity of germinated brown rice (Oryza sativa L.). CyTA - Journal of Food 19 (1):360–9. doi: 10.1080/19476337.2021.1905721.
  • Trobacher, C., S. Clark, G. Bozzo, R. Mullen, J. DeEll, and B. Shelp. 2013. Catabolism of GABA in apple fruit: Subcellular localization and biochemical characterization of two γ-aminobutyrate transaminases. Postharvest Biology and Technology 75:106–13. doi: 10.1016/j.postharvbio.2012.08.005.
  • Ueno, S., Y. Kawaguchi, Y. Oshikiri, H. Liu, and R. Shimada. 2019. Enrichment of free amino acid content and reduction of astringent taste compounds in soybean by high hydrostatic pressure. High Pressure Research 39 (2):398–407. doi: 10.1080/08957959.2019.1601188.
  • Vann, K., A. Techaparin, and J. Apiraksakorn. 2020. Beans germination as a potential tool for GABA-enriched tofu production. Journal of Food Science and Technology 57 (11):3947–54. doi: 10.1007/s13197-020-04423-4.
  • Venturi, M., V. Galli, N. Pini, S. Guerrini, and L. Granchi. 2019. Use of selected lactobacilli to increase gamma-aminobutyric acid (GABA) content in sourdough bread enriched with amaranth flour. Foods 8 (6):218. doi: 10.3390/foods8060218.
  • Verni, M., A. Vekka, M. Immonen, K. Katina, C. G. Rizzello, and R. Coda. 2022. Biosynthesis of γ-aminobutyric acid by lactic acid bacteria in surplus bread and its use in bread making. Journal of Applied Microbiology 133 (1):76–90. doi: 10.1111/jam.15332.
  • Vijaya Abinaya, R., P. B. T. Pichiah, S. Sara Thomas, S.-G. Kim, D.-W. Han, Y.-S. Song, S.-H. Oh, and Y.-S. Cha. 2017. γ-amino butyric acid-enriched barley bran lowers adrenocorticotropic hormone and corticosterone levels in immobilized stressed rats. Journal of Food Biochemistry 41 (2):e12324. doi: 10.1111/jfbc.12324.
  • Wang, D., Y. Wang, H. Lan, K. Wang, L. Zhao, and Z. Hu. 2021. Enhanced production of γ-aminobutyric acid in litchi juice fermented by Lactobacillus plantarum HU-C2W. Food Bioscience 42:101155. doi: 10.1016/j.fbio.2021.101155.
  • Wang, F., H. Wang, D. Wang, F. Fang, J. Lai, T. Wu, and R. Tsao. 2015. Isoflavone, γ-aminobutyric acid contents and antioxidant activities are significantly increased during germination of three Chinese soybean cultivars. Journal of Functional Foods 14:596–604. doi: 10.1016/j.jff.2015.02.016.
  • Wang, K., F. Xu, S. Cao, H. Wang, Y. Wei, X. Shao, W. Zhou, and Y. Zheng. 2019. Effects of exogenous calcium chloride (CaCl2) and ascorbic acid (AsA) on the γ-aminobutyric acid (GABA) metabolism in shredded carrots. Postharvest Biology and Technology 152:111–7. doi: 10.1016/j.postharvbio.2019.03.005.
  • Wang, Q., L. Meng, X. Wang, W. Zhao, X. Shi, W. Wang, Z. Li, and L. Wang. 2022. The yield, nutritional value, umami components and mineral contents of the first-flush and second-flush Pleurotus pulmonarius mushrooms grown on three forestry wastes. Food Chemistry 397:133714. doi: 10.1016/j.foodchem.2022.133714.
  • Wang, S., S. Zhou, L. Wang, X. Liu, Y. Ma, L. Tong, Y. Zhang, and F. Wang. 2022. Effect of an environment friendly heat and relative humidity approach on γ-aminobutyric acid accumulation in different highland barley cultivars. Foods 11 (5):691. doi: 10.3390/foods11050691.
  • Wu, C., Y. Huang, X. Lai, R. Lai, W. Zhao, M. Zhang, and W. Zhao. 2014. Study on quality components and sleep-promoting effect of GABA Maoyecha tea. Journal of Functional Foods 7:180–90. doi: 10.1016/j.jff.2014.02.013.
  • Wu, Q., S. Ma, W. Zhang, K. Yao, L. Chen, F. Zhao, and Y. Zhuang. 2018. Accumulating pathways of γ-aminobutyric acid during anaerobic and aerobic sequential incubations in fresh tea leaves. Food Chemistry 240:1081–6. doi: 10.1016/j.foodchem.2017.08.004.
  • Wu, Y., S. He, T. Pan, X. Miao, J. Xiang, Y. Ye, X. Cao, and H. Sun. 2023. Enhancement of γ-aminobutyric acid and relevant metabolites in brown glutinous rice (Oryza sativa L.) through salt stress and low-frequency ultrasound treatments at pre-germination stage. Food Chemistry 410:135362. doi: 10.1016/j.foodchem.2022.135362.
  • Wu, Z., P. Wang, D. Pan, X. Zeng, Y. Guo, and G. Zhao. 2021. Effect of adzuki bean sprout fermented milk enriched in γ-aminobutyric acid on mild depression in a mouse model. Journal of Dairy Science 104 (1):78–91. doi: 10.3168/jds.2020-19154.
  • Wu, Z., Z. Yang, J. Li, H. Chen, X. Huang, and H. Wang. 2016. Methyl-inositol, γ-aminobutyric acid and other health benefit compounds in the aril of litchi. International Journal of Food Sciences and Nutrition 67 (7):762–72. doi: 10.1080/09637486.2016.1198888.
  • Xie, K., C. Wu, Z. Chi, J. Wang, H. Wang, Y. Wei, X. Shao, and F. Xu. 2021. Enhancement of γ-aminobutyric acid (GABA) and other health-promoting metabolites in germinated broccoli by mannose treatment. Scientia Horticulturae 276:109706. doi: 10.1016/j.scienta.2020.109706.
  • Yang, R., L. Feng, S. Wang, N. Yu, and Z. Gu. 2016. Accumulation of γ‐aminobutyric acid in soybean by hypoxia germination and freeze–thawing incubation. Journal of the Science of Food and Agriculture 96 (6):2090–6. doi: 10.1002/jsfa.7323|.
  • Yang, R., Q. Hui, X. Feng, L. Feng, Z. Gu, and P. Wang. 2020. The mechanism of freeze-thawing induced accumulation of γ-aminobutyric acid in germinated soybean. Journal of the Science of Food and Agriculture 100 (3):1099–105. doi: 10.1002/jsfa.10118.
  • Yen, N. T. H., P. N. Hoa, and P. V. Hung. 2022. Optimal soaking conditions and addition of exogenous substances improve accumulation of γ-aminobutyric acid (GABA) in germinated mung bean (Vigna radiata). International Journal of Food Science & Technology 57 (7):3924–33. doi: 10.1111/ijfs.15473.
  • Yılmaz, C., F. Özdemir, and V. Gökmen. 2020. Investigation of free amino acids, bioactive and neuroactive compounds in different types of tea and effect of black tea processing. LWT 117:108655. doi: 10.1016/j.lwt.2019.108655.
  • Yin, Y., R. Yang, Q. Guo, and Z. Gu. 2014. NaCl stress and supplemental CaCl2 regulating GABA metabolism pathways in germinating soybean. European Food Research and Technology 238 (5):781–8. doi: 10.1007/s00217-014-2156-5.
  • Yoon, W., C. Garcia, C. Kim, and S. Lee. 2018. Fortification of mucilage and GABA in Hovenia dulcis extract by co-fermentation with Bacillus subtilis HA and Lactobacillus plantarum EJ2014. Food Science and Technology Research 24 (2):265–71. doi: 10.3136/fstr.24.265.
  • Yoon, Y., S. Kuppusamy, K. Cho, P. Kim, Y. Kwack, and Y. Lee. 2017. Influence of cold stress on contents of soluble sugars, vitamin C and free amino acids including gamma-aminobutyric acid (GABA) in spinach (Spinacia oleracea). Food Chemistry 215:185–92. doi: 10.1016/j.foodchem.2016.07.167.
  • Yoshimura, M., T. Toyoshi, A. Sano, T. Izumi, T. Fujii, C. Konishi, S. Inai, C. Matsukura, N. Fukuda, H. Ezura, et al. 2010. Antihypertensive effect of a γ-aminobutyric acid rich tomato cultivar ‘DG03-9’ in spontaneously hypertensive rats. Journal of Agricultural and Food Chemistry 58 (1):615–9. doi: 10.1021/jf903008t.
  • Yu, C., L. Zhu, H. Zhang, S. Bi, G. Wu, X. Qi, H. Zhang, L. Wang, H. Qian, and L. Zhou. 2021. Effect of cooking pressure on phenolic compounds, gamma-aminobutyric acid, antioxidant activity and volatile compounds of brown rice. Journal of Cereal Science 97:103127. doi: 10.1016/j.jcs.2020.103127.
  • Yu, J., M. Nam, and M. Kim. 2022. Metabolite profiling of chestnut (Castanea crenata) according to origin and harvest time using 1H NMR spectroscopy. Foods 11 (9):1325. doi: 10.3390/foods11091325.
  • Yu, L., X. Han, S. Cen, H. Duan, S. Feng, Y. Xue, F. Tian, J. Zhao, H. Zhang, Q. Zhai, et al. 2020. Beneficial effect of GABA-rich fermented milk on insomnia involving regulation of gut microbiota. Microbiological Research 233:126409. doi: 10.1016/j.micres.2020.126409.
  • Yu, Y., M. Li, C. Li, M. Niu, H. Dong, S. Zhao, C. Jia, and Y. Xu. 2023. Accelerated accumulation of γ-aminobutyric acid and modifications on its metabolic pathways in black rice grains by germination under cold stress. Foods 12 (6):1290. doi: 10.3390/foods12061290.
  • Zareian, M., E. Oskoueian, B. Forghani, and M. Ebrahimi. 2015. Production of a wheat-based fermented rice enriched with γ-amino butyric acid using Lactobacillus plantarum MNZ and its antihypertensive effects in spontaneously hypertensive rats. Journal of Functional Foods 16:194–203. doi: 10.1016/j.jff.2015.04.015.
  • Zareian, M., E. Oskoueian, M. Majdinasab, and B. Forghani. 2020. Production of GABA-enriched idli with ACE inhibitory and antioxidant properties using Aspergillus oryzae: The antihypertensive effects in spontaneously hypertensive rats. Food & Function 11 (5):4304–13. doi: 10.1039/C9FO02854D.
  • Zargarchi, S., and S. Saremnezhad. 2019. Gamma-aminobutyric acid, phenolics and antioxidant capacity of germinated indica paddy rice as affected by low-pressure plasma treatment. LWT 102:291–4. doi: 10.1016/j.lwt.2018.12.014.
  • Zhang, B., R.-M. Wang, P. Chen, T.-S. He, and B. Bai. 2022. Study on zinc accumulation, bioavailability, physicochemical and structural characteristics of brown rice combined with germination and zinc fortification. Food Research International (Ottawa, Ont.) 158:111450. doi: 10.1016/j.foodres.2022.111450.
  • Zhang, D., X. Wei, Z. Liu, X. Wu, C. Bao, Y. Sun, N. Su, and J. Cui. 2021. Transcriptome analysis reveals the molecular mechanism of GABA accumulation during quinoa (Chenopodium quinoa Willd.) germination. Journal of Agricultural and Food Chemistry 69 (41):12171–86. doi: 10.1021/acs.jafc.1c02933.
  • Zhang, L., L. Du, T. Shi, M. Xie, X. Liu, and M. Yu. 2022. Effects of pulsed light on germination and gamma-aminobutyric acid synthesis in brown rice. Journal of Food Science 87 (4):1601–9. doi: 10.1111/1750-3841.16087.
  • Zhang, N., S. Liu, L. Wang, and Pan, Q. 2020. Effects of germination and aeration treatment following segmented moisture conditioning on the γ-aminobutyric acid accumulation in germinated brown rice. International Journal of Agricultural and Biological Engineering 13 (5):234–40. doi: 10.25165/j.ijabe.20201305.5538.
  • Zhang, Q., N. Liu, S. Wang, Y. Liu, and H. Lan. 2019. Effects of cyclic cellulase conditioning and germination treatment on the γ-aminobutyric acid content and the cooking and taste qualities of germinated brown rice. Food Chemistry 289:232–9. doi: 10.1016/j.foodchem.2019.03.034.
  • Zhang, Q., J. Xiang, L. Zhang, X. Zhu, J. Evers, W. van der Werf, and L. Duan. 2014. Optimizing soaking and germination conditions to improve gamma-aminobutyric acid content in japonica and indica germinated brown rice. Journal of Functional Foods 10:283–91. doi: 10.1016/j.jff.2014.06.009.
  • Zhang, Y., M. Zhang, T. Li, X. Zhang, and L. Wang. 2022. Enhance production of γ-aminobutyric acid (GABA) and improve the function of fermented quinoa by cold stress. Foods 11 (23):3908. doi: 10.3390/foods11233908.
  • Zhao, W., Y. Li, W. Ma, Y. Ge, and Y. Huang. 2015. A study on quality components and sleep-promoting effects of GABA black tea. Food & Function 6 (10):3393–8. doi: 10.1039/C5FO00265F.
  • Zhong, Y., S. Wu, F. Chen, M. He, and J. Lin. 2019. Isolation of high γ‑aminobutyric acid‑producing lactic acid bacteria and fermentation in mulberry leaf powders. Experimental and Therapeutic Medicine 18 (1):147–53. doi: 10.3892/etm.2019.7557.
  • Zhu, N., T. Wang, L. Ge, Y. Li, X. Zhang, and H. Bao. 2017. γ-amino butyric acid (GABA) synthesis enabled by copper-catalyzed carboamination of alkenes. Organic Letters 19 (18):4718–21. doi: 10.1021/acs.orglett.7b01969.
  • Zhuang, K., Y. Jiang, X. Feng, L. Li, F. Dang, W. Zhang, and C. Man. 2018. Transcriptomic response to GABA-producing Lactobacillus plantarum CGMCC 1.2437 T induced by L-MSG. PloS One 13 (6):e0199021. doi: 10.1371/journal.pone.0199021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.