1,005
Views
0
CrossRef citations to date
0
Altmetric
Review

A critical review of RG-I pectin: sources, extraction methods, structure, and applications

ORCID Icon, , , , ORCID Icon, , ORCID Icon & show all

References

  • Ahmadi, S., C. Yu, D. Zaeim, D. Wu, X. Hu, X. Ye, and S. Chen. 2022. Increasing RG-I content and lipase inhibitory activity of pectic polysaccharides extracted from goji berry and raspberry by high-pressure processing. Food Hydrocolloids 126:107477. doi: 10.1016/j.foodhyd.2021.107477.
  • Akhtar, M., E. Dickinson, J. Mazoyer, and V. Langendorff. 2002. Emulsion stabilizing properties of depolymerized pectin. Food Hydrocolloids 16 (3):249–56. doi: 10.1016/S0268-005X(01)00095-9.
  • Ai, C., X. Guo, J. Lin, T. Zhang, and H. Meng. 2019. Characterization of the properties of amphiphilic, alkaline soluble polysaccharides from sugar beet pulp. Food Hydrocolloids 94:199–209. doi: 10.1016/j.foodhyd.2019.03.022.
  • Ai, L., Y.-C. Chung, S.-Y. Lin, K.-C. Lee, P. F.-H. Lai, Y. Xia, G. Wang, and S. W. Cui. 2018. Active pectin fragments of high in vitro antiproliferation activities toward human colon adenocarcinoma cells: Rhamnogalacturonan II. Food Hydrocolloids 83:239–45. doi: 10.1016/j.foodhyd.2018.05.017.
  • Alamri, M., A. Mohamed, and S. Hussain. 2013. Effects of alkaline-soluble okra gum on rheological and thermal properties of systems with wheat or corn starch. Food Hydrocolloids 30 (2):541–51. doi: 10.1016/j.foodhyd.2012.07.003.
  • Alba, K., A. Laws, and V. Kontogiorgos. 2015. Isolation and characterization of acetylated LM-pectins extracted from okra pods. Food Hydrocolloids 43:726–35. doi: 10.1016/j.foodhyd.2014.08.003.
  • Alba, K., and V. Kontogiorgos. 2017. Pectin at the oil-water interface: Relationship of molecular composition and structure to functionality. Food Hydrocolloids 68:211–8. doi: 10.1016/j.foodhyd.2016.07.026.
  • Alba, K., R. Bingham, and V. Kontogiorgos. 2017. M esoscopic structure of pectin in solution. Biopolymers 107 (6):e23016. doi: 10.1002/bip.23016.
  • Bagal-Kestwal, D. R., M. Pan, and B. Chiang. 2019. Properties and applications of gelatin, pectin, and carrageenan gels. Bio Monomers for Green Polymeric Composite Materials, vol. 6, 117–40.
  • Beukema, M., M. Faas, and P. de Vos. 2020. The effects of different dietary fiber pectin structures on the gastrointestinal immune barrier: Impact via gut microbiota and direct effects on immune cells. Experimental & Molecular Medicine 52 (9):1364–76. doi: 10.1038/s12276-020-0449-2.
  • Bindereif, B., H. Eichhöfer, M. Bunzel, H. Karbstein, D. Wefers, and U. Van der Schaaf. 2021. Arabinan side-chains strongly affect the emulsifying properties of acid-extracted sugar beet pectins. Food Hydrocolloids 121:106968. doi: 10.1016/j.foodhyd.2021.106968.
  • Bonnin, E., C. Garnier, and M. Ralet. 2014. Pectin-modifying enzymes and pectin-derived materials: Applications and impacts. Applied Microbiology and Biotechnology 98 (2):519–32. doi: 10.1007/s00253-013-5388-6.
  • Caffall, K. H., and D. Mohnen. 2009. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydrate Research 344 (14):1879–900. doi: 10.1016/j.carres.2009.05.021.
  • Cai, R., S. Pan, R. Li, X. Xu, S. Pan, and F. Liu. 2022. Curcumin loading and colon release of pectin gel beads: Effect of different de-esterification method. Food Chemistry 389:133130. doi: 10.1016/j.foodchem.2022.133130.
  • Cao, J., J. Yang, Z. Wang, M. Lu, and K. Yue. 2020. Modified citrus pectins by UV/H2O2 oxidation at acidic and basic conditions: Structures and in vitro anti-inflammatory, anti-proliferative activities. Carbohydrate Polymers 247:116742. doi: 10.1016/j.carbpol.2020.116742.
  • Cervantes-Paz, B., J. de Jesús Ornelas-Paz, S. Ruiz-Cruz, C. Rios-Velasco, V. Ibarra-Junquera, E. Yahia, and A. Gardea-Béjar. 2017. Effects of pectin on lipid digestion and possible implications for carotenoid bioavailability during pre-absorptive stages: A review. Food Research International (Ottawa, Ont.) 99 (Pt 2):917–27. doi: 10.1016/j.foodres.2017.02.012.
  • Chen, H., H. Niu, H. Zhang, Y. Yun, W. Chen, Q. Zhong, W. Chen, and X. Fu. 2019. Preparation and properties of ferulic acid-sugar beet pulp pectin ester and its application as a physical and antioxidative stabilizer in a fish oil-water emulsion. International Journal of Biological Macromolecules 139:290–7. doi: 10.1016/j.ijbiomac.2019.07.222.
  • Chen, H., X. Fu, and Z. Luo. 2016. Effect of molecular structure on emulsifying properties of sugar beet pulp pectin. Food Hydrocolloids 54:99–106. doi: 10.1016/j.foodhyd.2015.09.021.
  • Chen, M., X. Falourd, and M. Lahaye. 2021. Sequential natural deep eutectic solvent pretreatments of apple pomace: A novel way to promote water extraction of pectin and to tailor its main structural domains. Carbohydrate Polymers 266:118113. doi: 10.1016/j.carbpol.2021.118113.
  • Chen, S., J. Zheng, L. Zhang, H. Cheng, C. Orfila, X. Ye, and J. Chen. 2021. Synergistic gelling mechanism of RG-I rich citrus pectic polysaccharide at different esterification degree in calcium-induced gelation. Food Chemistry 350:129177. doi: 10.1016/j.foodchem.2021.129177.
  • Chen, X., J. Yang, M. Shen, Y. Chen, Q. Yu, and J. Xie. 2022. Structure, function and advance application of microwave-treated polysaccharide: A review. Trends in Food Science & Technology 123:198–209. doi: 10.1016/j.tifs.2022.03.016.
  • Chen, X., W. Xiao, M. Shen, Q. Yu, Y. Chen, J. Yang, and J. Xie. 2022. Changes in polysaccharides structure and bioactivity during Mesona chinensis Benth storage. Current Research in Food Science 5:392–400. doi: 10.1016/j.crfs.2022.01.024.
  • Chen, X., Y. Wang, M. Shen, Q. Yu, Y. Chen, L. Huang, and J. Xie. 2021. The water-soluble non-starch polysaccharides from natural resources against excessive oxidative stress: A potential health-promoting effect and its mechanisms. International Journal of Biological Macromolecules 171:320–30. doi: 10.1016/j.ijbiomac.2021.01.022.
  • Cheng, H., Z. Zhang, J. Leng, D. Liu, M. Hao, X. Gao, G. Tai, and Y. Zhou. 2013. The inhibitory effects and mechanisms of rhamnogalacturonan I pectin from potato on HT-29 colon cancer cell proliferation and cell cycle progression. International Journal of Food Sciences and Nutrition 64 (1):36–43. doi: 10.3109/09637486.2012.694853.
  • Chengxiao, Y., W. Dongmei, Z. Kai, L. Hou, H. Xiao, T. Ding, D. Liu, X. Ye, R. J. Linhardt, and S. Chen. 2021. Challenges of pectic polysaccharides as a prebiotic from the perspective of fermentation characteristics and anti-colitis activity. Carbohydrate Polymers 270:118377. doi: 10.1016/j.carbpol.2021.118377.
  • Cho, E., H. Jung, B. Lee, H. Kim, J. Rhee, and S. Yoo. 2019. Green process development for apple-peel pectin production by organic acid extraction. Carbohydrate Polymers 204:97–103. doi: 10.1016/j.carbpol.2018.09.086.
  • Choi, J., A. Synytsya, P. Capek, R. Bleha, R. Pohl, and Y. Park. 2016. Structural analysis and anti-obesity effect of a pectic polysaccharide isolated from Korean mulberry fruit Oddi (Morus alba L.). Carbohydrate Polymers 146:187–96. doi: 10.1016/j.carbpol.2016.03.043.
  • Christiaens, S., S. Van Buggenhout, K. Houben, Z. Jamsazzadeh Kermani, K. R. N. Moelants, E. D. Ngouémazong, A. Van Loey, and M. E. G. Hendrickx. 2016. Process–structure–function relations of pectin in food. Critical Reviews in Food Science and Nutrition 56 (6):1021–42. doi: 10.1080/10408398.2012.753029.
  • Cui, J., C. Zhao, S. Zhao, G. Tian, F. Wang, C. Li, F. Wang, and J. Zheng. 2020. Alkali + cellulase-extracted citrus pectins exhibit compact conformation and good fermentation properties. Food Hydrocolloids 108:106079. doi: 10.1016/j.foodhyd.2020.106079.
  • Cui, J., W. Ren, C. Zhao, W. Gao, G. Tian, Y. Bao, Y. Lian, and J. Zheng. 2020. The structure–property relationships of acid-and alkali-extracted grapefruit peel pectins. Carbohydrate Polymers 229:115524. doi: 10.1016/j.carbpol.2019.115524.
  • Daas, P., A. Voragen, and H. Schols. 2000. Characterization of non-esterified galacturonic acid sequences in pectin with endopolygalacturonase. Carbohydrate Research 326 (2):120–9. doi: 10.1016/s0008-6215(00)00037-9.
  • Dongowski, G., A. Lorenz, and J. Proll. 2002. The degree of methylation influences the degradation of pectin in the intestinal tract of rats and in vitro. The Journal of Nutrition 132 (7):1935–44. doi: 10.1093/jn/132.7.1935.
  • Dou, Z., C. Chen, and X. Fu. 2019. The effect of ultrasound irradiation on the physicochemical properties and α-glucosidase inhibitory effect of blackberry fruit polysaccharide. Food Hydrocolloids 96:568–76. doi: 10.1016/j.foodhyd.2019.06.002.
  • Dou, Z., C. Chen, Q. Huang, and X. Fu. 2022. In vitro digestion of the whole blackberry fruit: Bioaccessibility, bioactive variation of active ingredients and impacts on human gut microbiota. Food Chemistry 370:131001. doi: 10.1016/j.foodchem.2021.131001.
  • Elshahed, M., A. Miron, A. Aprotosoaie, and M. Farag. 2021. Pectin in diet: Interactions with the human microbiome, role in gut homeostasis, and nutrient-drug interactions. Carbohydrate Polymers 255:117388. doi: 10.1016/j.carbpol.2020.117388.
  • Ferreira-Lazarte, A., V. Kachrimanidou, M. Villamiel, R. Rastall, and F. Moreno. 2018. In vitro fermentation properties of pectins and enzymatic-modified pectins obtained from different renewable bioresources. Carbohydrate Polymers 199:482–91. doi: 10.1016/j.carbpol.2018.07.041.
  • Ferreira, S., C. Passos, P. Madureira, M. Vilanova, and M. Coimbra. 2015. Structure–function relationships of immunostimulatory polysaccharides: A review. Carbohydrate Polymers 132:378–96. doi: 10.1016/j.carbpol.2015.05.079.
  • Funami, T., G. Zhang, M. Hiroe, S. Noda, M. Nakauma, I. Asai, M. K. Cowman, S. Al-Assaf, and G. O. Phillips. 2007. Effects of the proteinaceous moiety on the emulsifying properties of sugar beet pectin. Food Hydrocolloids 21 (8):1319–29. doi: 10.1016/j.foodhyd.2006.10.009.
  • Funami, T., M. Nakauma, S. Ishihara, R. Tanaka, T. Inoue, and G. Phillips. 2011. Structural modifications of sugar beet pectin and the relationship of structure to functionality. Food Hydrocolloids 25 (2):221–9. doi: 10.1016/j.foodhyd.2009.11.017.
  • Gao, X., Y. Zhi, L. Sun, X. Peng, T. Zhang, H. Xue, G. Tai, and Y. Zhou. 2013. The inhibitory effects of a rhamnogalacturonan Ι (RG-I) domain from ginseng pectin on galectin-3 and its structure-activity relationship. The Journal of Biological Chemistry 288 (47):33953–65. doi: 10.1074/jbc.M113.482315.
  • Gao, X., Y. Zhi, T. Zhang, H. Xue, X. Wang, A. D. Foday, G. Tai, and Y. Zhou. 2012. Analysis of the neutral polysaccharide fraction of MCP and its inhibitory activity on galectin-3. Glycoconjugate Journal 29 (4):159–65. doi: 10.1007/s10719-012-9382-5.
  • Golovchenko, V., V. Khlopin, O. Patova, L. Feltsinger, M. Bilan, A. Dmitrenok, and A. Shashkov. 2022. Pectin from leaves of birch (Betula pendula Roth.): Results of NMR experiments and hypothesis of the RG-I structure. Carbohydrate Polymers 284:119186. doi: 10.1016/j.carbpol.2022.119186.
  • Grønhaug, T., H. Kiyohara, A. Sveaass, D. Diallo, H. Yamada, and B. Paulsen. 2011. Beta-D-(1→4)-galactan-containing side chains in RG-I regions of pectic polysaccharides from Biophytum petersianum Klotzsch. contribute to expression of immunomodulating activity against intestinal Peyer’s patch cells and macrophages. Phytochemistry 72 (17):2139–47. doi: 10.1016/j.phytochem.2011.08.011.
  • Guillotin, S., E. Bakx, P. Boulenguer, J. Mazoyer, H. Schols, and A. Voragen. 2005. Populations having different GalA blocks characteristics are present in commercial pectins which are chemically similar but have different functionalities. Carbohydrate Polymers 60 (3):391–8. doi: 10.1016/j.carbpol.2005.02.001.
  • Ho, G. T. T., A. Ahmed, Y. Zou, T. Aslaksen, H. Wangensteen, and H. Barsett. 2015. Structure–activity relationship of immunomodulating pectins from elderberries. Carbohydrate Polymers 125:314–22. doi: 10.1016/j.carbpol.2015.02.057.
  • Hou, Z., S. Chen, and X. Ye. 2021. High pressure processing accelarated the release of RG-I pectic polysaccharides from citrus peel. Carbohydrate Polymers 263:118005. doi: 10.1016/j.carbpol.2021.118005.
  • Hu, W., S. Chen, D. Wu, J. Zheng, and X. Ye. 2019. Ultrasonic-assisted citrus pectin modification in the bicarbonate-activated hydrogen peroxide system: Chemical and microstructural analysis. Ultrasonics Sonochemistry 58:104576. doi: 10.1016/j.ultsonch.2019.04.036.
  • Hu, W., S. Chen, D. Wu, K. Zhu, and X. Ye. 2021a. Physicochemical and macromolecule properties of RG-I enriched pectin from citrus wastes by manosonication extraction. International Journal of Biological Macromolecules 176:332–41. doi: 10.1016/j.ijbiomac.2021.01.216.
  • Hu, W., S. Chen, D. Wu, K. Zhu, and X. Ye. 2021b. Manosonication assisted extraction and characterization of pectin from different citrus peel wastes. Food Hydrocolloids 121:106952. doi: 10.1016/j.foodhyd.2021.106952.
  • Hu, W., X. Ye, T. Chantapakul, S. Chen, and J. Zheng. 2020. Manosonication extraction of RG-I pectic polysaccharides from citrus waste: Optimization and kinetics analysis. Carbohydrate Polymers 235:115982. doi: 10.1016/j.carbpol.2020.115982.
  • Hughes, R. 2001. Galectins as modulators of cell adhesion. Biochimie 83 (7):667–76.
  • Hwang, J., and J. Kokini. 1992. Contribution of the side branches to rheological properties of pectins. Carbohydrate Polymers 19 (1):41–50. doi: 10.1016/0144-8617(92)90053-S.
  • Jin, M., M. Li, R. Huang, X. Wu, Y. Sun, and Z. Xu. 2021. Structural features and anti-inflammatory properties of pectic polysaccharides: A review. Trends in Food Science & Technology 107:284–98. doi: 10.1016/j.tifs.2020.10.042.
  • Joanna, B., B. Michal, D. Piotr, W. Agnieszka, K. Dorota, and W. Izabela. 2018. Sugar beet pulp as a source of valuable biotechnological products. In Advances in biotechnology for food industry, 359–92. doi: 10.1016/B978-0-12-811443-8.00013-X.
  • Kaczmarska, A., P. Pieczywek, J. Cybulska, and A. Zdunek. 2022. Structure and functionality of Rhamnogalacturonan I in the cell wall and in solution: A review. Carbohydrate Polymers 278:118909. doi: 10.1016/j.carbpol.2021.118909.
  • Kaya, M., A. Sousa, M. Crépeau, S. Sørensen, and M. Ralet. 2014. Characterization of citrus pectin samples extracted under different conditions: Influence of acid type and pH of extraction. Annals of Botany 114 (6):1319–26. doi: 10.1093/aob/mcu150.
  • Khedmat, L.,A. Izadi,V. Mofid, andS. Y. Mojtahedi. 2020. Recent advances in extracting pectin by single and combined ultrasound techniques: A review of techno-functional and bioactive health-promoting aspects. Carbohydrate Polymers 229:115474. doi: 10.1016/j.carbpol.2019.115474.
  • Khodaei, N., and S. Karboune. 2013. Extraction and structural characterisation of rhamnogalacturonan I-type pectic polysaccharides from potato cell wall. Food Chemistry 139 (1-4):617–23. doi: 10.1016/j.foodchem.2013.01.110.
  • Khodaei, N., and S. Karboune. 2014. Enzymatic extraction of galactan-rich rhamnogalacturonan I from potato cell wall by-product. LWT – Food Science and Technology 57 (1):207–16. doi: 10.1016/j.lwt.2013.12.034.
  • Khodaei, N., S. Karboune, and V. Orsat. 2016. Microwave-assisted alkaline extraction of galactan-rich rhamnogalacturonan I from potato cell wall by-product. Food Chemistry 190:495–505. doi: 10.1016/j.foodchem.2015.05.082.
  • Klaassen, M., and L. Trindade. 2020. RG-I galactan side-chains are involved in the regulation of the water-binding capacity of potato cell walls. Carbohydrate Polymers 227:115353. doi: 10.1016/j.carbpol.2019.115353.
  • Kontogiorgos, V. 2019. Polysaccharides at fluid interfaces of food systems. Advances in Colloid and Interface Science 270:28–37. doi: 10.1016/j.cis.2019.05.008.
  • Košťálová, Z., Z. Hromádková, and A. Ebringerová. 2013. Structural diversity of pectins isolated from the Styrian oil-pumpkin (Cucurbita pepo var. styriaca) fruit. Carbohydrate Polymers 93 (1):163–71. doi: 10.1016/j.carbpol.2012.05.017.
  • Kpodo, F., J. Agbenorhevi, K. Alba, R. Bingham, I. Oduro, G. Morris, and V. Kontogiorgos. 2017. Pectin isolation and characterization from six okra genotypes. Food Hydrocolloids 72:323–30. doi: 10.1016/j.foodhyd.2017.06.014.
  • Kumar, M., M. Tomar, V. Saurabh, M. Sasi, S. Punia, J. Potkule, C. Maheshwari, S. Changan, B. Bhushan, S. Singh, et al. 2021. Delineating the inherent functional descriptors and biofunctionalities of pectic polysaccharides. Carbohydrate Polymers 269:118319. doi: 10.1016/j.carbpol.2021.118319.
  • Langner, E., W. Rzeski, J. Kaczor, and M. Kandefer-Szerszen. 2009. Tumour cell growth-inhibiting properties of water extract isolated from heated potato fibre (Potex). Journal of Pre-Clinical and Clinical Research 3 (1):36–41.
  • Larsen, F., I. Byg, I. Damager, J. Diaz, S. Engelsen, and P. Ulvskov. 2011. Residue specific hydration of primary cell wall potato pectin identified by solid-state 13C single-pulse MAS and CP/MAS NMR spectroscopy. Biomacromolecules 12 (5):1844–50. doi: 10.1021/bm2001928.
  • Larsen, N., C. Bussolo de Souza, L. Krych, T. Barbosa Cahú, M. Wiese, W. Kot, K. M. Hansen, A. Blennow, K. Venema, and L. Jespersen. 2019. Potential of pectins to beneficially modulate the gut microbiota depends on their structural properties. Frontiers in Microbiology 10:223. doi: 10.3389/fmicb.2019.00223.
  • Lee, H., Y. Kim, and H. Park. 2022. Pectic polysaccharides: Targeting gut microbiota in obesity and intestinal health. Carbohydrate Polymers 287:119363. doi: 10.1016/j.carbpol.2022.119363.
  • Leroux, J., V. Langendorff, G. Schick, V. Vaishnav, and J. Mazoyer. 2003. Emulsion stabilizing properties of pectin. Food Hydrocolloids 17 (4):455–62. doi: 10.1016/S0268-005X(03)00027-4.
  • Li, J., X. Yang, X. Li, Z. Zhang, Z. Wei, Z. Xing, S. Deng, and F. Duan. 2020. Okra polysaccharides/gelatin complex coacervate as pH-responsive and intestine-targeting delivery protects isoquercitin bioactivity. International Journal of Biological Macromolecules 159:487–96. doi: 10.1016/j.ijbiomac.2020.05.067.
  • Li, X., Y. Dong, Y. Guo, Z. Zhang, L. Jia, H. Gao, Z. Xing, and F. Duan. 2019. Okra polysaccharides reduced the gelling-required sucrose content in its synergistic gel with high-methoxyl pectin by microphase separation effect. Food Hydrocolloids 95:506–16. doi: 10.1016/j.foodhyd.2019.04.069.
  • Li, X., Z. Wei, X. Wang, F. Duan, L. Xiong, J. Li, J. Tian, L. Jia, and H. Gao. 2021. Premna microphylla Turcz leaf pectin exhibited antioxidant and anti-inflammatory activities in LPS-stimulated RAW 264.7 macrophages. Food Chemistry 349:129164. doi: 10.1016/j.foodchem.2021.129164.
  • Liu, H., L. Deng, T. Dai, J. Chen, W. Liu, C. Liu, M. Chen, and R. Liu. 2022. Emulsifying and emulsion stabilization mechanism of pectin from Nicandra physaloides (Linn.) Gaertn seeds: Comparison with apple and citrus pectin. Food Hydrocolloids 130:107674. doi: 10.1016/j.foodhyd.2022.107674.
  • Lo, T., C. Chang, K. Chiu, P. Tsay, and J. Jen. 2011. Correlation evaluation of antioxidant properties on the monosaccharide components and glycosyl linkages of polysaccharide with different measuring methods. Carbohydrate Polymers 86 (1):320–7. doi: 10.1016/j.carbpol.2011.04.056.
  • Makshakova, O., D. Faizullin, P. Mikshina, T. Gorshkova, and Y. Zuev. 2018. Spatial structures of rhamnogalacturonan I in gel and colloidal solution identified by 1D and 2D-FTIR spectroscopy. Carbohydrate Polymers 192:231–9. doi: 10.1016/j.carbpol.2018.03.059.
  • Maksymowicz, J., A. Palko-Łabuz, B. Sobieszczańska, M. Chmielarz, M. Ferens-Sieczkowska, M. Skonieczna, A. Wikiera, O. Wesołowska, and K. Środa-Pomianek. 2022. The use of endo-cellulase and endo-xylanase for the extraction of apple pectins as factors modifying their anticancer properties and affecting their synergy with the active form of irinotecan. Pharmaceuticals 15 (6):732. doi: 10.3390/ph15060732.
  • Mao, G., S. Li, C. Orfila, X. Shen, S. Zhou, R. J. Linhardt, X. Ye, and S. Chen. 2019. Depolymerized RG-I-enriched pectin from citrus segment membranes modulates gut microbiota, increases SCFA production, and promotes the growth of Bifidobacterium spp., Lactobacillus spp. and Faecalibaculum spp. Food & Function 10 (12):7828–43. doi: 10.1039/c9fo01534e.
  • Mao, Y., R. Lei, J. Ryan, F. Arrutia Rodriguez, B. Rastall, A. Chatzifragkou, C. Winkworth-Smith, S. E. Harding, R. Ibbett, and E. Binner. 2019. Understanding the influence of processing conditions on the extraction of rhamnogalacturonan-I “hairy” pectin from sugar beet pulp. Food Chemistry: X 2:100026. doi: 10.1016/j.fochx.2019.100026.
  • Mao, Y., R. Millett, C. Lee, G. Yakubov, S. Harding, and E. Binner. 2020. Investigating the influence of pectin content and structure on its functionality in bio-flocculant extracted from okra. Carbohydrate Polymers 241:116414. doi: 10.1016/j.carbpol.2020.116414.
  • Maria-Ferreira, D., A. M. Nascimento, T. R. Cipriani, A. P. Santana-Filho, P. S. Watanabe, D. M. G. Sant’Ana, F. B. Luciano, K. C. P. Bocate, R. M. van den Wijngaard, M. F. P. Werner, et al. 2018. Rhamnogalacturonan, a chemically-defined polysaccharide, improves intestinal barrier function in DSS-induced colitis in mice and human Caco-2 cells. Scientific Reports 8 (1):1–14. doi: 10.1038/s41598-018-30526-2.
  • Maxwell, E., I. Colquhoun, H. Chau, A. Hotchkiss, K. Waldron, V. Morris, and N. Belshaw. 2015. Rhamnogalacturonan I containing homogalacturonan inhibits colon cancer cell proliferation by decreasing ICAM1 expression. Carbohydrate Polymers 132:546–53. doi: 10.1016/j.carbpol.2015.06.082.
  • Maxwell, E., I. Colquhoun, H. Chau, A. Hotchkiss, K. Waldron, V. Morris, and N. Belshaw. 2016. Modified sugar beet pectin induces apoptosis of colon cancer cells via an interaction with the neutral sugar side-chains. Carbohydrate Polymers 136:923–9. doi: 10.1016/j.carbpol.2015.09.063.
  • Maxwell, E., N. Belshaw, K. Waldron, and V. Morris. 2012. Pectin–An emerging new bioactive food polysaccharide. Trends in Food Science & Technology 24 (2):64–73. doi: 10.1016/j.tifs.2011.11.002.
  • McClements, D. J. 2007. Critical review of techniques and methodologies for characterization of emulsion stability. Critical Reviews in Food Science and Nutrition 47 (7):611–49. doi: 10.1080/10408390701289292.
  • McClements, D. J., and E. A. Decker. 2000. Lipid oxidation in oil‐in‐water emulsions: Impact of molecular environment on chemical reactions in heterogeneous food systems. Journal of Food Science 65 (8):1270–82. doi: 10.1111/j.1365-2621.2000.tb10596.x.
  • Meresta, A., J. Folkert, T. Gaber, K. Miksch, F. Buttgereit, J. Detert, N. Pischon, and K. Gurzawska. 2017. Plant-derived pectin nanocoatings to prevent inflammatory cellular response of osteoblasts following Porphyromonas gingivalis infection. International Journal of Nanomedicine 12:433–45. doi: 10.2147/IJN.S113740.
  • Mieszkowska, A., J. Folkert, T. Gaber, K. Miksch, and K. Gurzawska. 2017. Pectin nanocoating reduces proinflammatory fibroblast response to bacteria. Journal of Biomedical Materials Research. Part A 105 (12):3475–81. doi: 10.1002/jbm.a.36170.
  • Mikshina, P., O. Makshakova, A. Petrova, I. Gaifullina, B. Idiyatullin, T. Gorshkova, and Y. Zuev. 2017. Gelation of rhamnogalacturonan I is based on galactan side chain interaction and does not involve chemical modifications. Carbohydrate Polymers 171:143–51. doi: 10.1016/j.carbpol.2017.05.013.
  • Morris, G., and M. Ralet. 2012. The effect of neutral sugar distribution on the dilute solution conformation of sugar beet pectin. Carbohydrate Polymers 88 (4):1488–91. doi: 10.1016/j.carbpol.2012.02.020.
  • Morris, G., M. Ralet, E. Bonnin, J. Thibault, and S. Harding. 2010. Physical characterisation of the rhamnogalacturonan and homogalacturonan fractions of sugar beet (Beta vulgaris) pectin. Carbohydrate Polymers 82 (4):1161–7. doi: 10.1016/j.carbpol.2010.06.049.
  • Moslemi, M. 2021. Reviewing the recent advances in application of pectin for technical and health promotion purposes: From laboratory to market. Carbohydrate Polymers 254:117324. doi: 10.1016/j.carbpol.2020.117324.
  • Nakamura, A., H. Furuta, H. Maeda, T. Takao, and Y. Nagamatsu. 2002. Structural studies by stepwise enzymatic degradation of the main backbone of soybean soluble polysaccharides consisting of galacturonan and rhamnogalacturonan. Bioscience, Biotechnology, and Biochemistry 66 (6):1301–13. doi: 10.1271/bbb.66.1301.
  • Naqash, F., F. Masoodi, S. Rather, S. Wani, and A. Gani. 2017. Emerging concepts in the nutraceutical and functional properties of pectin–A Review. Carbohydrate Polymers 168:227–39. doi: 10.1016/j.carbpol.2017.03.058.
  • Ndeh, D., A. Rogowski, A. Cartmell, A. S. Luis, A. Baslé, J. Gray, I. Venditto, J. Briggs, X. Zhang, A. Labourel, et al. 2017. Complex pectin metabolism by gut bacteria reveals novel catalytic functions. Nature 544 (7648):65–70. doi: 10.1038/nature21725.
  • Neckebroeck, B., S. Verkempinck, G. Vaes, K. Wouters, J. Magnée, M. Hendrickx, and A. Van Loey. 2020. Advanced insight into the emulsifying and emulsion stabilizing capacity of carrot pectin subdomains. Food Hydrocolloids 102:105594. doi: 10.1016/j.foodhyd.2019.105594.
  • Ngouémazong, D., G. Kabuye, I. Fraeye, R. Cardinaels, A. Van Loey, P. Moldenaers, and M. Hendrickx. 2012. Effect of debranching on the rheological properties of Ca2+–pectin gels. Food Hydrocolloids 26 (1):44–53. doi: 10.1016/j.foodhyd.2011.04.009.
  • Ngouémazong, E., S. Christiaens, A. Shpigelman, A. Van Loey, and M. Hendrickx. 2015. The emulsifying and emulsion‐stabilizing properties of pectin: A review. Comprehensive Reviews in Food Science and Food Safety 14 (6):705–18. doi: 10.1111/1541-4337.12160.
  • Nicholson, J. K., E. Holmes, J. Kinross, R. Burcelin, G. Gibson, W. Jia, and S. Pettersson. 2012. Host-gut microbiota metabolic interactions. Science (New York, N.Y.) 336 (6086):1262–7. doi: 10.1126/science.1223813.
  • Ning, X., Y. Liu, M. Jia, Q. Wang, Z. Sun, L. Ji, K. H. Mayo, Y. Zhou, and L. Sun. 2021. Pectic polysaccharides from Radix Sophorae Tonkinensis exhibit significant antioxidant effects. Carbohydrate Polymers 262:117925. doi: 10.1016/j.carbpol.2021.117925.
  • Niu, H., K. Hou, H. Chen, and X. Fu. 2022. A review of sugar beet pectin-stabilized emulsion: Extraction, structure, interfacial self-assembly and emulsion stability. Critical Reviews in Food Science and Nutrition 1–21. doi: 10.1080/10408398.2022.2109586.
  • Niu, H., W. Chen, W. Chen, Y. Yun, Q. Zhong, X. Fu, H. Chen, and G. Liu. 2019. Preparation and characterization of a modified-β-cyclodextrin/β-carotene inclusion complex and its application in pickering emulsions. Journal of Agricultural and Food Chemistry 67 (46):12875–84. doi: 10.1021/acs.jafc.9b05467.
  • Niu, H., W. Wang, Z. Dou, X. Chen, X. Chen, H. Chen, and X. Fu. 2023. Multiscale combined techniques for evaluating emulsion stability: A critical review. Advances in Colloid and Interface Science 311:102813. doi: 10.1016/j.cis.2022.102813.
  • Niu, H., X. Chen, T. Luo, H. Chen, and X. Fu. 2022a. Relationships between the behavior of three different sources of pectin at the oil-water interface and the stability of the emulsion. Food Hydrocolloids . 128:107566. doi: 10.1016/j.foodhyd.2022.107566.
  • Niu, H., X. Chen, T. Luo, H. Chen, and X. Fu. 2022b. The interfacial behavior and long-term stability of emulsions stabilized by gum arabic and sugar beet pectin. Carbohydrate Polymers 291:119623. doi: 10.1016/j.carbpol.2022.119623.
  • Noreen, A., Z.-I.-H. Nazli, J. Akram, I. Rasul, A. Mansha, N. Yaqoob, R. Iqbal, S. Tabasum, M. Zuber, and K. M. Zia. 2017. Pectins functionalized biomaterials; a new viable approach for biomedical applications: A review. International Journal of Biological Macromolecules 101:254–72. doi: 10.1016/j.ijbiomac.2017.03.029.
  • Ogawa, S., E. Decker, and D. McClements. 2003. Influence of environmental conditions on the stability of oil in water emulsions containing droplets stabilized by lecithin-chitosan membranes. Journal of Agricultural and Food Chemistry 51 (18):5522–7. doi: 10.1021/jf026103d.
  • Ognyanov, M., M. Nikolova, I. Yanakieva, V. Kussovski, and M. Kratchanova. 2013. Influence of composition on the biological activity of pectic polysaccharides from leek. Journal of BioScience & Biotechnology 2 (1):13–20.
  • Olano-Martin, E., G. R. Gibson, and R. A. Rastell. 2002. Comparison of the in vitro bifidogenic properties of pectins and pectic‐oligosaccharides. Journal of Applied Microbiology 93 (3):505–11. doi: 10.1046/j.1365-2672.2002.01719.x.
  • O’Neill, M. A., I. Black, B. Urbanowicz, V. Bharadwaj, M. Crowley, S. Koj, and M. J. Peña. 2020. Locating methyl-etherified and methyl-esterified uronic acids in the plant cell wall pectic polysaccharide Rhamnogalacturonan II. SLAS Technology 25 (4):329–44. doi: 10.1177/2472630320923321.
  • O’Neill, M., S. Eberhard, P. Albersheim, and G. Darvill. 2001. Requirement of borate cross-linking of cell wall rhamnogalacturonan II for Arabidopsis growth. Science (New York, N.Y.) 294 (5543):846–9. doi: 10.1126/science.1062319.
  • O’Neill, M., T. Ishii, P. Albersheim, and A. Darvill. 2004. Rhamnogalacturonan II: Structure and function of a borate cross-linked cell wall pectic polysaccharide. Annual Review of Plant Biology 55:109–39. doi: 10.1146/annurev.arplant.55.031903.141750.
  • Pellerin, P., T. Doco, S. Vida, P. Williams, J. M. Brillouet, and M. A. O’Neill. 1996. Structural characterization of red wine rhamnogalacturonan II. Carbohydrate Research 290 (2):183–97. doi: 10.1016/0008-6215(96)00139-5.
  • Sabater, C., J. Molina-Tijeras, T. Vezza, N. Corzo, A. Montilla, and P. Utrilla. 2019. Intestinal anti-inflammatory effects of artichoke pectin and modified pectin fractions in the dextran sulfate sodium model of mice colitis. Artificial neural network modelling of inflammatory markers. Food & Function 10 (12):7793–805. doi: 10.1039/c9fo02221j.
  • Sahasrabudhe, N. M., M. Beukema, L. Tian, B. Troost, J. Scholte, E. Bruininx, G. Bruggeman, M. van den Berg, A. Scheurink, H. A. Schols, et al. 2018. Dietary fiber pectin directly blocks toll-like receptor 2–1 and prevents doxorubicin-induced ileitis. Frontiers in Immunology 9:383. doi: 10.3389/fimmu.2018.00383.
  • Schmidt, U., L. Koch, C. Rentschler, T. Kurz, H. Endreß, and H. Schuchmann. 2015. Effect of molecular weight reduction, acetylation and esterification on the emulsification properties of citrus pectin. Food Biophysics 10 (2):217–27. doi: 10.1007/s11483-014-9380-1.
  • Schols, H., and A. Voragen. 1996. Complex pectins: Structure elucidation using enzymes. In Progress in biotechnology, Vol. 14, 3–19. Elsevier. doi:10.1016/S0921-0423(96)80242-5.
  • Sengkhamparn, N., E. Bakx, R. Verhoef, H. Schols, T. Sajjaanantakul, and A. Voragen. 2009. Okra pectin contains an unusual substitution of its rhamnosyl residues with acetyl and alpha-linked galactosyl groups. Carbohydrate Research 344 (14):1842–51. doi: 10.1016/j.carres.2008.11.022.
  • Sengkhamparn, N., R. Verhoef, H. Schols, T. Sajjaanantakul, and A. Voragen. 2009. Characterisation of cell wall polysaccharides from okra (Abelmoschus esculentus (L.) Moench). Carbohydrate Research 344 (14):1824–32. doi: 10.1016/j.carres.2008.10.012.
  • Sheng, J., and Y. Sun. 2014. Antioxidant properties of different molecular weight polysaccharides from Athyrium multidentatum (Doll.) Ching. Carbohydrate Polymers 108:41–5. doi: 10.1016/j.carbpol.2014.03.011.
  • Siew, C. K., and P. A. Williams. 2008. Role of protein and ferulic acid in the emulsification properties of sugar beet pectin. Journal of Agricultural and Food Chemistry 56 (11):4164–71. doi: 10.1021/jf073358o.
  • Sila, D., S. Van Buggenhout, T. Duvetter, I. Fraeye, A. De Roeck, A. Van Loey, and M. Hendrickx. 2009. Pectins in processed fruits and vegetables: Part II—Structure–function relationships. Comprehensive Reviews in Food Science and Food Safety 8 (2):86–104. doi: 10.1111/j.1541-4337.2009.00071.x.
  • Son, S. U., H. W. Lee, and K. S. Shin. 2023. Immunostimulating activities and anti-cancer efficacy of rhamnogalacturonan-I rich polysaccharide purified from Panax ginseng leaf. Food Bioscience 53:102618. doi: 10.1016/j.fbio.2023.102618.
  • Sousa, A., H. Nielsen, I. Armagan, J. Larsen, and S. Sørensen. 2015. The impact of rhamnogalacturonan-I side chain monosaccharides on the rheological properties of citrus pectin. Food Hydrocolloids 47:130–9. doi: 10.1016/j.foodhyd.2015.01.013.
  • Tan, H., and S. Nie. 2020. Deciphering diet-gut microbiota-host interplay: Investigations of pectin. Trends in Food Science & Technology 106:171–81. doi: 10.1016/j.tifs.2020.10.010.
  • Tang, S., M. Jiang, C. Huang, C. Lai, Y. Fan, and Q. Yong. 2018. Characterization of arabinogalactans from Larix principis-rupprechtii and their effects on NO production by macrophages. Carbohydrate Polymers 200:408–15. doi: 10.1016/j.carbpol.2018.08.027.
  • Torkova, A., K. Lisitskaya, I. Filimonov, O. Glazunova, G. Kachalova, V. Golubev, and T. Fedorova. 2018. Physicochemical and functional properties of Cucurbita maxima pumpkin pectin and commercial citrus and apple pectins: A comparative evaluation. PloS One 13 (9):e0204261. doi: 10.1371/journal.pone.0204261.
  • Van den Abbeele, P., L. Verstrepen, J. Ghyselinck, R. Albers, M. Marzorati, and A. Mercenier. 2020. A novel non-digestible, carrot-derived polysaccharide (cRG-I) selectively modulates the human gut microbiota while promoting gut barrier integrity: An integrated in vitro approach. Nutrients 12 (7):1917. doi: 10.3390/nu12071917.
  • Verkempinck, S., L. Salvia-Trujillo, S. Denis, A. Van Loey, M. Hendrickx, and T. Grauwet. 2018. Pectin influences the kinetics of in vitro lipid digestion in oil-in-water emulsions. Food Chemistry 262:150–61. doi: 10.1016/j.foodchem.2018.04.082.
  • Villa-Rivera, M., H. Cano-Camacho, E. López-Romero, and M. Zavala-Páramo. 2021. The role of arabinogalactan type II degradation in plant-microbe interactions. Frontiers in Microbiology 12:730543. doi: 10.3389/fmicb.2021.730543.
  • Vincken, J., H. Schols, R. Oomen, M. McCann, P. Ulvskov, A. Voragen, and R. Visser. 2003. If homogalacturonan were a side chain of rhamnogalacturonan I. Implications for cell wall architecture. Plant Physiology 132 (4):1781–9. doi: 10.1104/pp.103.022350.
  • Vogt, L. M., D. Meyer, G. Pullens, M. M. Faas, K. Venema, U. Ramasamy, H. A. Schols, and P. de Vos. 2014. Toll-like receptor 2 activation by β2→ 1-fructans protects barrier function of T84 human intestinal epithelial cells in a chain length–dependent manner. The Journal of Nutrition 144 (7):1002–8. doi: 10.3945/jn.114.191643.
  • Vogt, L. M., N. M. Sahasrabudhe, U. Ramasamy, D. Meyer, G. Pullens, M. M. Faas, K. Venema, H. A. Schols, and P. de Vos. 2016. The impact of lemon pectin characteristics on TLR activation and T84 intestinal epithelial cell barrier function. Journal of Functional Foods 22:398–407. doi: 10.1016/j.jff.2016.02.002.
  • Voragen, A., G. Coenen, R. Verhoef, and H. Schols. 2009. Pectin, a versatile polysaccharide present in plant cell walls. Structural Chemistry 20 (2):263–75. doi: 10.1007/s11224-009-9442-z.
  • Wang, W., C. Li, C. Chen, X. Fu, and R. Liu. 2022. Effect of chitosan oligosaccharide glycosylation on the emulsifying property of lactoferrin. International Journal of Biological Macromolecules 209 (Pt A):93–106. doi: 10.1016/j.ijbiomac.2022.03.169.
  • Wang, W., W. Chen, M. Zou, R. Lv, D. Wang, F. Hou, H. Feng, X. Ma, J. Zhong, T. Ding, et al. 2018. Applications of power ultrasound in oriented modification and degradation of pectin: A review. Journal of Food Engineering 234:98–107. doi: 10.1016/j.jfoodeng.2018.04.016.
  • Wang, W., X. Ma, P. Jiang, L. Hu, Z. Zhi, J. Chen, T. Ding, X. Ye, and D. Liu. 2016. Characterization of pectin from grapefruit peel: A comparison of ultrasound-assisted and conventional heating extractions. Food Hydrocolloids. 61:730–9. doi: 10.1016/j.foodhyd.2016.06.019.
  • Wikiera, A., M. Grabacka, Ł. Byczyński, B. Stodolak, and M. Mika. 2021. Enzymatically extracted apple pectin possesses antioxidant and antitumor activity. Molecules 26 (5):1434. doi: 10.3390/molecules26051434.
  • Wikiera, A., M. Mika, A. Starzyńska-Janiszewska, and B. Stodolak. 2015. Application of Celluclast 1.5 L in apple pectin extraction. Carbohydrate Polymers 134:251–7. doi: 10.1016/j.carbpol.2015.07.051.
  • Wikiera, A., M. Mika, A. Starzyńska-Janiszewska, and B. Stodolak. 2016. Endo-xylanase and endo-cellulase-assisted extraction of pectin from apple pomace. Carbohydrate Polymers 142:199–205. doi: 10.1016/j.carbpol.2016.01.063.
  • Williams, P. A., C. Sayers, C. Viebke, C. Senan, J. Mazoyer, and P. Boulenguer. 2005. Elucidation of the emulsification properties of sugar beet pectin. Journal of Agricultural and Food Chemistry 53 (9):3592–7. doi: 10.1021/jf0404142.
  • Wu, D., J. Zheng, G. Mao, W. Hu, X. Ye, R. Linhardt, and S. Chen. 2020. Rethinking the impact of RG-I mainly from fruits and vegetables on dietary health. Critical Reviews in Food Science and Nutrition 60 (17):2938–60. doi: 10.1080/10408398.2019.1672037.
  • Wu, D., J. Zheng, W. Hu, X. Zheng, Q. He, R. J. Linhardt, X. Ye, and S. Chen. 2020. Structure-activity relationship of citrus segment membrane RG-I pectin against Galectin-3: The galactan is not the only important factor. Carbohydrate Polymers 245:116526. doi: 10.1016/j.carbpol.2020.116526.
  • Wu, D., X. Ye, R. J. Linhardt, X. Liu, K. Zhu, C. Yu, T. Ding, D. Liu, Q. He, and S. Chen. 2021. Dietary pectic substances enhance gut health by its polycomponent: A review. Comprehensive Reviews in Food Science and Food Safety 20 (2):2015–39. doi: 10.1111/1541-4337.12723.
  • Wu, D., X. Zheng, W. Hu, K. Zhu, C. Yu, Q. He, R. J. Linhardt, X. Ye, and S. Chen. 2021. Anti-inflammation effects of highly purified low-Mw RG-I pectins on LPS-activated macrophages. Bioactive Carbohydrates and Dietary Fibre 26:100283. doi: 10.1016/j.bcdf.2021.100283.
  • Wu, D., Y. He, Q. Yuan, S. Wang, R. Gan, Y. Hu, and L. Zou. 2022. Effects of molecular weight and degree of branching on microbial fermentation characteristics of okra pectic-polysaccharide and its selective impact on gut microbial composition. Food Hydrocolloids 132:107897. doi: 10.1016/j.foodhyd.2022.107897.
  • Wu, Q., C. Zheng, Z. Ning, and B. Yang. 2007. Modification of low molecular weight polysaccharides from Tremella fuciformis and their antioxidant activity in vitro. International Journal of Molecular Sciences 8 (7):670–9. doi: 10.3390/i8070670.
  • Xu, H., K. Tai, T. Wei, F. Yuan, and Y. Gao. 2017. Physicochemical and in vitro antioxidant properties of pectin extracted from hot pepper (Capsicum annuum L. var. acuminatum (Fingerh.)) residues with hydrochloric and sulfuric acids. Journal of the Science of Food and Agriculture 97 (14):4953–60. doi: 10.1002/jsfa.8372.
  • Yang, J., T. Mu, and M. Ma. 2018. Extraction, structure, and emulsifying properties of pectin from potato pulp. Food Chemistry 244:197–205. doi: 10.1016/j.foodchem.2017.10.059.
  • Yang, X., Y. Zhao, and Y. Lv. 2007. Chemical composition and antioxidant activity of an acidic polysaccharide extracted from Cucurbita moschata Duchesne ex Poiret. Journal of Agricultural and Food Chemistry 55 (12):4684–90. doi: 10.1021/jf070241r.
  • Yao, Y., J. Yao, Z. Du, P. Wang, and K. Ding. 2018. Structural elucidation and immune-enhancing activity of an arabinogalactan from flowers of Carthamus tinctorius L. Carbohydrate Polymers 202:134–42. doi: 10.1016/j.carbpol.2018.08.098.
  • Yapo, B. M. 2011a. Rhamnogalacturonan-I: A structurally puzzling and functionally versatile polysaccharide from plant cell walls and mucilages. Polymer Reviews 51 (4):391–413. doi: 10.1080/15583724.2011.615962.
  • Yapo, B. M. 2011b. Pectic substances: From simple pectic polysaccharides to complex pectins—A new hypothetical model. Carbohydrate Polymers 86 (2):373–85. doi: 10.1016/j.carbpol.2011.05.065.
  • Yapo, B. M. 2011c. Pectin rhamnogalacturonan II: On the “Small Stem with Four Branches” in the primary cell walls of plants. International Journal of Carbohydrate Chemistry 2011:1–11. doi: 10.1155/2011/964521.
  • Yapo, B. M., and K. L. Koffi. 2013. Utilisation of model pectins reveals the effect of demethylated block size frequency on calcium gel formation. Carbohydrate Polymers 92 (1):1–10. doi: 10.1016/j.carbpol.2012.09.010.
  • Yin, X., Y. Zheng, X. Kong, S. Cao, S. Chen, D. Liu, X. Ye, and J. Tian. 2021. RG-І pectin affects the physicochemical properties and digestibility of potato starch. Food Hydrocolloids 117:106687. doi: 10.1016/j.foodhyd.2021.106687.
  • Yu, C., S. Ahmadi, S. Shen, D. Wu, H. Xiao, T. Ding, D. Liu, X. Ye, and S. Chen. 2022. Structure and fermentation characteristics of five polysaccharides sequentially extracted from sugar beet pulp by different methods. Food Hydrocolloids. 126:107462. doi: 10.1016/j.foodhyd.2021.107462.
  • Yu, L., X. Zhang, S. Li, X. Liu, L. Sun, H. Liu, J. Iteku, Y. Zhou, and G. Tai. 2010. Rhamnogalacturonan I domains from ginseng pectin. Carbohydrate Polymers 79 (4):811–7. doi: 10.1016/j.carbpol.2009.08.028.
  • Zaidel, D., and A. Meyer. 2012. Biocatalytic cross-linking of pectic polysaccharides for designed food functionality: Structures, mechanisms, and reactions. Biocatalysis and Agricultural Biotechnology 1 (3):207–19. doi: 10.1016/j.bcab.2012.03.007.
  • Zdunek, A., P. Pieczywek, and J. Cybulska. 2021. The primary, secondary, and structures of higher levels of pectin polysaccharides. Comprehensive Reviews in Food Science and Food Safety 20 (1):1101–17. doi: 10.1111/1541-4337.12689.
  • Zhang, H., J. Chen, J. Li, L. Yan, S. Li, X. Ye, D. Liu, T. Ding, R. J. Linhardt, C. Orfila, et al. 2018. Extraction and characterization of RG-I enriched pectic polysaccharides from mandarin citrus peel. Food Hydrocolloids 79:579–86. doi: 10.1016/j.foodhyd.2017.12.002.
  • Zhang, L., J. Zheng, Y. Wang, X. Ye, S. Chen, H. Pan, and J. Chen. 2022. Fabrication of rhamnogalacturonan-I enriched pectin-based emulsion gels for protection and sustained release of curcumin. Food Hydrocolloids 128:107592. doi: 10.1016/j.foodhyd.2022.107592.
  • Zhang, M., H. Zu, X. Zhuang, Y. Yu, Y. Wang, Z. Zhao, and Y. Zhou. 2020. Structural analyses of the HG-type pectin from Notopterygium incisum and its effects on galectins. International Journal of Biological Macromolecules 162:1035–43. doi: 10.1016/j.ijbiomac.2020.06.216.
  • Zhang, S., G. I. Waterhouse, F. Xu, Z. He, Y. Du, Y. Lian, D. Wu, and D. Sun-Waterhouse. 2021. Recent advances in utilization of pectins in biomedical applications: A review focusing on molecular structure-directing health-promoting properties. Critical Reviews in Food Science and Nutrition :1–34. doi: 10.1080/10408398.2021.1988897.
  • Zhang, S., Z. He, Y. Cheng, F. Xu, X. Cheng, and P. Wu. 2021. Physicochemical characterization and emulsifying properties evaluation of RG-I enriched pectic polysaccharides from Cerasus humilis. Carbohydrate Polymers 260:117824. doi: 10.1016/j.carbpol.2021.117824.
  • Zhang, T., M. Shuai, P. Ma, J. Huang, C. Sun, X. Yao, Z. Chen, X. Min, and S. Yan. 2020. Purification, chemical analysis and antioxidative activity of polysaccharides from pH-modified citrus pectin after dialyzation. LWT 128:109513. doi: 10.1016/j.lwt.2020.109513.
  • Zhang, T., Y. Lan, Y. Zheng, F. Liu, D. Zhao, K. H. Mayo, Y. Zhou, and G. Tai. 2016. Identification of the bioactive components from pH-modified citrus pectin and their inhibitory effects on galectin-3 function. Food Hydrocolloids 58:113–9. doi: 10.1016/j.foodhyd.2016.02.020.
  • Zhang, W., P. Xu, and H. Zhang. 2015. Pectin in cancer therapy: A review. Trends in Food Science & Technology 44 (2):258–71. doi: 10.1016/j.tifs.2015.04.001.
  • Zhang, X., L. Yu, H. Bi, X. Li, W. Ni, H. Han, N. Li, B. Wang, Y. Zhou, and G. Tai. 2009. Total fractionation and characterization of the water-soluble polysaccharides isolated from Panax ginseng CA Meyer. Carbohydrate Polymers 77 (3):544–52. doi: 10.1016/j.carbpol.2009.01.034.
  • Zhang, X., S. Li, L. Sun, L. Ji, J. Zhu, Y. Fan, G. Tai, and Y. Zhou. 2012. Further analysis of the structure and immunological activity of an RG-I type pectin from Panax ginseng. Carbohydrate Polymers 89 (2):519–25. doi: 10.1016/j.carbpol.2012.03.039.
  • Zhang, Z., X. Wang, X. Mo, and H. Qi. 2013. Degradation and the antioxidant activity of polysaccharide from Enteromorpha linza. Carbohydrate Polymers 92 (2):2084–7. doi: 10.1016/j.carbpol.2012.11.096.
  • Zhao, J., F. Zhang, X. Liu, K. Ange, A. Zhang, Q. Li, and R. Linhardt. 2017. Isolation of a lectin binding rhamnogalacturonan-I containing pectic polysaccharide from pumpkin. Carbohydrate Polymers 163:330–6. doi: 10.1016/j.carbpol.2017.01.067.
  • Zhao, Y., J. Bi, J. Yi, X. Wu, Y. Ma, and R. Li. 2021. Pectin and homogalacturonan with small molecular mass modulate microbial community and generate high SCFAs via in vitro gut fermentation. Carbohydrate Polymers 269:118326. doi: 10.1016/j.carbpol.2021.118326.
  • Zheng, J., J. Chen, H. Zhang, D. Wu, X. Ye, R. Linardt, and S. Chen. 2020. Gelling mechanism of RG-I enriched citrus pectin: Role of arabinose side-chains in cation-and acid-induced gelation. Food Hydrocolloids 101:105536. doi: 10.1016/j.foodhyd.2019.105536.
  • Zhi, Z., J. Chen, S. Li, W. Wang, R. Huang, D. Liu, T. Ding, R. J. Linhardt, S. Chen, and X. Ye. 2017. Fast preparation of RG-I enriched ultra-low molecular weight pectin by an ultrasound accelerated Fenton process. Scientific Reports 7 (1):1–11. doi: 10.1038/s41598-017-00572-3.
  • Zhou, Y., H. Niu, T. Luo, Y. Yun, M. Zhang, W. Chen, Q. Zhong, H. Zhang, H. Chen, and W. Chen. 2021. Effect of glycosylation with sugar beet pectin on the interfacial behaviour and emulsifying ability of coconut protein. International Journal of Biological Macromolecules 183:1621–9. doi: 10.1016/j.ijbiomac.2021.05.061.
  • Zhu, K., G. Mao, D. Wu, C. Yu, H. Cheng, H. Xiao, X. Ye, R. J. Linhardt, C. Orfila, and S. Chen. 2020. Highly branched RG-I domain enrichment is indispensable for pectin mitigating against high-fat diet-induced obesity. Journal of Agricultural and Food Chemistry 68 (32):8688–701. doi: 10.1021/acs.jafc.0c02654.
  • Zhu, M., R. Huang, P. Wen, Y. Song, B. He, J. Tan, H. Hao, and H. Wang. 2021. Structural characterization and immunological activity of pectin polysaccharide from kiwano (Cucumis metuliferus) peels. Carbohydrate Polymers 254:117371. doi: 10.1016/j.carbpol.2020.117371.
  • Zhu, R., C. Wang, L. Zhang, Y. Wang, G. Chen, J. Fan, Y. Jia, F. Yan, and C. Ning. 2019. Pectin oligosaccharides from fruit of Actinidia arguta: Structure-activity relationship of prebiotic and antiglycation potentials. Carbohydrate Polymers 217:90–7. doi: 10.1016/j.carbpol.2019.04.032.
  • Zou, Y.-F., Y.-Y. Zhang, B. S. Paulsen, F. Rise, Z.-L. Chen, R.-Y. Jia, L.-X. Li, X. Song, B. Feng, H.-Q. Tang, et al. 2020. Structural features of pectic polysaccharides from stems of two species of Radix Codonopsis and their antioxidant activities. International Journal of Biological Macromolecules 159:704–13. doi: 10.1016/j.ijbiomac.2020.05.083.
  • Zu, Y., L. Zhao, L. Hao, Y. Mechref, M. Zabet-Moghaddam, P. A. Keyel, M. Abbasi, D. Wu, J. A. Dawson, R. Zhang, et al. 2021. Browning white adipose tissue using adipose stromal cell-targeted resveratrol-loaded nanoparticles for combating obesity. Journal of Controlled Release: Official Journal of the Controlled Release Society 333:339–51. doi: 10.1016/j.jconrel.2021.03.022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.