409
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Glycosylation modification: A promising strategy for regulating the functionalities of myofibrillar proteins

ORCID Icon, &

References

  • Akio, K., M. Ryusuke, M. Naotoshi, and K. Kunihiko. 1992. Functional casein-polysaccharide conjugates prepared by controlled dry heating. Bioscience, Biotechnology, and Biochemistry 56 (4):567–71. doi: 10.1271/bbb.56.567.
  • Arena, S., G. Renzone, C. D’Ambrosio, A. M. Salzano, and A. Scaloni. 2017. Dairy products and the maillard reaction: A promising future for extensive food characterization by integrated proteomics studies. Food Chemistry 219:477–89. doi: 10.1016/j.foodchem.2016.09.165.
  • Barcenilla, C., A. Alvarez-Ordonez, M. Lopez, O. Alvseike, and M. Prieto. 2022. Microbiological safety and shelf-life of low-salt meat products-A review. Foods 11 (15):2331. doi: 10.3390/foods11152331.
  • Bian, G., S. Xue, Y. Xu, X. Xu, and M. Han. 2018. Improved gelation functionalities of myofibrillar protein from pale, soft and exudative chicken breast meat by nonenzymatic glycation with glucosamine. International Journal of Food Science & Technology 53 (8):2006–14. doi: 10.1111/ijfs.13789.
  • Chang, H. S. 1997. Solubility and gelation of chicken breast muscle proteins as affected by salts. Doctoral diss., Available from Proquest., AAI9721436. https://scholarworks.umass.edu/dissertations/AAI9721436.
  • Chen, B., J. Guo, Y. Xie, K. Zhou, P. Li, and B. Xu. 2021. Modulating the aggregation of myofibrillar protein to alleviate the textural deterioration of protein gels at high temperature: The effect of hydrophobic interactions. Food Chemistry 341:128274. doi: 10.1016/j.foodchem.2020.128274. [InsertedFromOnline
  • Chen, B., K. Zhou, Y. Wang, Y. Xie, Z. Wang, P. Li, and B. Xu. 2020. Insight into the mechanism of textural deterioration of myofibrillar protein gels at high temperature conditions. Food Chemistry 330:127186. doi: 10.1016/j.foodchem.2020.127186.
  • Chen, B., K. Zhou, Y. Xie, W. Nie, P. Li, H. Zhou, and B. Xu. 2021. Glutathione-mediated formation of disulfide bonds modulates the properties of myofibrillar protein gels at different temperatures. Food Chemistry 364:130356. doi: 10.1016/j.foodchem.2021.130356.
  • Chen, L., J. Chen, K. Wu, and L. Yu. 2016. Improved low pH emulsification properties of glycated peanut protein isolate by ultrasound Maillard reaction. Journal of Agricultural and Food Chemistry 64 (27):5531–8. doi: 10.1021/acs.jafc.6b00989.
  • Chen, X., Q. Qiu, K. Chen, D. Li, and L. Liang. 2020. Water-soluble myofibrillar protein-pectin complex for enhanced physical stability near the isoelectric point: Fabrication, rheology and thermal property. International Journal of Biological Macromolecules 142:615–23. doi: 10.1016/j.ijbiomac.2019.10.003.
  • Chen, X., R. K. Tume, X. L. Xu, and G. H. Zhou. 2017. Solubilization of myofibrillar proteins in water or low ionic strength media: Classical techniques, basic principles and novel functionalities. Critical Reviews in Food Science and Nutrition 57 (15):3260–80. doi: 10.1080/10408398.2015.1110111.
  • Chen, X., Y. L. Xiong, and X. Xu. 2019. High-pressure homogenization combined with sulfhydryl blockage by hydrogen peroxide enhance the thermal stability of chicken breast myofibrillar protein aqueous solution. Food Chemistry 285:31–8. doi: 10.1016/j.foodchem.2019.01.131.
  • Chen, X., Y. Li, R. Y. Zhou, D. M. Liu, X. L. Xu, and G. H. Zhou. 2017. Water-soluble myofibrillar proteins prepared by high-pressure homogenisation: A comparison study on the composition and functionality. International Journal of Food Science & Technology 52 (11):2334–42. doi: 10.1111/ijfs.13515.
  • Chen, X., Y. Zou, M. Han, L. Pan, T. Xing, X. Xu, and G. Zhou. 2016. Solubilisation of myosin in a solution of low ionic strength L-histidine: Significance of the imidazole ring. Food Chemistry 196:42–9. doi: 10.1016/j.foodchem.2015.09.039.
  • Cheng, J., M. Zhu, and X. Liu. 2020. Insight into the conformational and functional properties of myofibrillar protein modified by mulberry polyphenols. Food Chemistry 308:125592. doi: 10.1016/j.foodchem.2019.125592.
  • Coimbra, D. R., J. Selia, G. Zuniga, A. Damian, D. Oliveira, F. Cristina, E. Basilio, G. Rojas, and E. Edwin. 2016. Food protein-polysaccharide conjugates obtained via the Maillard reaction: A review. Critical Reviews in Food Science and Nutrition 56 (7):1108–25. doi: 10.1080/10408398.2012.755669.
  • Dejong, G. A. H., and S. J. Koppelman. 2002. Transglutaminase catalyzed reactions: Impact on food applications. Journal of Food Science 67 (8):2798–806. doi: 10.1111/j.1365-2621.2002.tb08819.x.
  • Dou, P., X. Feng, X. Cheng, Q. Guan, J. Wang, S. Qian, X. Xu, G. Zhou, N. Ullah, B. Zhu, et al. 2021. Binding of aldehyde flavour compounds to beef myofibrillar proteins and the effect of nonenzymatic glycation with glucose and glucosamine. LWT 144 (38):111198. doi: 10.1016/j.lwt.2021.111198.
  • Francois, C., C. Jean-Marc, P. Yves, N. G. Marie, and H. Thomas. 2001. Improvement of functional properties of β-lactoglobulin glycated through the Maillard reaction is related to the nature of the sugar. International Dairy Journal 11 (3):145–52. doi: 10.1016/S0958-6946(01)00040-1.
  • Fujiwara, K., T. Oosawa, and H. Saeki. 1998. Improved thermal stability and emulsifying properties of carp myofibrillar proteins by conjugation with dextran. Journal of Agricultural and Food Chemistry 46 (4):1257–61. doi: 10.1021/jf9708148.
  • Guo, A., and Y. L. Xiong. 2021. Myoprotein–phytophenol interaction: Implications for muscle food structure-forming properties. Comprehensive Reviews in Food Science and Food Safety 20 (3):2801–24. doi: 10.1111/1541-4337.12733.
  • Guo, X., Y. Zhang, M. A. Jamali, and Z. Peng. 2021. Manipulating interfacial behaviour and emulsifying properties of myofibrillar proteins by L-Arginine at low and high salt concentration. International Journal of Food Science & Technology 56 (2):999–1012. doi: 10.1111/ijfs.14752.
  • Han, G., J. Xu, Q. Chen, X. Xia, H. Liu, and B. Kong. 2022. Improving the solubility of myofibrillar proteins in water by destroying and suppressing myosin molecular assembly via glycation. Food Chemistry 395:133590. doi: 10.1016/j.foodchem.2022.133590.
  • Han, G., Y. Li, Q. Liu, Q. Chen, H. Liu, and B. Kong. 2022. Improved water solubility of myofibrillar proteins by ultrasound combined with glycation: A study of myosin molecular behavior. Ultrasonics Sonochemistry 89:106140. doi: 10.1016/j.ultsonch.2022.106140.
  • Han, K., Y. Yao, S. Dong, S. Jin, H. Xiao, H. Wu, and M. Zeng. 2017. Chemical characterization of the glycated myofibrillar proteins from grass carp (Ctenopharyngodon idella) and their impacts on the human gut microbiota in vitro fermentation. Food & Function 8 (3):1184–94. doi: 10.1039/C6FO01632D.
  • Hayakawa, T., Y. Yoshida, M. Yasui, T. Ito, J. I. Wakamatsu, A. Hattori, and T. Nishimura. 2015. Role of heavy meromyosin in heat-induced gelation in low ionic strength solution containing l-Histidine. Journal of Food Science 80 (8):C1641–C1645. doi: 10.1111/1750-3841.12958.
  • Hrynets, Y., M. Ndagijimana, and M. Betti. 2013. Non-enzymatic glycation of natural actomyosin (NAM) with glucosamine in a liquid system at moderate temperatures. Food Chemistry 139 (1–4):1062–72. doi: 10.1016/j.foodchem.2013.02.026.
  • Hrynets, Y., M. Ndagijimana, and M. Betti. 2014. Transglutaminase-catalyzed glycosylation of natural actomyosin (NAM) using glucosamine as amine donor: Functionality and gel microstructure. Food Hydrocolloids 36:26–36. doi: 10.1016/j.foodhyd.2013.09.001.
  • Hu, X., J. Ren, M. Zhao, C. Cui, and P. He. 2011. Emulsifying properties of the transglutaminase-treated crosslinked product between peanut protein and fish (Decapterus maruadsi) protein hydrolysates. Journal of the Science of Food and Agriculture 91 (3):578–85. doi: 10.1002/jsfa.4229.
  • Igaki, N., M. Sakai, H. Hata, M. Oimomi, S. Baba, and H. Kato. 1990. Effects of 3-deoxyglucosone on the Maillard reaction. Clinical Chemistry 36 (4):631–4. doi: 10.1093/clinchem/36.4.631.
  • Ishioroshi, M., K. S. Jima, and T. J. Yasui. 1979. Heat-induced gelation of myosin: Factors of pH and salt concentrations. Journal of Food Science 44 (5):1280–4. doi: 10.1111/j.1365-2621.1979.tb06419.x.
  • Katayama, S., and H. Saeki. 2004. Cooperative effect of relative humidity and glucose concentration on improved solubility of shellfish muscle protein by the Maillard reaction. Fisheries Science 70 (1):159–66. doi: 10.1111/j.1444-2906.2003.00784.x.
  • Katayama, S., J. Shima, and H. Saeki. 2002. Solubility improvement of shellfish muscle proteins by reaction with glucose and its soluble state in low-ionic-strength medium. Journal of Agricultural and Food Chemistry 50 (15):4327–32. doi: 10.1021/jf011717o.
  • Kato, A., Y. Sasaki, R. Furuta, and K. Kobayashi. 1990. Functional protein–polysaccharide conjugate prepared by controlled dry-heating of ovalbumin–dextran mixtures. Agricultural and Biological Chemistry 54 (1):107–12. doi: 10.1080/00021369.1990.10869907.
  • Krishnamurthy, G., H. S. Chang, H. O. Hultin, Y. Feng, S. Srinivasan, and S. D. Kelleher. 1996. Solubility of chicken breast muscle proteins in solutions of low ionic strength. Journal of Agricultural and Food Chemistry 44 (2):408–15. doi: 10.1021/jf950152r.
  • Kristinsson, H. G., and H. O. Hultin. 2003. Changes in conformation and subunit assembly of cod myosin at low and high pH and after subsequent refolding. Journal of Agricultural and Food Chemistry 51 (24):7187–96. doi: 10.1021/jf026193m.
  • Lee, S. H., S. T. Joo, and Y. C. Ryu. 2010. Skeletal muscle fiber type and myofibrillar proteins in relation to meat quality. Meat Science 86 (1):166–70. doi: 10.1016/j.meatsci.2010.04.040.
  • Leonardo, P., C. Daniela, S. Barbara, R. Maria, S. Milena, and B. Antonio. 2017. Thermal treatments for fruit and vegetable juices and beverages: A literature overview. Comprehensive Reviews in Food Science and Food Safety 16 (4):668–91. doi: 10.1111/1541-4337.12270.
  • Li, S., L. Li, X. Zhu, C. Ning, K. Cai, and C. Zhou. 2019. Conformational and charge changes induced by l-Arginine and l-lysine increase the solubility of chicken myosin. Food Hydrocolloids 89:330–6. doi: 10.1016/j.foodhyd.2018.10.059.
  • Li, S., Y. Zheng, X. Peng, X. Zhu, and C. Zhou. 2018. l-Lysine and l-arginine inhibit myosin aggregation and interact with acidic amino acid residues of myosin: The role in increasing myosin solubility. Food Chemistry 242:22–8. doi: 10.1016/j.foodchem.2017.09.033.
  • Li, S., Z. He, C. Qu, S. Yu, M. Li, and H. Li. 2021. Insights into the structural characteristic of rabbit glycated myofibrillar protein with high solubility in low ionic strength medium. LWT 137:110387. doi: 10.1016/j.lwt.2020.110387.
  • Li, S., Z. He, M. Li, R. Li, J. Lu, and H. Li. 2020. A study of the physicochemical properties of rabbit glycated myofibrillary protein with high solubility in low ionic strength medium. International Journal of Biological Macromolecules 147:241–9. doi: 10.1016/j.ijbiomac.2020.01.069.
  • Li, Y., H. Liu, Q. Liu, B. Kong, and X. Diao. 2019. Effects of zein hydrolysates coupled with sage (salvia officinalis) extract on the emulsifying and oxidative stability of myofibrillar protein prepared oil-in-water emulsions. Food Hydrocolloids 87:149–57. doi: 10.1016/j.foodhyd.2018.07.052.
  • Li, Y., Y. Xu, and X. Xu. 2022. Continuous cyclic wet heating glycation to prepare myofibrillar protein-glucose conjugates: A study on the structures, solubility and emulsifying properties. Food Chemistry 388:133035. doi: 10.1016/j.foodchem.2022.133035.
  • Li, Y., Y. Xu, X. Xu, X. Zeng, and G. Zhou. 2022. Explore the mechanism of continuous cyclic glycation in affecting the stability of myofibrillar protein emulsion: The influence of pH. Food Research International (Ottawa, ON) 161:111834. doi: 10.1016/j.foodres.2022.111834.
  • Liu, H., H. Zhang, Q. Liu, Q. Chen, and B. Kong. 2020. Solubilization and stable dispersion of myofibrillar proteins in water through the destruction and inhibition of the assembly of filaments using high-intensity ultrasound. Ultrasonics Sonochemistry 67:105160. doi: 10.1016/j.ultsonch.2020.105160.
  • Liu, H., H. Zhang, Q. Liu, Q. Chen, and B. Kong. 2021. Filamentous myosin in low-ionic strength meat protein processing media: Assembly mechanism, impact on protein functionality, and inhibition strategies. Trends in Food Science & Technology 112 (6):25–35. doi: 10.1016/j.tifs.2021.03.039.
  • Liu, H., J. Zhang, H. Wang, Q. Chen, and B. Kong. 2021. High-intensity ultrasound improves the physical stability of myofibrillar protein emulsion at low ionic strength by destroying and suppressing myosin molecular assembly. Ultrasonics Sonochemistry 74:105554. doi: 10.1016/j.ultsonch.2021.105554.
  • Liu, H., Z. Wang, I. H. Badar, Q. Liu, Q. Chen, and B. Kong. 2022. Combination of high-intensity ultrasound and hydrogen peroxide treatment suppresses thermal aggregation behaviour of myofibrillar protein in water. Food Chemistry 367:130756. doi: 10.1016/j.foodchem.2021.130756.
  • Liu, J., C. Fang, X. Xu, Q. Su, P. Zhao, and Y. Ding. 2019. Physico-chemical and functional properties of silver carp myosin glycated with konjac oligo-glucomannan: Effects of deacetylation. Food Chemistry 291:223–30. doi: 10.1016/j.foodchem.2019.03.153.
  • Liu, J., C. Fang, X. Xu, Q. Su, P. Zhao, and Y. Ding. 2019. Structural changes of silver carp myosin glycated with Konjac oligo-glucomannan: Effects of deacetylation. Food Hydrocolloids 91:275–82. doi: 10.1016/j.foodhyd.2019.01.038.
  • Liu, J., Q. Ru, and Y. Ding. 2012. Glycation a promising method for food protein modification: Physicochemical properties and structure, a review. Food Research International 49 (1):170–83. doi: 10.1016/j.foodres.2012.07.034.
  • Liu, J., Q. Xu, J. Zhang, P. Zhao, and Y. Ding. 2016. Characterization of silver carp (Hypophthalmichthys molitrix) myosin protein glycated with konjac oligo-glucomannan. Food Hydrocolloids 57:114–21. doi: 10.1016/j.foodhyd.2016.01.019.
  • Liu, J., Y. Hu, H. Wei, and W. Shi. 2022. Effect of glycation on protein structure, amino acid composition and digestibility of silver carp mince. International Journal of Food Science & Technology 57 (4):2487–97. doi: 10.1111/ijfs.15617.
  • Liu, J., Y. Luo, S. Gu, Q. Xu, J. Zhang, P. Zhao, and Y. Ding. 2017. Physicochemical, conformational and functional properties of silver carp myosin glycated with konjac oligo-glucomannan: Implications for structure-function relationships. Food Hydrocolloids 72:136–44. doi: 10.1016/j.foodhyd.2017.05.040.
  • Luisa, A., C. Gaspar, and S. P. De Goes-Favoni. 2015. Action of microbial transglutaminase (MTGase) in the modification of food proteins: A review. Food Chemistry 171 (15):315–22. doi: 10.1016/j.foodchem.2014.09.019.
  • Maitena, U., S. Katayama, R. Sato, and H. Saeki. 2004. Improved solubility and stability of carp myosin by conjugation with alginate oligosaccharide. Fisheries Science 70 (5):896–902. doi: 10.1111/j.1444-2906.2004.00884.x.
  • Matsudomi, N., T. Tsujimoto, A. Kato, and K. Kobayashi. 1994. Emulsifying and bactericidal properties of a protamine-galactomannan conjugate prepared by dry heating. Journal of Food Science 59 (2):428–31. doi: 10.1111/j.1365-2621.1994.tb06983.x.
  • Nayak, R., P. B. Kenney, and S. J. Slider. 1996. Protein extractability of turkey breast and thigh muscle with varying sodium chloride solutions as affected by calcium, magnesium and zinc chloride. Journal of Food Science 61 (6):1149–54. doi: 10.1111/j.1365-2621.1996.tb10950.
  • Nishimura, K., M. Murakoshi, S. Katayama, and H. Saeki. 2011. Antioxidative ability of chicken myofibrillar protein developed by glycosylation and changes in the solubility and thermal stability. Bioscience, Biotechnology, and Biochemistry 75 (2):247–54. doi: 10.1271/bbb.100548.
  • Nohr, D., and H. K. Biesalski. 2007. Mealthy’ food: Meat as a healthy and valuable source of micronutrients. Animal: An International Journal of Animal Bioscience 1 (2):309–16. doi: 10.1017/s1751731107657796.
  • Nooshkam, M., M. Varidi, and D. K. Verma. 2020. Functional and biological properties of Maillard conjugates and their potential application in medical and food: A review. Food Research International (Ottawa, ON) 131:109003. doi: 10.1016/j.foodres.2020.109003.
  • Pinto, M., S. Bouhallab, A. Carvalho, G. Henry, J. Putaux, and J. Leonil. 2012. Glucose slows down the heat-induced aggregation of β-Lactoglobulin at neutral pH. Journal of Agricultural and Food Chemistry 60 (1):214–9. doi: 10.1021/jf2037664.
  • Ramachandraiah, K., M. Choi, and G. Hong. 2018. Micro- and nano-scaled materials for strategy-based applications in innovative livestock products: A review. Trends in Food Science & Technology 71:25–35. doi: 10.1016/j.tifs.2017.10.017.
  • Ramirez-Suarez, J. C., Y. L. Xiong, and B. Wang. 2001. Transglutaminase cross-linking ofbovine cardiac myofibrillar proteins and its effect on protein gelation. Journal of Muscle Foods 12 (2):85–96. doi: 10.1111/j.1745-4573.2001.tb00301.x.
  • Saeki, H. 1997. Preparation of neoglycoprotein from carp myofibrillar protein by Maillard reaction with glucose: Biochemical properties and emulsifying properties. Journal of Agricultural and Food Chemistry 45 (3):680–4. doi: 10.1021/jf960325s.
  • Saeki, H., and K. Inoue. 1997. Improved solubility of carp myofibrillar proteins in low ionic strength medium by glycosylation. Journal of Agricultural and Food Chemistry 45 (9):3419–22. doi: 10.1021/jf970302t.
  • Saeki, H., and M. Tanabe. 1999. Change in solubility of carp myofibrillar protein by glycosylation with ribose. Fisheries Science 65 (6):967–8. doi: 10.2331/fishsci.65.967.
  • Sato, R., T. Sawabe, and H. Saeki. 2005. Characterization of fish myofibrillar protein by conjugation with alginate oligosaccharide prepared using genetic recombinant alginate lyase. Journal of Food Science 70 (1):C58–C62. doi: 10.1111/j.1365-2621.2005.tb09021.x.
  • Sato, R., T. Sawabe, H. Kishimura, K. Hayashi, and H. Saeki. 2000. Preparation of neoglycoprotein from carp myofibrillar protein and alginate oligosaccharide: Improved solubility in low ionic strength medium. Journal of Agricultural and Food Chemistry 48 (1):17–21. doi: 10.1021/jf990081m.
  • Smyth, A. B., D. M. Smith, and E. O’Neill. 2006. Disulfide bonds influence the heat-induced gel properties of chicken breast muscle myosin. Journal of Food Science 63 (4):584–7. doi: 10.1111/j.1365-2621.1998.tb15790.x.
  • Sun, X. D., and R. A. Holley. 2011. Factors influencing gel formation by myofibrillar proteins in muscle foods. Comprehensive Reviews in Food Science and Food Safety 10 (1):33–51. doi: 10.1111/j.1541-4337.2010.00137.x.
  • Takai, E., S. Yoshizawa, D. Ejima, T. Arakawa, and K. Shiraki. 2013. Synergistic solubilization of porcine myosin in physiological salt solution by arginine. International Journal of Biological Macromolecules 62:647–51. doi: 10.1016/j.ijbiomac.2013.09.035.
  • Takeda, H., T. Iida, A. Okada, H. Ootsuka, T. Ohshita, E. Masutani, S. Katayama, and H. Saeki. 2007. Feasibility study on water solubilization of spawned out salmon meat by conjugation with alginate oligosaccharide. Fisheries Science 73 (4):924–30. doi: 10.1111/j.1444-2906.2007.01415.x.
  • Tanabe, M., and H. Saeki. 2001. Effect of Maillard reaction with glucose and ribose on solubility at low ionic strength and filament-forming ability of fish myosin. Journal of Agricultural and Food Chemistry 49 (7):3403–7. doi: 10.1021/jf001202h.
  • Tornberg, E. 2005. Effects of heat on meat proteins-Implications on structure and quality of meat products. Meat Science 70 (3):493–508. doi: 10.1016/j.meatsci.2004.11.021.
  • Villaverde, A., and M. Estévez. 2013. Carbonylation of myofibrillar proteins through the Maillard pathway: Effect of reducing sugars and reaction temperature. Journal of Agricultural and Food Chemistry 61 (12):3140–7. doi: 10.1021/jf305451p.
  • Wang, K., Y. Li, Y. Zhang, M. Huang, X. Xu, H. Ho, H. Huang, and J. Sun. 2022. Improving physicochemical properties of myofibrillar proteins from wooden breast of broiler by diverse glycation strategies. Food Chemistry 382:132328. doi: 10.1016/j.foodchem.2022.132328.
  • WHO. 2013. WHO issues new guidance on dietary salt and potassium. Central European Journal of Public Health 21:16.
  • Xiong, Y. L. 1994. Myofibrillar protein from different muscle fiber types: Implications of biochemical and functional properties in meat processing. Critical Reviews in Food Science and Nutrition 34 (3):293–320. doi: 10.1080/10408399409527665.
  • Xu, Y. J., and X. L. Xu. 2021. Modification of myofibrillar protein functional properties prepared by various strategies: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety 20 (1):458–500. doi: 10.1111/1541-4337.12665.
  • Xu, Y. J., G. L. Bian, X. Zhao, Y. Liu, M. Y. Han, X. L. Xu, and G. H. Zhou. 2018. Structural and solubility properties of pale, soft and exudative (PSE)-like chicken breast myofibrillar protein: Effect of glycosylation. LWT 95:209–15. doi: 10.1016//j.lwt.2018.04.051.
  • Xu, Y. J., M. Dong, C. B. Tang, M. Y. Han, X. L. Xu, and G. H. Zhou. 2020. Glycation-induced structural modification of myofibrillar protein and its relation to emulsifying properties. LWT 117:108664. doi: 10.1016/j.lwt.2019.108664.
  • Xu, Y. J., Y. Q. Zhao, Z. X. Wei, H. Zhang, M. Dong, M. Y. Huang, M. Y. Han, X. L. Xu, and G. H. Zhou. 2020. Modification of myofibrillar protein via glycation: Physicochemical characterization, rheological behavior and solubility property. Food Hydrocolloids 105:105852. doi: 10.1016/j.foodhyd.2020.105852.
  • Yang, Y., H. Wu, S. Dong, W. Jin, K. Han, Y. Ren, and M. Zeng. 2018. Glycation of fish protein impacts its fermentation metabolites and gut microbiota during in vitro human colonic fermentation. Food Research International (Ottawa, ON) 113:189–96. doi: 10.1016/j.foodres.2018.07.015.
  • Zhang, J., W. Zhou, M. Xu, C. Fang, Q. Du, X. Xu, F. Lyu, Y. Ding, and J. Liu. 2021. Characterization of silver carp myosin glycated with phosphorylated konjac oligo-glucomannan. Journal of the Science of Food and Agriculture 101 (14):6117–24. doi: 10.1016/j.foodhyd.2016.01.019.
  • Zhang, Q., L. Li, Q. Lan, M. Li, D. Wu, H. Chen, Y. Liu, D. Lin, W. Qin, Z. Zhang, et al. 2019. Protein glycosylation: A promising way to modify the functional properties and extend the application in food system. Critical Reviews in Food Science and Nutrition 59 (15):2506–33. doi: 10.1080/10408398.2018.1507995.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.