257
Views
0
CrossRef citations to date
0
Altmetric
Review

Stilbenes: A new strategy for protecting light-sensitive foods, a review of their structure classification and singlet oxygen quenching mechanism

, , , &

References

  • Aminah, N. S., S. A. Achmad, N. Aimi, E. L. Ghisalberti, E. H. Hakim, M. Kitajima, Y. M. Syah, and H. Takayama. 2002. Diptoindonesin A, a new C-glucoside of ε-viniferin from Shorea seminis (Dipterocarpaceae). Fitoterapia 73 (6):501–7. doi: 10.1016/S0367-326X(02)00179-X.
  • Arnold, S. J., M. Kubo, and E. A. Ogryzlo. 1968. Relaxation and reactivity of singlet oxygen. In Advances in chemistry series, ed. R. J. Mayo, vol. 77, 133–42. Washington, DC: American Chemical Society. doi: 10.1021/ba-1968-0077.ch070.
  • Arraki, K., É. Renouf, P. Waffo-Téguo, J.-M. Mérillon, T. Richard, and A. Decendit. 2017. Identification and quantification of stilbenes in some Tunisian red wines using UPLC-MS and HPLC-DAD. OENO One 51 (2): 231–236. doi: 10.29199/PSEP.101016.
  • Baderschneider, B., and P. Winterhalter. 2000. Isolation and characterization of novel stilbene derivatives from Riesling wine. Journal of Agricultural and Food Chemistry 48 (7):2681–6. doi: 10.1021/jf991348k.
  • Balasundram, N., K. Sundram, and S. Samman. 2006. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chemistry 99 (1):191–203. doi: 10.1016/j.foodchem.2005.07.042.
  • Bassarello, C., B. Giuseppe, M. Paola, S. Alexandre, K. Ether, P. Cosimo, and P. Sonia. 2007. Gloriosaols A and B, two novel phenolics from Yucca gloriosa: Structural characterization and configurational assignment by a combined NMR-quantum mechanical strategy. Tetrahedron 63 (1):148–54. doi: 10.1016/j.tet.2006.10.034.
  • Błaszczyk, A., S. Sady, and M. Sielicka. 2019. The stilbene profile in edible berries. Phytochemistry Reviews 18 (1):37–67. doi: 10.1007/s11101-018-9580-2.
  • Boulos, R. A., Y. T. Nikki, A. L. Nigel, A. H. Katherine, F. F. Niki, A. Natalie, W. S. Brian, Y. W. Pan, M. Boris, V. R. Thomas, et al. 2013. Inspiration from old dyes: Tris(stilbene) compounds as potent gram-positive antibacterial agents. Chemistry Europe Journal 19 (52):17980–8. doi: 10.1002/chem.201303119.
  • Casadey, R., C. Challier, A. Senz, and S. Criado. 2019. Antioxidant ability of tyrosol and derivative-compounds in the presence of O2 (1Δg)-species. Studies of synergistic antioxidant effect with commercial antioxidants. Food Chemistry 285:275–81. doi: 10.1016/j.foodchem.2019.01.161.
  • Cayuela, J. A., A. Vazquez, A. G. Perez, and J. M. Garcia. 2009. Control of table grapes postharvest decay by ozone treatment and resveratrol induction. Food Science and Technology International 15 (5):495–502. doi: 10.1177/1082013209350539.
  • Celaje, J. A., D. Zhang, A. M. Guerrero, and M. Selke. 2011. Chemistry of trans-resveratrol with singlet oxygen: 2 + 2 addition, 4 + 2 addition, and formation of the phytoalexin moracin M. Organic Letters 13 (18):4846–9. doi: 10.1021/ol201922u.
  • Chalal, M., A. Klinguer, A. Echairi, P. Meunier, D. Vervandier-Fasseur, and M. Adrian. 2014. Antimicrobial activity of resveratrol analogues. Molecules (Basel, Switzerland) 19 (6):7679–88. doi: 10.3390/molecules19067679.
  • Cheng, H., M. A. Khan, Z. F. Xie, S. N. Tao, Y. X. Li, and L. Liang. 2020. A peppermint oil emulsion stabilized by resveratrol-zein-pectin complex particles: Enhancing the chemical stability and antimicrobial activity in combination with the synergistic effect. Food Hydrocolloids 103:105675. doi: 10.1016/j.foodhyd.2020.105675.
  • Chen, J., R. F. Gonzalez-Laredo, and J. J. Karchesy. 2000. Minor diarylheptanoid glycosides of Alnus rubra bark. Phytochemistry 53 (8):971–3. doi: 10.1016/S0031-9422(99)00523-3.
  • Chen, J. J., S. He, H. Mao, C. R. Sun, and Y. J. Pan. 2009. Characterization of polyphenol compounds from the roots and stems of Parthenocissus laetevirens by high-performance liquid chromatography/tandem mass spectrometry. Rapid Communications in Mass Spectrometry: RCM 23 (6):737–44. doi: 10.1002/rcm.3937.
  • Choe, E., and D. B. Min. 2006. Chemistry and reactions of reactive oxygen species in foods. Critical Reviews in Food Science and Nutrition 46 (1):1–22. doi: 10.1080/10408390500455474.
  • Choi, Y. S., and M. Y. Jung. 2016. Kinetic study on the singlet oxygen quenching activity of nordihydroguaiaretic acid (NDGA) using methylene blue sensitized photooxidation of alpha-terpinene. Food Science and Biotechnology 25 (5):1333–6. doi: 10.1007/s10068-016-0209-1.
  • Chong, J., A. Poutaraud, and P. Hugueney. 2009. Metabolism and roles of stilbenes in plants. Plant Science 177 (3):143–55. doi: 10.1016/j.plantsci.2009.05.012.
  • Delaunois, B., S. Cordelier, A. Conreux, C. Clement, and P. Jeandet. 2009. Molecular engineering of resveratrol in plants. Plant Biotechnology Journal 7 (1):2–12. doi: 10.1111/j.1467-7652.2008.00377.x.
  • Deng, S. L., W. F. Chen, B. Zhou, L. Yang, and Z. L. Liu. 2006. Protective effects of curcumin and its analogues against free radical-induced oxidative haemolysis of human red blood cells. Food Chemistry 98 (1):112–9. doi: 10.1016/j.foodchem.2005.05.063.
  • DeRosa, M. C., and R. J. Crutchley. 2002. Photosensitized singlet oxygen and its applications. Coordination Chemistry Reviews 233–234:351–71. doi: 10.1016/S0010-8545(02)00034-6.
  • Di Mascio, P., G. R. Martinez, S. Miyamoto, G. E. Ronsein, M. H. G. Medeiros, and J. Cadet. 2016. Singlet molecular oxygen: Düsseldorf - São Paulo, the Brazilian connection. Archives of Biochemistry and Biophysics 595:161–75. doi: 10.1016/j.abb.2015.11.016.
  • Dusek, J., J. Skoda, O. Holas, A. Horvatova, T. Smutny, L. Linhartova, P. Hirsova, O. Kucera, S. Micuda, A. Braeuning, et al. 2019. Stilbene compound trans -3,4,5,4’-tetramethoxystilbene, a potential anticancer drug, regulates constitutive androstane receptor (Car) target genes, but does not possess proliferative activity in mouse liver. Toxicology Letters 313:1–10. doi: 10.1016/j.toxlet.2019.05.024.
  • El Khawand, T., A. Courtois, J. Valls, T. Richard, and S. Krisa. 2018. A review of dietary stilbenes: Sources and bioavailability. Phytochemistry Reviews 17 (5):1007–29. doi: 10.1007/s11101-018-9578-9.
  • Fang, J. G., M. Lu, Z. H. Chen, H. H. Zhu, Y. Li, L. Yang, L. M. Wu, and Z. L. Liu. 2002. Antioxidant effects of resveratrol and its analogues against the free-radical-induced peroxidation of linoleic acid in micelles. Chemistry - A European Journal 8 (18):4191–8. doi: 10.1002/1521-3765(20020916)8:18 < 4191::AID-CHEM4191 > 3.0.CO;2-S.
  • Federica, M., G. Giuseppe, C. Massimo, O. Sara, G. Paolo, and C. M. Maria. 2015. Effect of substituted stilbenes on platelet function. Fitoterapia 105:228–33. doi: 10.1016/j.fitote.2015.07.009.
  • Filomena, S., F. Ana, G. Eugenia, N. Cristina, and C. D. Fernanda. 2014. Strategies to improve the solubility and stability of stilbene antioxidants: A comparative study between cyclodextrins and bile acids. Food Chemistry 145:115–25. doi: 10.1016/j.foodchem.2013.08.034.
  • Frelin, O., C. Dervinis, J. L. Wegrzyn, J. M. Davis, and A. D. Hanson. 2017. Drought stress in Pinus taeda L. induces coordinated transcript accumulation of genes involved in the homogentisate pathway. Tree Genetics & Genomes 13 (1):1–10. doi: 10.1007/s11295-017-1115-2.
  • Gabaston, J., J. V. Fonayet, C. Franc, P. Waffo-Teguo, G. de Revel, G. Hilbert, E. Gomes, T. Richard, and J. M. Merillon. 2020. Characterization of stilbene composition in grape berries from wild vitis species in year-to-year harvest. Journal of Agricultural and Food Chemistry 68 (47):13408–17. doi: 10.1021/acs.jafc.0c04907.
  • Gomes, M. D., M. D. Cardoso, A. C. G. Guimaraes, A. C. Guerreiro, C. M. L. Gago, E. V. D. V. Boas, C. M. B. Dias, A. C. C. Manhita, M. L. Faleiro, M. G. C. Miguel, et al. 2017. Effect of edible coatings with essential oils on the quality of red raspberries over shelf-life. Journal of the Science of Food and Agriculture 97 (3):929–38. doi: 10.1002/jsfa.7817.
  • He, S., L. Y. Jiang, B. Wu, Y. J. Pan, and C. R. Sun. 2009. Pallidol, a resveratrol dimer from red wine, is a selective singlet oxygen quencher. Biochemical and Biophysical Research Communications 379 (2):283–7. doi: 10.1016/j.bbrc.2008.12.039.
  • He, S., L. Jiang, B. Wu, J. Zhou, and Y.-J. Pan. 2009. Two novel antioxidative stilbene tetramers from Parthenocissus laetevirens. Helvetica Chimica Acta 92 (7):1260–7. doi: 10.1002/hlca.200800371.
  • He, S., Y. B. Lu, L. Y. Jiang, B. Wu, F. Y. Zhang, and Y. J. Pan. 2009. Preparative isolation and purification of antioxidative stilbene oligomers from Vitis chunganeniss using high-speed counter-current chromatography in stepwise elution mode. Journal of Separation Science 32 (14):2339–45. doi: 10.1002/jssc.200900033.
  • He, S., Y. B. Lu, B. Wu, and Y. J. Pan. 2007. Isolation and purification of antioxidative isomeric polyphenols from the roots of Parthenocissus laetevirens by counter-current chromatography. Journal of Chromatography. A 1151 (1–2):175–9. doi: 10.1016/j.chroma.2007.02.102.
  • He, S., B. Wu, Y. J. Pan, and L. Y. Jiang. 2008. Stilbene oligomers from Parthenocissus laetevirens: Isolation, biomimetic synthesis, absolute configuration, and implication of antioxidative defense system in the plant. The Journal of Organic Chemistry 73 (14):5233–41. doi: 10.1021/jo8001112.
  • Huang, K. S., M. Lin, and Y. H. Wang. 1999. Synthesis of amurensin H, a new resveratrol dimer from the roots of Vitis Amurensisi. Chinese Chemical Letters 10:817–20.
  • Huang, K. S., R. L. Li, Y. H. Wang, and M. Lin. 2001. Three new stilbene trimers from the lianas of Gnetum hainanense. Planta Medica 67 (1):61–4. doi: 10.1055/s-2001-10875.
  • Huang, Y. L., W. J. Tsai, C. C. Shen, and C. C. Chen. 2005. Resveratrol derivatives from the roots of Vitis thunbergii. Journal of Natural Products 68 (2):217–20. doi: 10.1021/np049686p.
  • Hurst, J. R., J. D. McDonald, and G. B. Schuster. 1982. Lifetime of singlet oxygen in solution directly determined by laser spectroscopy. Journal of the American Chemical Society 104 (7):2065–7. doi: 10.1021/ja00371a065.
  • Ilseung, Y., K. Eunha, K. Junhee, H. Hyouksoo, S. Soohwan, B. P. Seung, and S. K. Kim. 2012. Photochemical generation of a new, highly fluorescent compound from non-fluorescent resveratrol. Chemical Communications (Cambridge, England) 48 (32):3839–41. doi: 10.1039/c2cc30940h.
  • Ioset, J. R., A. Marston, M. P. Gupta, and K. Hostettmann. 2001. Five new prenylated stilbenes from the root bark of Lonchocarpus chiricanus. Journal of Natural Products 64 (6):710–5. doi: 10.1021/np000597w.
  • Jiang, L. Y., S. He, K. Z. Jiang, C. R. Sun, and Y. J. Pan. 2010. Resveratrol and its oligomers from wine grapes are selective (1)O2 quenchers: Mechanistic implication by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry and theoretical calculation. Journal of Agricultural and Food Chemistry 58 (16):9020–7. doi: 10.1021/jf102005z.
  • Jung, M. Y., S. H. Yoon, H. O. Lee, and D. B. Min. 1998. Singlet oxygen and ascorbic acid effects on dimethyl disulfide and off‐flavor in skim milk exposed to light. Journal of Food Science 63 (3):408–12. doi: 10.1111/j.1365-2621.1998.tb15753.x.
  • Kim, J. Y., D. S. Choi, and M. Y. Jung. 2003. Anti photo-oxidative activity of sesamol in methylene blue- and chlorophyll-sensitized photo-oxidation of oil. Journal of Agricultural and Food Chemistry 51 (11):3460–5. doi: 10.1021/jf026056p.
  • Kong, Q. J., X. Y. Ren, R. L. Hu, X. F. Yin, G. S. Jiang, and Y. J. Pan. 2016. Isolation and purification of two antioxidant isomers of resveratrol dimer from the wine grape by counter-current chromatography. Journal of Separation Science 39 (12):2374–9. doi: 10.1002/jssc.201600004.
  • Kong, Q. J., X. Y. Ren, L. Y. Jiang, Y. J. Pan, and C. R. Sun. 2010. Scirpusin A, a hydroxystilbene dimer from Xinjiang wine grape, acts as an effective singlet oxygen quencher and DNA damage protector. Journal of the Science of Food and Agriculture 90 (5):823–8. doi: 10.1002/jsfa.3890.
  • Kong, Q. J., X. Y. Ren, L. D. Tu, X. D. Zheng, Z. D. Wang, and Y. J. Pan. 2016. The mechanism of action of pterostilbene in Xinjiang wine grape against the growth of Geotrichum citri-aurantii. Food Biotechnology 30 (3):173–88. doi: 10.1080/08905436.2016.1198705.
  • Kong, Q. J., R. R. Rongrong Deng, X. Y. Li, Q. Z. Qingzhi Zeng, X. Zhang, X. Yu, and X. Y. Ren. 2020. Based on RNA-Seq analysis identification and expression analysis of trans-scripusin A synthesize-related genes of UV-treatment in postharvest grape fruit. Archives of Biochemistry and Biophysics 690:108471. doi: 10.1016/j.abb.2020.108471.
  • Kong, Q. J., X. F. Yin, J. Yu, and X. Y. Ren. 2018. Mechanistic processes of resveratrol in inhibiting the oxidative damage of guanine, as evidenced by UHPLC-MS2. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 1093–1094:174–82. doi: 10.1016/j.jchromb.2018.07.007.
  • Krishnan, S., A. Arjunan, S. Sellaiyan, R. Perumalsamy, S. Sambasivam, and V. Babu. 2005. Electron momentum distribution mapping of trans-stilbene single crystal bypositron annihilation. Chemical Physics Letters 412:327–30. doi: 10.1016/j.cplett.2005.07.017.
  • Langcake, P., C. A. Cornford, and R. J. Pryce. 1979. Identification of pterostilbene as a phytoalexin from Vitis vinifera leaves. Phytochemistry 18 (6):1025–7. doi: 10.1016/S0031-9422(00)91470-5.
  • Langcake, P., and R. J. Pryce. 1977. The production of resveratrol and the viniferins by grapevines in response to ultraviolet irradiation. Phytochemistry 16 (8):1193–6. doi: 10.1016/S0031-9422(00)94358-9.
  • Lee, Y., and E. Choe. 2011. Interaction of phosphatidylcholine and α-tocopherol on the oxidation of sunflower oil and content changes of phosphatidylcholine and tocopherol in the emulsion under singlet oxygen. Journal of Food Science 76 (3):C498–503. doi: 10.1111/j.1750-3841.2011.02096.x.
  • Likhitwitayawuid, K., and B. Sritularak. 2001. A new dimeric stilbene with tyrosinase inhibitiory activity from Artocarpus gomezianus. Journal of Natural Products 64 (11):1457–9. doi: 10.1021/np0101806.
  • Li, N., X. M. Li, K. S. H, and M. L. 2001. Structure and distribution of resveratrol oligomer analogs. Acta Pharmaceutica Sinica 36 (12):944–50. doi: 10.16438/j.0513-4870.2001.12.017.
  • Li, Y. H., J. Lu, X. L. Tian, Z. Xu, L. X. Huang, H. X. Xiao, X. Y. Ren, and Q. J. Kong. 2021. Alginate with citrus pectin and pterostilbene as healthy food packaging with antioxidant property. International Journal of Biological Macromolecules 193 (Pt B):2093–102. doi: 10.1016/J.IJBIOMAC.2021.11.041.
  • Li, C., J. Lu, X. Xu, R. Hu, and Y. Pan. 2012. pH-switched HRP-catalyzed dimerization of resveratrol: A selective biomimetic synthesis. Green Chemistry 14 (12):3281–4. doi: 10.1039/c2gc36288k.
  • Lins, A. P., J. D. Felicio, M.  M. Braggio, and L. C. Roque. 1991. A resveratrol   dimer from Parthenocissus tricuspidata. Phytochemistry 30 (9):3144–6. doi: 10.1016/S0031-9422(97)00898-4
  • Li, X., B. Wu, L. Wang, and S. Li. 2006. Extractable amounts of trans-resveratrol in seed and berry skin in Vitis evaluated at the germplasm level. Journal of Agricultural and Food Chemistry 54 (23):8804–11. doi: 10.1021/jf061722y.
  • Li, C., X. F. Xu, Z. H. Tao, C. R. Sun, and Y. J. Pan. 2016. Resveratrol derivatives: An updated patent review (2012-2015). Expert Opinion on Therapeutic Patents 26 (10):1189–200. doi: 10.1080/13543776.2016.1215435.
  • Li, C., X. Xu, Z. Tao, X. J. Wang, and Y. Pan. 2015. Resveratrol dimers, nutritional components in grape wine, are selective ROS scavengers and weak Nrf2 activators. Food Chemistry 173:218–23. doi: 10.1016/j.foodchem.2014.09.165.
  • Lledias, F., and W. Hansberg. 2000. Catalase modification as a marker for singlet oxygen. Methods in Enzymology 319:110–9. doi: 10.1016/S0076-6879(00)19013-5.
  • Loschke, D. C., L. A. Hadwiger, and W. Wagoner. 1983. Comparison of mRNA populations coding for phenylalanine ammonia lyase and other peptides from pea tissue treated with biotic and abiotic inducers. Physiological Plant Pathology 23 (1):163–73. doi: 10.1016/0048-4059(83)90043-7.
  • Mahendran, R., R. K. Ramanan, J. B. Francisco, M. L. Jose, L. F. Olalla, E. S. M. Paulo, R. Shahin, S. S. Anderson, and K. T. Brijesh. 2019. Recent advances in the application of pulsed light processing for improving food safety and increasing shelf life. Trends in Food Science & Technology 88:67–79. doi: 10.1016/j.tifs.2019.03.010.
  • Manussanunt, C., C. Taksina, S. Boonchoo, and L. Kittisak. 2011. Oxyresveratrol protects against DNA damage induced by photosensitized riboflavin. Natural Product Communications 6 (1):41–4. doi: 10.1177/1934578X1100600110.
  • Manzocco, L., G. Kravina, S. Calligaris, and M. C. Nicoli. 2008. Shelf life modeling of photosensitive food: The case of colored beverages. Journal of Agricultural and Food Chemistry 56 (13):5158–64. doi: 10.1021/jf800072u.
  • Mazzone, G., M. E. Alberto, N. Russo, and E. Sicilia. 2014. Ab initio calculations on the (1)O2 quenching mechanism by trans-resveratrol. Physical Chemistry Chemical Physics: PCCP 16 (25):12773–81. doi: 10.1039/c4cp00754a.
  • Medrano-Padial, C., A. I. Prieto, M. Puerto, and S. Pichardo. 2021. Toxicological evaluation of piceatannol, pterostilbene, and ε-viniferin for their potential use in the food industry: A review. Foods 10 (3):592. doi: 10.3390/foods10030592.
  • Meng, X., J. Zhou, C. N. Zhao, R. Y. Gan, and H. B. Li. 2020. Health benefits and molecular mechanisms of resveratrol: A narrative review. Foods 9 (3):340. doi: 10.3390/foods9030340.
  • Min, D. B., and J. M. Boff. 2002. Chemistry and reaction of singlet oxygen in foods. Comprehensive Reviews in Food Science and Food Safety 1 (2):58–72. doi: 10.1111/j.1541-4337.2002.tb00007.x.
  • Morikawa, T., F. M. Xu, H. Matsuda, and M. Yoshikawa. 2010. Structures of novel norstilbene dimer, longusone A, and three new stilbene dimers, longusols A, B, and C, with antiallergic and radical scavenging activities from Egyptian natural medicine Cyperus longus. Chemical & Pharmaceutical Bulletin 58 (10):1379–85. doi: 10.1248/cpb.58.1379.
  • Murata, H., I. Iliya, T. Tanaka, M. Furasawa, T. Ito, K. Nakaya, M. Oyama, and M. Iinuma. 2005. Four new trimeric stilbene glucosides from Welwitschia mirabilis. Chemistry & Biodiversity 2 (6):773–9. doi: 10.1002/cbdv.200590054.
  • Ohyam, M., T. Tanaka, and M. Iinuma. 1995. Five resveratrol oligomers from roots of Sophora leachiana. Phytochemistry 38 (3):733–40. doi: 10.1016/0031-9422(95)00692-3.
  • Oshima, Y., Y. Ueno, K. Hisamichi, and M. Takeshita. 2010. Ampelopsins F and G, novel bridged plant oligostilbenes from Ampelopsis brevipedunculata var. hancei Roots (Vitaceae). ChemInform 24 (43): 5801–5804. doi: 10.1002/chin.199343257.
  • Ouchi, A., K. Aizawa, Y. Iwasaki, T. Inakuma, J. Terao, S-i Nagaoka, and K. Mukai. 2010. Kinetic study of the quenching reaction of singlet oxygen by carotenoids and food extracts in solution. Development of a singlet oxygen absorption capacity (SOAC) assay method. Journal of Agricultural and Food Chemistry 58 (18):9967–78. doi: 10.1021/jf101947.
  • Petit, A. N., F. Baillieul, N. Vaillant-Gaveau, L. Jacquens, A. Conreux, P. Jeandet, C. Clement, and F. Fontaine. 2009. Low responsiveness of grapevine flowers and berries at fruit set to UV-C irradiation. Journal of Experimental Botany 60 (4):1155–62. doi: 10.1093/jxb/ern361.
  • Pezet, R., K. Gindro, O. Viret, and H. Richter. 2004. Effect of resveratrol, viniferins and pterostilbene on Plasmopara viticola zoospore mobility and disease development. Vitis 43 (3):145–8. doi: 10.1007/s00122-003-1443-5.
  • Puntumchai, A., P. Kittakoop, S. Rajviroongit, S. Vimuttipong, K. Likhitwitayawuid, and Y. Thebtaranonth. 2004. Lakoochins A and B, new antimycobacterial stilbene derivatives from Artocarpus lakoocha. Journal of Natural Products 67 (3):485–6. doi: 10.1021/np030429e.
  • Ramu, G. A., M. Kannan, R. D. Karthick, A. A. Pillay, M. Shanmugam, P. Sathishkumar, J. Johansen, and B. K. Tiwari. 2022. Phycoerythrin: A pink pigment from red sources (rhodophyta) for a greener biorefining approach to food applications. Critical Reviews in Food Science and Nutrition Jun 1:1–19. doi: 10.1080/10408398.2022.2081962.
  • Ren, X. Y., P. P. An, X. Zhai, S. Wang, and Q. J. Kong. 2019. The antibacterial mechanism of pterostilbene derived from xinjiang wine grape: A novel apoptosis inducer in Staphyloccocus aureus and Escherichia coli. LWT 101:100–6. doi: 10.1016/j.lwt.2018.11.038.
  • Rivière, C., A. D. Pawlus, and J. M. Mérillon. 2012. Natural stilbenoids: Distribution in the plant kingdom and chemotaxonomic interest in Vitaceae. Natural Product Reports 29 (11):1317–33. doi: 10.1039/c2np2oo49j.
  • Rodriguez, R. A., I. R. Lahoz, O. N. Faza, M. M. Cid, and C. S. Lopez. 2012. Theoretical and experimental exploration of the photochemistry of resveratrol: Beyond the simple double bond isomerization. Organic & Biomolecular Chemistry 10 (46):9175–82. doi: 10.1039/c2ob26241j.
  • Sasi, K. S., and R. Sanghi. 2001. Analyzing pesticide residues in winter vegetables from Kanpur. Indian Journal of Environmental Health 43 (4):154–8.
  • Shan, Z., H. W. Ying, and S. Gnetubainin. 2002. A new resveratrol dimer from Gnetum hainanense. Chinese Chemical Letters 13 (6):549–50.
  • Shen, T., X. N. Wang, and H. X. Lou. 2009. Natural stilbenes: An overview. Natural Product Reports 26 (7):916–35. doi: 10.1039/B905960A.
  • Shen, J., Q. Zhou, P. Li, Z. Q. Wang, S. S. Liu, C. N. He, C. H. Zhang, and P. G. Xiao. 2017. Update on phytochemistry and pharmacology of naturally occurring resveratrol oligomers. Molecules 22 (12):2050. doi: 10.3390/molecules22122050.
  • Silva, G. S., M. Judith, R. N. M. Rita, M. T. S. Adrián, M. Cristina, C. L. Moisés, and L. F. Joaquim. 2013. Photochemical and photocatalytic degradation of trans-resveratrol. Photochemical & Photobiological Sciences. Official Journal of the European Photochemistry Association and the European Society for Photobiology 12 (4):638–44. doi: 10.1039/c2pp25239b.
  • Siqueira, F. C. D., T. C. L. D. D. Socorro, A. Z. Mercadnte, R. C. Chiste, and A. S. Lopes. 2019. Profile of phenolic compounds and carotenoids of Arrabidaea chica leaves and the in vitro singlet oxygen quenching capacity of their hydrophilic extract. Food Research International 126 (C):108597. doi: 10.1016/j.foodres.2019.108597.
  • Sobolev, V. S., S. A. Neff, and J. B. Gloer. 2010. New dimeric stilbenoids from fungal-challenged peanut (Arachis hypogaea) seeds. Journal of Agricultural and Food Chemistry 58 (2):875–81. doi: 10.1021/jf903410e.
  • Sotheeswaran, S., and V. Pasupathy. 1993. Distribution of resveratrol oligomers in plants. Phytochemistry 32 (5):1083–92. doi: 10.1016/S0031-9422(00)95070-2.
  • Sotheeswaran, S., M. U. Sultanbawa, S. Surendrakumar, and P. Bladon. 1983. ChemInform Abstract: Polyphenols from dipterocarp species. Copalliferol A and stemonoporol. Chemischer Informationsdienst 14 (30): 699–702. doi: 10.1002/chin.198330364.
  • Sueishi, Y., R. Nii, and N. Kakizaki. 2017. Resveratrol analogues like piceatannol are potent antioxidants as quantitatively demonstrated through the high scavenging ability against reactive oxygen species and methyl radical. Bioorganic & Medicinal Chemistry Letters 27 (23):5203–6. doi: 10.1016/j.bmcl.2017.10.045.
  • Syah, Y. M., S. A. Achmad, E. L. Ghisalberti, E. H. Hakim, M. Z. N. Iman, L. Makmur, and D. Mujahiddin. 2000. Andalasin A, a new stilbene dimer from Morus macroura. Fitoterapia 71 (6):630–5. doi: 10.1016/S0367-326X(00)00221-5.
  • Takaoka, M. 1940. The synthesis of resveratrol and its derivatives. Proceedings of the Imperial Academy 16 (8):405–7. doi: 10.2183/pjab1912.16.405.
  • Tanaka, T., I. Iliya, T. Ito, M. Furusawa, K. I. Nakaya, M. Iinuma, Y. Shirataki, N. Matsuura, M. Ubukata, J. Murata, et al. 2001. Stilbenoids in lianas of Gnetum parvifolium. Chemical & Pharmaceutical Bulletin 49 (7):858–62. doi: 10.1248/cpb.49.858. 11456092
  • Tanaka, T., M. Iinuma, and H. Murata. 1998. Stilbene derivatives in the stem of parthenocissus quinquefolia. Phytochemistry 48 (6):1045–9. doi: 10.1016/S0031-9422(98)00071-5.
  • Tanaka, T., M. Ohyama, K. Morimoto, F. Asai, and M. Iinuma. 1998. A resveratrol dimer from Parthenocissus tricuspidata. Phytochemistry 48 (7):1241–3. doi: 10.1016/S0031-9422(97)00898-4.
  • Thomas, V. 2010. Phenylpropanoid biosynthesis. Molecular Plant 3 (1):2–20. doi: 10.1093/mp/ssp106.
  • Timperio, A. M., A. D’Alessandro, M. Fagioni, P. Magro, and L. Zolla. 2012. Production of the phytoalexins trans-resveratrol and delta -vinif/erin in two economy-relevant grape cultivars upon infection with Botrytis cinerea in field conditions. Plant Physiology and Biochemistry: PPB 50 (1):65–71. doi: 10.1016/j.plaphy.2011.07.008.
  • Toni, E. K., V. F. Josep, D. C. Grégory, H. O. Ruth, J. Michael, F. Céline, R. Gilles, D. Alain, K. Stéphanie, and R. Tristan. 2020. Resveratrol transformation in red wine after heat treatment. Food Research International 132 (C):109068. doi: 10.1016/j.foodres.2020.109068.
  • Vhangani, L. N, and J. Van Wyk. 2016. Antioxidant activity of Maillard reaction products (MRPs) in a lipid-rich model system. Food Chemistry 208:301–8. doi: 10.1016/j.foodchem.2016.03.100. 27132854
  • Vuong, T. V., C. Franco, and W. Zhang. 2014. Treatment strategies for high resveratrol induction in Vitis vinifera L. cell suspension culture. Biotechnology Reports 1-2 (C):15–21. doi: 10.1016/j.btre.2014.04.002.
  • Wan, X., X. B. Wang, M. H. Yang, J. S. Wang, and L. Y. Kong. 2011. Dimerization of piceatannol by Momordica charantia peroxidase and alpha-glucosidase inhibitory activity of the biotransformation products. Bioorganic & Medicinal Chemistry 19 (17):5085–92. doi: 10.1016/j.bmc.2011.07.032.
  • Wu, S. X., R. G. Xiong, S. Y. Huang, D. D. Zhou, A. Saimaiti, C. N. Zhao, A. Shang, Y. J. Zhang, R. Y. Gan, and H. B. Li. 2022. Effects and mechanisms of resveratrol for prevention and management of cancers: An updated review. Critical Reviews in Food Science and Nutrition Jul 19:1–19. doi: 10.1080/10408398.2022.2101428.
  • Xiang, T., T. Uno, F. Ogino, C. Q. Ai, J. Duo, and U. Sankawa. 2005. Antioxidant constituents of Caragana tibetica. Chemical & Pharmaceutical Bulletin 53 (9):1204–6. doi: 10.1248/cpb.53.1204.
  • Xiao, K., H. J. Zhang, L. J. Xuan, J. Zhang, Y. M. Xu, and D. L. Bai. 2008. Stilbenoids: Chemistry and bioactivities. Studies in Natural Products Chemistry 34:453–646. doi: 10.1016/S1572-5995(08)80032-4.
  • Xu, X. J., X. Y. Hu, S. J. Neill, J. Y. Fang, and W. M. Cai. 2005. Fungal elicitor induces singlet oxygen generation, ethylene release and saponin synthesis in cultured cells of Panax ginseng C. A. Meyer. Plant & Cell Physiology 46 (6):947–54. doi: 10.1093/pcpl/pci103.
  • Yin, X. F., J. Yu, Q. J. Kong, and X. Y. Ren. 2017. Mechanism of isomers and analogues of resveratrol dimers selectively quenching singlet oxygen by UHPLC-ESI-MS2. Food Chemistry 237:1101–11. doi: 10.1016/j.foodchem.2017.06.021.
  • Yoshikawa, M., T. Morikawa, F. Xu, and H. Matsuda. 2002. Structures and Radical Scavenging Activities of Novel Norstilbene Dimer, Longusone A, and New Stilbene Dimers, Longusols A, B, and C, from Egyptian Herbal Medicine Cyperus longus. HETEROCYCLES 57 (11):1983 10.3987/COM-02-9596.
  • Yu, J., J. Qi, L. Zhang, X. Yu, Q. J. Kong, and X. Y. Ren. 2018. Using the relative abundance of characteristic product ions in UHPLC-ESIQTOF-MS2 methods to identify isomers of resveratrol oligomers in extracts of Xinjiang winegrape stems. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 1096:88–94. doi: 10.1016/j.jchromb.2018.08.022.
  • Zhao, Y., M. Shi, J. H. Ye, X. Q. Zheng, J. L. Lu, and Y. R. Liang. 2015. Photo-induced chemical reaction of trans-resveratrol. Food Chemistry 171:137–43. doi: 10.1016/j.foodchem.2014.08.130.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.