471
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Recent advances in the detection of pathogenic microorganisms and toxins based on field-effect transistor biosensors

, , , , , & show all

References

  • Abyaneh, H. K., A. Bahonar, N. Noori, H. Yazdanpanah, and M. H. S. AliAbadi. 2020. The overall and variations of Aflatoxin M1 contamination of milk in Iran: A systematic review and meta-analysis study. Food Chemistry 310:125848. doi: 10.1016/j.foodchem.2019.125848.
  • Afsahi, S., M. B. Lerner, J. M. Goldstein, J. Lee, X. L. Tang, D. A. Bagarozzi, D. Pan, L. Locascio, A. Walker, F. Barron, et al. 2018. Novel graphene-based biosensor for early detection of Zika virus infection. Biosensors & Bioelectronics 100:85–8. doi: 10.1016/j.bios.2017.08.051.
  • Ah, C. S., C. W. Park, J. H. Yang, J. S. Lee, W. J. Kim, K. H. Chung, Y. H. Choi, I. B. Baek, J. Kim, and G. Y. Sung. 2012. Detection of uncharged or feebly charged small molecules by field-effect transistor biosensors. Biosensors & Bioelectronics 33 (1):233–40. doi: 10.1016/j.bios.2012.01.010.
  • Ahmed, A., J. V. Rushworth, N. A. Hirst, and P. A. Millner. 2014. Biosensors for whole-cell bacterial detection. Clinical Microbiology Reviews 27 (3):631–46. doi: 10.1128/Cmr.00120-13.
  • Ahn, J. H., J. H. Lim, J. Park, E. H. Oh, M. Son, S. Hong, and T. H. Park. 2015. Screening of target-specific olfactory receptor and development of olfactory biosensor for the assessment of fungal contamination in grain. Sensors and Actuators B: Chemical 210:9–16. doi: 10.1016/j.snb.2014.12.060.
  • Akbari, E., Z. Buntat, M. J. Kiani, A. Enzevaee, and M. Khaledian. 2015. Analytical model of graphene-based biosensors for bacteria detection. International Journal of Environmental Analytical Chemistry 95:1–8. doi: 10.1080/03067319.2015.1058930.
  • An, J. E., K. H. Kim, S. J. Park, S. E. Seo, J. Kim, S. Ha, J. Bae, and O. S. Kwon. 2022. Wearable cortisol aptasensor for simple and rapid real-time monitoring. ACS Sensors 7 (1):99–108. doi: 10.1021/acssensors.1c0134.
  • Arlett, J. L., E. B. Myers, and M. L. Roukes. 2011. Comparative advantages of mechanical biosensors. Nature Nanotechnology 6 (4):203–15. doi: 10.1038/nnano.2011.44.
  • Aspermair, P., V. Mishyn, J. Bintinger, H. Happy, K. Bagga, P. Subramanian, W. Knoll, R. Boukherroub, and S. Szunerits. 2021. Reduced graphene oxide–based field effect transistors for the detection of E7 protein of human papillomavirus in saliva. Analytical and Bioanalytical Chemistry 413 (3):779–87. doi: 10.1007/s00216-020-02879-z.
  • Barman, U., U. Goswami, S. S. Ghosh, and R. P. Paily. 2022. Fabrication of ZnO nanoparticle-based FET device for label-free bacteria detection. IEEE Transactions on Nanobioscience 21 (2):169–74. doi: 10.1109/TNB.2021.3127349.
  • Basu, J., S. Datta, and C. RoyChaudhuri. 2015. A graphene field effect capacitive immunosensor for sub-femtomolar food toxin detection. Biosensors & Bioelectronics 68:544–9. doi: 10.1016/j.bios.2015.01.046.
  • Basu, J., and C. RoyChaudhuri. 2016. Attomolar sensitivity of FET biosensor based on smooth and reliable graphene nanogrids. IEEE Electron Device Letters 37 (4):492–5. doi: 10.1109/LED.2016.2526064.
  • Bergveld, P. 1972. Development, operation, and application of the ion-sensitive field-effect transistor as a tool for electrophysiology. IEEE Transactions on Bio-Medical Engineering 19 (5):342–51. doi: 10.1109/TBME.1972.324137.
  • Bi, Y., M. Shu, C. Zhong, S. Y. Li, Y. K. Li, H. H. Yang, and G. P. Wu. 2020. A novel SDS rinse and immunomagnetic beads separation combined with real-time loop-mediated isothermal amplification for rapid and sensitive detection of salmonella in ready-to-eat duck meat. Food Analytical Methods 13 (5):1166–75. doi: 10.1007/s12161-020-01735-1.
  • Boitet, M., andR. Grailhe. 2017. Reporter expression and tissue depth quantification using bright and broad-range spectrum bioluminescence probes. Biosensors Journal 6 (2). doi: 10.4172/2090-4967.1000148.
  • Bouchard, P. R., R. M. Hutabarat, and K. M. Thompson. 2010. Discovery and development of therapeutic aptamers. Annual Review of Pharmacology and Toxicology 50:237–57. doi: 10.1146/annurev.pharmtox.010909.105547.
  • Broughton, J. P., X. Deng, G. Yu, C. L. Fasching, V. Servellita, J. Singh, X. Miao, J. A. Streithorst, A. Granados, A. Sotomayor-Gonzalez, et al. 2020. CRISPR-Cas12-based detection of SARS-CoV-2. Nature Biotechnology 38 (7):870–4. doi: 10.1038/s41587-020-0513-4.
  • Caras, S., and J. Janata. 1980. Field effect transistor sensitive to penicillin. Analytical Chemistry 52 (12):1935–7. doi: 10.1021/ac50062a035.
  • Chan, C. Y., J. Y. Shi, Y. D. Fan, and M. Yang. 2017. A microfluidic flow-through chip integrated with reduced graphene oxide transistor for influenza virus gene detection. Sensors and Actuators B: Chemical 251:927–33. doi: 10.1016/j.snb.2017.05.147.
  • Chang, J. B., S. Mao, Y. Zhang, S. M. Cui, G. H. Zhou, X. G. Wu, C. H. Yang, and J. H. Chen. 2013. Ultrasonic-assisted self-assembly of monolayer graphene oxide for rapid detection of Escherichia coli bacteria. Nanoscale 5 (9):3620–6. doi: 10.1039/c3nr00141e.
  • Chen, P. H., C. C. Huang, C. C. Wu, P. H. Chen, A. Tripathi, and Y. L. Wang. 2022. Saliva-based COVID-19 detection: A rapid antigen test of SARS-CoV-2 nucleocapsid protein using an electrical-double-layer gated field-effect transistor-based biosensing system. Sensors and Actuators B-Chemical 357:131415. doi: 10.1016/j.snb.2022.131415.
  • Chen, Y. W., and M. S. C. Lu. 2021. Highly sensitive DNA detection beyond the Debye screening length using CMOS field effect transistors. IEEE Electron Device Letters 42 (8):1220–3. doi: 10.1109/LED.2021.3090035.
  • Chen, Y., Z. P. Michael, G. P. Kotchey, Y. Zhao, and A. Star. 2014. Electronic detection of bacteria using holey reduced graphene oxide. ACS Applied Materials & Interfaces 6 (6):3805–10. doi: 10.1021/am500364f.
  • Chen, Y. T., R. Ren, H. H. Pu, X. R. Guo, J. B. Chang, G. H. Zhou, S. Mao, M. Kron, and J. H. Chen. 2017. Field-effect transistor biosensor for rapid detection of Ebola antigen. Scientific Reports 7 (1):10974. doi: 10.1038/s41598-017-11387-7.
  • Chiang, P. L., T. C. Chou, T. H. Wu, C. C. Li, C. D. Liao, J. Y. Lin, M. H. Tsai, C. C. Tsai, C. J. Sun, C. H. Wang, et al. 2012. Nanowire transistor-based ultrasensitive virus detection with reversible surface functionalization. Chemistry, an Asian Journal 7 (9):2073–9. doi: 10.1002/asia.201200222.
  • Cho, K. H., D. H. Shin, J. Oh, J. H. An, J. S. Lee, and J. Jang. 2018. Multidimensional conductive nanofilm-based flexible aptasensor for ultrasensitive and selective HBsAg detection. ACS Applied Materials & Interfaces 10 (34):28412–9. doi. doi: 10.1021/acsami.8b09918.
  • Choi, J., T. W. Seong, M. Jeun, and K. H. Lee. 2017. Field-effect biosensors for on-site detection: Recent advances and promising targets. Advanced Healthcare Materials 6 (20):1700796. doi: 10.1002/adhm.20.
  • Clark, L. C., Jr., and C. Lyons. 1962. Electrode systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of Sciences 102:29–45. doi: 10.1111/j.1749-6632.1962.tb13623.x.
  • Crameri, R., M. Garbani, C. Rhyner, and C. Huitema. 2014. Fungi: The neglected allergenic sources. Allergy 69 (2):176–85. doi: 10.1111/all.12325.
  • Cui, Y., Q. Wei, H. Park, and C. M. Lieber. 2001. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science (New York, N.Y.) 293 (5533):1289–92. doi: 10.1126/science.1062711.
  • de Sousa, T. A. S. L., V. C. F. dos Santos, N. B. F. Almeida, F. A. dos Santos, T. G. da Silva, E. N. D. de Araujo, A. S. R. de Andrade, and F. Plentz. 2021. Surface modifications in graphene by DNA aptamers for staphylococcus aureus detection. IEEE Sensors Journal 21 (23):26534–41. doi: 10.1109/JSEN.2021.3122272.
  • Dey, A., A. Singh, D. Dutta, S. S. Ghosh, and P. K. Iyer. 2019. Rapid and label-free bacteria detection using a hybrid tri-layer dielectric integrated n-type organic field effect transistor. Journal of Materials Chemistry A 7 (31):18330–7. doi: 10.1039/C9TA06359E.
  • Ditte, K., T. A. Nguyen Le, O. Ditzer, D. I. Sandoval Bojorquez, S. Chae, M. Bachmann, L. Baraban, and F. Lissel. 2021. Rapid detection of SARS-CoV-2 antigens and antibodies using OFET biosensors based on a soft and stretchable semiconducting polymer. ACS Biomaterials Science & Engineering doi: 10.1021/acsbiomaterials.1c00727.
  • Dolai, S., and M. Tabib-Azar. 2021. Zika virus field effect transistor. IEEE Sensors Journal 21 (4):4122–8. doi: 10.1109/JSEN.2020.3029535.
  • Duan, M. Z., X. P. Zhong, X. Zhao, O. M. El-Agnaf, Y. K. Lee, and A. Bermak. 2021. An optical and temperature assisted CMOS ISFET sensor array for robust E. coli detection. IEEE Transactions on Biomedical Circuits and Systems 15 (3):497–508. doi: 10.1109/Tbcas.2021.3084540.
  • Dunn, M. R., R. M. Jimenez, and J. C. Chaput. 2017. Analysis of aptamer discovery and technology. Nature Reviews Chemistry 1 (10):0076. doi: 10.1038/s41570017-0076.
  • Farrow, T., S. Laumier, I. Sandall, and H. van Zalinge. 2022. An aptamer-functionalised Schottky-field effect transistor for the detection of proteins. Biosensors (Basel) 12 (5):347. doi: 10.3390/bios12050.
  • Fathi-Hafshejani, P., N. Azam, L. Wang, M. A. Kuroda, M. C. Hamilton, S. Hasim, and M. Mahjouri-Samani. 2021. Two-dimensional-material-based field-effect transistor biosensor for detecting COVID-19 virus (SARS-CoV-2). ACS Nano 15 (7):11461–9. doi: 10.1021/acsnano.1c01188.
  • Formisano, N., N. Bhalla, M. Heeran, J. Reyes Martinez, A. Sarkar, M. Laabei, P. Jolly, C. R. Bowen, J. T. Taylor, S. Flitsch, et al. 2016. Inexpensive and fast pathogenic bacteria screening using field-effect transistors. Biosensors & Bioelectronics 85:103–9. doi: 10.1016/j.bios.2016.04.063.
  • Gao, J. W., C. H. Wang, Y. J. Chu, Y. K. Han, Y. K. Gao, Y. H. Wang, C. Wang, H. Liu, L. Han, and Y. Zhang. 2022a. Graphene oxide-graphene Van der Waals heterostructure transistor biosensor for SARS-CoV-2 protein detection. Talanta 240:123197. doi: 10.1016/j.talanta.2021.123197.
  • Gao, J. W., C. H. Wang, C. Wang, Y. J. Chu, S. Wang, M. Y. Sun, H. Ji, Y. K. Gao, Y. H. Wang, Y. K. Han, et al. 2022b. Poly-l-lysine-modified graphene field-effect transistor biosensors for ultrasensitive breast cancer miRNAs and SARS-CoV-2 RNA detection. Analytical Chemistry 94 (3):1626–36. doi: 10.1021/acs.analchem.1c03786.
  • Gao, A. R., N. L. Zou, P. F. Dai, N. Lu, T. Li, Y. L. Wang, J. L. Zhao, and H. J. Mao. 2013. Signal-to-noise ratio enhancement of silicon nanowires biosensor with rolling circle amplification. Nano Letters 13 (9):4123–30. doi: 10.1021/nl401628y.
  • Garcia-Aljaro, C., L. N. Cella, D. J. Shirale, M. Park, F. J. Munoz, M. V. Yates, and A. Mulchandani. 2010. Carbon nanotubes-based chemiresistive biosensors for detection of microorganisms. Biosensors & Bioelectronics 26 (4):1437–41. doi: 10.1016/j.bios.2010.07.077.
  • Gong, H., F. Chen, Z. Huang, Y. Gu, Q. Zhang, Y. Chen, Y. Zhang, J. Zhuang, Y. K. Cho, R. H. Fang, et al. 2019. Biomembrane-modified field effect transistors for sensitive and quantitative detection of biological toxins and pathogens. ACS Nano 13 (3):3714–22. doi: 10.1021/acsnano.9b00911.
  • Green, B. J., T. Z. Mitakakis, and E. R. Tovey. 2003. Allergen detection from 11 fungal species before and after germination. The Journal of Allergy and Clinical Immunology 111 (2):285–9. doi: 10.1067/mai.2003.57.
  • Hajian, R., S. Balderston, T. Tran, T. DeBoer, J. Etienne, M. Sandhu, N. A. Wauford, J. Y. Chung, J. Nokes, M. Athaiya, et al. 2019. Detection of unamplified target genes via CRISPR-Cas9 immobilized on a graphene field-effect transistor. Nature Biomedical Engineering 3 (6):427–37. doi: 10.1038/s41551-019-0371-x.
  • Han, C. H., and J. Jang. 2021. Integrated microfluidic platform with electrohydrodynamic focusing and a carbon-nanotube-based field-effect transistor immunosensor for continuous, selective, and label-free quantification of bacteria. Lab on a Chip 21 (1):184–95. doi: 10.1039/d0lc00783h.
  • Herzig, G. P. D., M. Aydin, S. Dunigan, P. Shah, K. C. Jeong, S. H. Park, S. C. Ricke, and S. Ahn. 2016. Magnetic bead-based immunoassay coupled with tyramide signal amplification for detection of salmonella in foods. Journal of Food Safety 36 (3):383–91. doi: 10.1111/jfs.12255.
  • Hideshima, S., H. Hayashi, H. Hinou, S. Nambuya, S. Kuroiwa, T. Nakanishi, T. Momma, S.-I. Nishimura, Y. Sakoda, and T. Osaka. 2019. Glycan-immobilized dual-channel field effect transistor biosensor for the rapid identification of pandemic influenza viral particles. Scientific Reports 9 (1):11616. doi: 10.1038/s41598-019-48076-6.
  • Hideshima, S., H. Hinou, D. Ebihara, R. Sato, S. Kuroiwa, T. Nakanishi, S.-I. Nishimura, and T. Osaka. 2013. Attomolar detection of influenza a virus hemagglutinin human H1 and avian H5 using glycan-blotted field effect transistor biosensor. Analytical Chemistry 85 (12):5641–4. doi: 10.1021/ac401085c.
  • Hideshima, S., M. Saito, K. Fujita, Y. Harada, M. Tsuna, S. Sekiguchi, S. Kuroiwa, T. Nakanishi, and T. Osaka. 2018. Label-free detection of allergens in food via surfactant-induced signal amplification using a field effect transistor-based biosensor. Sensors and Actuators B: Chemical 254:1011–6. doi: 10.1016/j.snb.2017.07.187.
  • Holzinger, M., A. Le Goff, and S. Cosnier. 2014. Nanomaterials for biosensing applications: A review. Frontiers in Chemistry 2:63. doi: 10.3389/fchem.2014.00063.
  • Huang, W. G., A. K. Diallo, J. L. Dailey, K. Besar, and H. E. Katz. 2015. Electrochemical processes and mechanistic aspects of field-effect sensors for biomolecules. Journal of Materials Chemistry. C 3 (25):6445–70. doi: 10.1039/c5tc00755k.
  • Huang, Y. X., X. C. Dong, Y. X. Liu, L. J. Li, and P. Chen. 2011. Graphene-based biosensors for detection of bacteria and their metabolic activities. Journal of Materials Chemistry 21 (33):12358–62. doi: 10.1039/c1jm11436k.
  • Huang, Y., H. G. Sudibya, and P. Chen. 2011. Detecting metabolic activities of bacteria using a simple carbon nanotube device for high-throughput screening of anti-bacterial drugs. Biosensors & Bioelectronics 26 (10):4257–61. doi: 10.1016/j.bios.2011.04.038.
  • Hwang, M. T., I. Park, M. Heiranian, A. Taqieddin, S. Y. You, V. Faramarzi, A. A. Pak, A. M. Zande, N. R. Aluru, and R. Bashir. 2021. Ultrasensitive detection of dopamine, il-6 and SARS-CoV-2 proteins on crumpled graphene FET biosensor. Advanced Materials Technologies 6 (11):2100712. doi: 10.1002/admt.20.
  • Ibarlucea, B., T. Rim, C. K. Baek, J. A. G. M. de Visser, L. Baraban, and G. Cuniberti. 2017. Nanowire sensors monitor bacterial growth kinetics and response to antibiotics. Lab on a Chip 17 (24):4283–93. doi: 10.1039/C7LC00807D.
  • Im, M., J. H. Ahn, J. W. Han, T. J. Park, S. Y. Lee, and Y. K. Choi. 2011. Development of a point-of-care testing platform with a nanogap-embedded separated double-gate field effect transistor array and its readout system for detection of avian influenza. IEEE Sensors Journal 11 (2):351–60. doi: 10.1109/JSEN.2010.2062502.
  • Islam, S., S. Shukla, V. K. Bajpai, Y. K. Han, Y. S. Huh, A. Kumar, A. Ghosh, and S. Gandhi. 2019. A smart nanosensor for the detection of human immunodeficiency virus and associated cardiovascular and arthritis diseases using functionalized graphene-based transistors. Biosensors & Bioelectronics 126:792–9. doi: 10.1016/j.bios.2018.11.041.
  • Jang, H. J., X. Sui, W. Zhuang, X. Huang, M. Chen, X. Cai, Y. Wang, B. Ryu, H. Pu, N. Ankenbruck, et al. 2022. Remote floating-gate field-effect transistor with 2-dimensional reduced graphene oxide sensing layer for reliable detection of SARS-CoV-2 spike proteins. ACS Applied Materials & Interfaces 14 (21):24187–96. doi: 10.1021/acsami.2c04969.
  • Jayan, H., H. B. Pu, and D. W. Sun. 2020. Recent development in rapid detection techniques for microorganism activities in food matrices using bio-recognition: A review. Trends in Food Science & Technology 95:233–46. doi: 10.1016/j.tifs.2019.11.007.
  • Jenkins, D. M., R. Kubota, J. Dong, Y. Li, and D. Higashiguchi. 2011. Handheld device for real-time, quantitative, LAMP-based detection of Salmonella enterica using assimilating probes. Biosensors & Bioelectronics 30 (1):255–60. doi: 10.1016/j.bios.2011.09.020.
  • Jiang, Y., X. Liu, T. C. Dang, X. W. Huang, H. Feng, Q. Zhang, and H. Yu. 2018. A high-sensitivity potentiometric 65-nm CMOS ISFET sensor for rapid E. coli screening. IEEE Transactions on Biomedical Circuits and Systems 12 (2):402–15. doi: 10.1109/Tbcas.2018.2793861.
  • Jin, J. H., J. Kim, T. Jeon, S. K. Shin, J. R. Sohn, H. Yi, and B. Y. Lee. 2015. Real-time selective monitoring of allergenic aspergillus molds using pentameric antibody-immobilized single-walled carbon nanotube-field effect transistors. RSC Advances 5 (20):15728–35. doi: 10.1039/C4RA15815F.
  • Jin, X., H. Zhang, Y. T. Li, M. M. Xiao, Z. L. Zhang, D. W. Pang, G. Wong, Z. Y. Zhang, and G. J. Zhang. 2019. A field effect transistor modified with reduced graphene oxide for immunodetection of ebola virus. Microchimica Acta 186 (4):1–9. doi: 10.1007/s00604-019-3256-5.
  • Kalantar-Zadeh, K., K. J. Berean, R. E. Burgell, J. G. Muir, and P. R. Gibson. 2019. Intestinal gases: Influence on gut disorders and the role of dietary manipulations. Nature Reviews. Gastroenterology & Hepatology 16 (12):733–47. doi: 10.1038/s41575-019-0193-z.
  • Kalantar-Zadeh, K., N. Ha, J. Z. Ou, and K. J. Berean. 2017. Ingestible sensors. ACS Sensors 2 (4):468–83. doi: 10.1021/acssensors.7b00045.
  • Kang, H., X. Wang, M. Guo, C. Dai, R. Chen, L. Yang, Y. Wu, T. Ying, Z. Zhu, D. Wei, et al. 2021. Ultrasensitive detection of SARS-CoV-2 antibody by graphene field-effect transistors. Nano Letters 21 (19):7897–904. doi: 10.1021/acs.nanolett.1c00837.
  • Khaneghah, A. M., Y. Fakhri, H. H. Gahruie, M. Niakousari, and A. S. Sant’Ana. 2019. Mycotoxins in cereal-based products during 24 years (1983-2017): A global systematic review. Trends in Food Science & Technology 91:95–105. doi: 10.1016/j.tifs.2019.06.007.
  • Kim, J. Y., J. H. Ahn, D. I. Moon, T. J. Park, S. Y. Lee, and Y. K. Choi. 2014. Multiplex electrical detection of avian influenza and human immunodeficiency virus with an underlap-embedded silicon nanowire field-effect transistor. Biosensors & Bioelectronics 55:162–7. doi: 10.1016/j.bios.2013.12.014.
  • Kim, S., J. H. Ahn, T. J. Park, S. Y. Lee, and Y. K. Choi. 2009. A biomolecular detection method based on charge pumping in a nanogap embedded field-effect-transistor biosensor. Applied Physics Letters 94 (24):243903. doi: 10.1063/1.3148340.
  • Kim, J., J. H. Jin, H. S. Kim, W. Song, S. K. Shin, H. Yi, D. H. Jang, S. Shin, and B. Y. Lee. 2016. Fully automated field-deployable bioaerosol monitoring system using carbon nanotube-based biosensors. Environmental Science & Technology 50 (10):5163–71. doi: 10.1021/acs.est.5b06361.
  • Kim, K. H., S. J. Park, C. S. Park, S. E. Seo, J. Lee, J. Kim, S. H. Lee, S. Lee, J.-S. Kim, C.-M. Ryu, et al. 2020. High-performance portable graphene field-effect transistor device for detecting gram-positive and -negative bacteria. Biosensors & Bioelectronics 167:112514. doi: 10.1016/j.bios.2020.112514.
  • Knopfmacher, O., M. L. Hammock, A. L. Appleton, G. Schwartz, J. Mei, T. Lei, J. Pei, and Z. Bao. 2014. Highly stable organic polymer field-effect transistor sensor for selective detection in the marine environment. Nature Communications 5:2954. doi: 10.1038/ncomms3954.
  • Konemund, L., L. Neumann, F. Hirschberg, R. Biedendieck, D. Jahn, H. H. Johannes, and W. Kowalsky. 2022. Functionalization of an extended-gate field-effect transistor (EGFET) for bacteria detection. Scientific Reports 12 (1):1–10. doi: 10.1038/s41598-022-08272-3.
  • Kong, D., X. Wang, C. Gu, M. Guo, Y. Wang, Z. Ai, S. Zhang, Y. Chen, W. Liu, Y. Wu, et al. 2021. Direct SARS-CoV-2 nucleic acid detection by Y-shaped DNA dual-probe transistor assay. Journal of the American Chemical Society 143 (41):17004–14. doi: 10.1021/jacs.1c06325.
  • Krsihna, B. V., S. Ahmadsaidulu, S. S. T. Teja, D. Jayanthi, A. Navaneetha, P. R. Reddy, and M. D. Prakash. 2022. Design and development of graphene FET biosensor for the detection of SARS-CoV-2. Silicon 14 (11):5913–21. doi: 10.1007/s12633-021-01372-1.
  • Kumar, N., W. Wang, J. C. Ortiz-Marquez, M. Catalano, M. Gray, N. Biglari, K. Hikari, X. Ling, J. Gao, T. van Opijnen, et al. 2020. Dielectrophoresis assisted rapid, selective and single cell detection of antibiotic resistant bacteria with G-FETs. Biosensors & Bioelectronics 156:112123. doi: 10.1016/j.bios.2020.112123.
  • Kwon, J., Y. Lee, T. Lee, and J.-H. Ahn. 2020. Aptamer-based field-effect transistor for detection of avian influenza virus in chicken serum. Analytical Chemistry 92 (7):5524–31. doi: 10.1021/acs.analchem.0c00348.
  • Kwon, O. S., S. H. Lee, S. J. Park, J. H. An, H. S. Song, T. Kim, J. H. Oh, J. Bae, H. Yoon, T. H. Park, et al. 2013. Large-scale graphene micropattern nano-biohybrids: High-performance transducers for FET-type flexible fluidic HIV immunoassays. Advanced Materials (Deerfield Beach, Fla.) 25 (30):4177–85. doi: 10.1002/adma.201301523.
  • Law, J. W. F., N. S. Ab Mutalib, K. G. Chan, and L. H. Lee. 2015. Rapid methods for the detection of foodborne bacterial pathogens: Principles, applications, advantages and limitations. Frontiers in Microbiology 5:770. doi: 10.3389/fmicb.2014.00770.
  • Lee, K. H., J. O. Lee, S. Choi, J. B. Yoon, and G. H. Cho. 2012. A CMOS label-free DNA sensor using electrostatic induction of molecular charges. Biosensors & Bioelectronics 31 (1):343–8. doi: 10.1016/j.bios.2011.10.042.
  • Lee, K. H., D. Lee, J. Yoon, O. Kwon, and J. Lee. 2018. A sensitive potentiometric sensor for isothermal amplification-coupled detection of nucleic acids. Sensors 18 (7):2277. doi: 10.3390/s1807.
  • Li, P., X. Feng, B. Chen, X. Wang, Z. Liang, and L. J. F. Wang. 2022. The detection of foodborne pathogenic bacteria in seafood using a multiplex polymerase chain reaction system. Foods 11 (23):3909. doi: 10.3390/foods11233909.
  • Li, F., J. Li, B. J. Dong, F. Wang, C. H. Fan, and X. L. Zuo. 2021a. DNA nanotechnology-empowered nanoscopic imaging of biomolecules. Chemical Society Reviews 50 (9):5650–67. doi: 10.1039/d0cs01281e.
  • Li, P., T. Li, X. Feng, D. Liu, Q. Zhong, X. Fang, Z. Liao, J. Wang, M. Xiao, and L. Wang. 2023. A micro-carbon nanotube transistor for ultra-sensitive, label-free, and rapid detection of staphylococcal enterotoxin c in food. Journal of Hazardous Materials 449:131033. doi: 10.1016/j.jhazmat.2023.131033.
  • Li, H., S. M. Liu, X. H. Yu, S. L. Tang, and C. K. Tang. 2020a. Coronavirus disease 2019 (COVID-19): Current status and future perspectives. International Journal of Antimicrobial Agents 55 (5):105951. doi: 10.1016/j.ijantimicag.2020.
  • Li, Q. Q., J. J. Wu, J. H. Nie, L. Zhang, H. Hao, S. Liu, C. Y. Zhao, Q. Zhang, H. Liu, L. L. Nie, et al. 2020b. The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity. Cell 182 (5):1284–94.e9. doi: 10.1016/j.cell.2020.07.012.
  • Li, J. H., D. Wu, Y. Yu, T. X. Li, K. Li, M. M. Xiao, Y. R. Li, Z. Y. Zhang, and G. J. Zhang. 2021b. Rapid and unamplified identification of COVID-19 with morpholino-modified graphene field-effect transistor nanosensor. Biosensors and Bioelectronics 183:113206. doi: 10.1016/j.bios.2021.113206.
  • Li, X. C., T. Y. Zhai, P. C. Gao, H. L. Cheng, R. Z. Hou, X. D. Lou, and F. Xia. 2018. Role of outer surface probes for regulating ion gating of nanochannels. Nature Communications 9 (1):40. doi: 10.1038/s41467-018-03030-4.
  • Lim, S. H., S. Mix, V. Anikst, I. Budvytiene, M. Eiden, Y. Churi, N. Queralto, A. Berliner, R. A. Martino, P. A. Rhodes, et al. 2016. Bacterial culture detection and identification in blood agar plates with an optoelectronic nose. The Analyst 141 (3):918–25. doi: 10.1039/c5an01990g.
  • Lim, M. C., J. Y. Park, K. Park, G. Ok, H. J. Jang, and S. W. Choi. 2017. An automated system for separation and concentration of food-borne pathogens using immunomagnetic separation. Food Control. 73:1541–7. doi: 10.1016/j.foodcont.2016.11.021.
  • Lin, C. H., C. H. Hung, C. Y. Hsiao, H. C. Lin, F. H. Ko, and Y. S. Yang. 2009. Poly-silicon nanowire field-effect transistor for ultrasensitive and label-free detection of pathogenic avian influenza DNA. Biosensors & Bioelectronics 24 (10):3019–24. doi: 10.1016/j.bios.2009.03.014.
  • Lin, Z., G. Wu, L. Zhao, and K. W. C. Lai. 2021. Detection of bacterial metabolic volatile indole using a graphene-based field-effect transistor biosensor. Nanomaterials 11 (5):1155. doi. doi: 10.3390/nano11051155.
  • Liu, F., Y. H. Kim, D. S. Cheon, and T. S. Seo. 2013. Micropatterned reduced graphene oxide based field-effect transistor for real-time virus detection. Sensors and Actuators B: Chemical 186:252–7. doi: 10.1016/j.snb.2013.05.097.
  • Luo, X. L., and J. J. Davis. 2013. Electrical biosensors and the label free detection of protein disease biomarkers. Chemical Society Reviews 42 (13):5944–62. doi: 10.1039/C3CS60077G.
  • Ma, J., M. Du, C. Wang, X. Xie, H. Wang, T. Li, S. Chen, L. Zhang, S. Mao, X. Zhou, et al. 2021. Rapid and sensitive detection of mycobacterium tuberculosis by an enhanced nanobiosensor. ACS Sensors 6 (9):3367–76. doi: 10.1021/acssensors.1c01227.
  • Makowski, M. S., and A. Ivanisevic. 2011. Molecular analysis of blood with micro-/nanoscale field-effect-transistor biosensors. Small (Weinheim an Der Bergstrasse, Germany) 7 (14):1863–75. doi: 10.1002/smll.201100211.
  • Marques, I., J. P. da Costa, C. Justino, P. Santos, K. Duarte, A. Freitas, S. Cardoso, A. Duarte, and T. Rocha-Santos. 2017. Carbon nanotube field effect transistor biosensor for the detection of toxins in seawater. International Journal of Environmental Analytical Chemistry 97 (7):597–605. doi: 10.1080/03067319.2017.1334056.
  • Martinović, T., U. Andjelković, M. Š. Gajdošik, D. Rešetar, and D. Josić. 2016. Foodborne pathogens and their toxins. Journal of Proteomics 147:226–35. doi: 10.1016/j.jprot.2016.04.029.
  • Mc Caffrey, C., K. Twomey, V. J. S. Ogurtsov, and A. B. Chemical. 2015. Development of a wireless swallowable capsule with potentiostatic electrochemical sensor for gastrointestinal track investigation. Sensors and Actuators B: Chemical 218:8–15. doi: 10.1016/j.snb.2015.04.063.
  • McNamee, S. E., C. T. Elliott, P. Delahaut, and K. Campbell. 2013. Multiplex biotoxin surface plasmon resonance method for marine biotoxins in algal and seawater samples. Environmental Science and Pollution Research International 20 (10):6794–807. doi: 10.1007/s11356-012-1329-7.
  • Ménard-Moyon, C., A. Bianco, and K. J. A. s Kalantar-Zadeh. 2020. Two-dimensional material-based biosensors for virus detection. ACS Sensors 5 (12):3739–69. doi: 10.1021/acssensors.0c01961.
  • Mishra, N. N., W. C. Maki, E. Cameron, R. Nelson, P. Winterrowd, S. K. Rastogi, B. Filanoski, and G. K. Maki. 2008. Ultra-sensitive detection of bacterial toxin with silicon nanowire transistor. Lab on a Chip 8 (6):868–71. doi: 10.1039/b802036a.
  • Moradi, M., Y. Vasseghian, A. Khataee, M. Kobya, H. Arabzade, and E. N. Dragoi. 2020. Service life and stability of electrodes applied in electrochemical advanced oxidation processes: A comprehensive review. Journal of Industrial and Engineering Chemistry 87:18–39. doi: 10.1016/j.jiec.2020.03.038.
  • Moudgil, A., S. Singh, N. Mishra, P. Mishra, and S. Das. 2020. Mos2/tio2 hybrid nanostructure-based field-effect transistor for highly sensitive, selective, and rapid detection of gram-positive bacteria. Advanced Materials Technologies 5 (1):1900615. doi: 10.1002/admt.201900615.
  • Mulyana, Y., M. Uenuma, N. Okamoto, Y. Ishikawa, I. Yamashita, and Y. Uraoka. 2018. Alterations in ambipolar characteristic of graphene due to adsorption of Escherichia coli bacteria. Journal of Physics D: Applied Physics 51 (11):115102. doi: 10.1088/1361-6463/aaac6e.
  • Nakatsuka, N., J. M. Abendroth, K. A. Yang, and A. M. Andrews. 2021. Divalent cation dependence enhances dopamine aptamer biosensing. ACS Applied Materials & Interfaces 13 (8):9425–35. doi: 10.1021/acsami.0c17535.
  • Nakatsuka, N., K. A. Yang, J. M. Abendroth, K. M. Cheung, X. B. Xu, H. Y. Yang, C. Z. Zhao, B. W. Zhu, Y. S. Rim, Y. Yang, et al. 2018. Aptamer-field-effect transistors overcome Debye length limitations for small-molecule sensing. Science (New York, N.Y.) 362 (6412):319–24. +. doi: 10.1126/science.aao6750.
  • Nayak, M., A. Kotian, S. Marathe, and D. Chakravortty. 2009. Detection of microorganisms using biosensors-a smarter way towards detection techniques. Biosensors & Bioelectronics 25 (4):661–7. doi: 10.1016/j.bios.2009.08.037.
  • Nekrasov, N., S. Jaric, D. Kireev, A. V. Emelianov, A. V. Orlov, I. Gadjanski, P. I. Nikitin, D. Akinwande, and I. J. B. Bobrinetskiy. 2022. Real-time detection of ochratoxin A in wine through insight of aptamer conformation in conjunction with graphene field-effect transistor. Biosensors and Bioelectronics 200:113890. doi: 10.1016/j.bios.2021.113890.
  • Nekrasov, N., D. Kireev, A. Emelianov, and I. Bobrinetskiy. 2019. Graphene-based sensing platform for on-chip ochratoxin a detection. Toxins 11 (10):550. doi: 10.3390/toxins11100550.
  • Nikkhoo, N., P. G. Gulak, and K. Maxwell. 2013. Rapid detection of E. coli bacteria using potassium-sensitive FETs in CMOS. IEEE Transactions on Biomedical Circuits and Systems 7 (5):621–30. doi: 10.1109/Tbcas.2013.2276013.
  • Ning, Y., J. Hu, and F. G. Lu. 2020. Aptamers used for biosensors and targeted therapy. Biomedicine & Pharmacotherapy 132:110902. doi: 10.1016/j.biopha.2020.110902.
  • Nolan, P., S. Auer, A. Spehar, C. T. Elliott, and K. Campbell. 2019. Current trends in rapid tests for mycotoxins. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 36 (5):800–14. doi: 10.1080/19440049.2019.1595171.
  • Palaniappan, A., W. H. Goh, D. W. H. Fam, G. Rajaseger, C. E. Z. Chan, B. J. Hanson, S. M. Moochhala, S. G. Mhaisalkar, and B. Liedberg. 2013. Label-free electronic detection of bio-toxins using aligned carbon nanotubes. Biosensors & Bioelectronics 43:143–7. doi: 10.1016/j.bios.2012.12.019.
  • Park, S., J. Choi, M. Jeun, Y. Kim, S. S. Yuk, S. K. Kim, C. S. Song, S. Lee, and K. H. Lee. 2017. Detection of avian influenza virus from cloacal swabs using a disposable well gate FET sensor. Advanced Healthcare Materials 6 (13):1700371. doi: 10.1002/adhm.20.
  • Park, M., H. S. Kim, T. Kim, J. Kim, S. Seo, and B. Y. Lee. 2018. Real-time monitoring of microbial activity using hydrogel-hybridized carbon nanotube transistors. Sensors and Actuators B: Chemical 263:486–92. doi: 10.1016/j.snb.2018.02.137.
  • Park, S., H. Kim, K. Woo, J. M. Kim, H. J. Jo, Y. Jeong, and K. H. Lee. 2022. SARS-CoV-2 variant screening using a virus-receptor-based electrical biosensor. Nano Letters 22 (1):50–7. doi: 10.1021/acs.nanolett.1c03108.
  • Park, I., J. Lim, S. You, M. T. Hwang, J. Kwon, K. Koprowski, S. Kim, J. Heredia, S. A. S. de Ramirez, E. Valera, et al. 2021. Detection of SARS-CoV-2 virus amplification using a crumpled graphene field-effect transistor biosensor. ACS Sensors 6 (12):4461–70. doi: 10.1021/acssensors.1c01937.
  • Park, C. W., J. H. Yang, C. S. Ah, C. G. Ahn, Y. H. Choi, K. H. Chung, W. J. Kim, and G. Y. Sung. 2011. Toxin detection by Si photosensitive biosensors with a new measurement scheme. Biosensors & Bioelectronics 29 (1):219–23. doi: 10.1016/j.bios.2011.08.009.
  • Paulose, A. K., C. C. Huang, P. H. Chen, A. Tripathi, P. H. Chen, Y. S. Huang, and Y. L. Wang. 2022. A rapid detection of COVID-19 viral RNA in human saliva using electrical double layer-gated field-effect transistor-based biosensors. Advanced Materials Technologies 7 (1):2100842. doi: 10.1002/admt.20.
  • Ping, J. L., R. Vishnubhotla, A. Vrudhula, and A. T. C. Johnson. 2016. Scalable production of high-sensitivity, label-free DNA biosensors based on back-gated graphene field effect transistors. ACS Nano 10 (9):8700–4. doi: 10.1021/acsnano.6b04110.
  • Pourakbari, R., N. Shadjou, H. Yousefi, I. Isildak, M. Yousefi, M. R. Rashidi, and B. Khalilzadeh. 2019. Recent progress in nanomaterial-based electrochemical biosensors for pathogenic bacteria. Microchimica Acta 186 (12):1–13. doi: 10.1007/s00604-019-3966-8.
  • Purwidyantri, A., A. Ipatov, T. Domingues, J. Borme, M. Martins, P. Alpuim, M. J. S. Prado, and A. B. Chemical. 2022. Programmable graphene-based microfluidic sensor for DNA detection. Sensors and Actuators B: Chemical 367:132044. doi: 10.1016/j.snb.2022.132044.
  • Qiu, S. Y., Z. Y. Lin, Y. M. Zhou, D. G. Wang, L. J. Yuan, Y. H. Wei, T. C. Dai, L. G. Luo, and G. N. Chen. 2015. Highly selective colorimetric bacteria sensing based on protein-capped nanoparticles. The Analyst 140 (4):1149–54. doi: 10.1039/c4an02106a.
  • Ravi, N., D. L. Cortade, E. Ng, and S. X. Wang. 2020. Diagnostics for SARS-CoV-2 detection: A comprehensive review of the FDA-EUA COVID-19 testing landscape. Biosensors and Bioelectronics 165:112454. doi: 10.1016/j.bios.2020.112454.
  • Ray, R., J. Basu, W. A. Gazi, N. Samanta, K. Bhattacharyya, and C. RoyChaudhuri. 2018. Label-free biomolecule detection in physiological solutions with enhanced sensitivity using graphene nanogrids FET biosensor. IEEE Transactions on Nanobioscience 17 (4):433–42. doi: 10.1109/Tnb.2018.2863734.
  • Reiner-Rozman, C. 2016. Graphene-based field effect transistors for the biosensing of toxins. Doctoral dissertation, Johannes Gutenberg-Universität Mainz. doi: 10.25358/openscience-4610.
  • Rizou, M., I. M. Galanakis, T. M. S. Aldawoud, and C. M. Galanakis. 2020. Safety of foods, food supply chain and environment within the COVID-19 pandemic. Trends in Food Science & Technology 102:293–9. doi: 10.1016/j.tifs.2020.06.008.
  • Roberts, A., N. Chauhan, S. Islam, S. Mahari, B. Ghawri, R. K. Gandham, S. S. Majumdar, A. Ghosh, and S. Gandhi. 2020. Graphene functionalized field-effect transistors for ultrasensitive detection of Japanese encephalitis and Avian influenza virus. Scientific Reports 10 (1):14546. doi: 10.1038/s41598-020-71591-w.
  • Rotariu, L., F. Lagarde, N. Jaffrezic-Renault, and C. Bala. 2016. Electrochemical biosensors for fast detection of food contaminants trends and perspective. TrAC Trends in Analytical Chemistry 79:80–7. doi: 10.1016/j.trac.2015.12.017.
  • Sadighbayan, D., M. Hasanzadeh, and E. Ghafar-Zadeh. 2020. Biosensing based on field-effect transistors (FET): Recent progress and challenges. TrAC Trends in Analytical Chemistry 133:116067. doi: 10.1016/j.trac.2020.116067.
  • Saha, B., P. Purwar, J. Lee, and S. Saha. 2018. Magnetic nanoparticle encapsulation for the manipulation of bacterial movement and spontaneous detection by reduced graphene oxide. Advanced Biosystems 2 (10):1800095. doi: 10.1002/adbi.201800095.
  • Sang, S. B., Y. J. Wang, Q. L. Feng, Y. Wei, J. L. Ji, and W. D. Zhang. 2016. Progress of new label-free techniques for biosensors: A review. Critical Reviews in Biotechnology 36 (3):465–81. doi: 10.3109/07388551.2014.991270.
  • Seo, G., G. Lee, M. J. Kim, S. H. Baek, M. Choi, K. B. Ku, C. S. Lee, S. Jun, D. Park, H. G. Kim, et al. 2020. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano 14 (4):5135–42. doi: 10.1021/acsnano.0c02823.
  • Shao, W. T., M. R. Shurin, S. E. Wheeler, X. Y. He, and A. Star. 2021. Rapid detection of SARS-CoV-2 antigens using high-purity semiconducting single-walled carbon nanotube-based field-effect transistors. ACS Applied Materials & Interfaces 13 (8):10321–7. doi: 10.1021/acsami.0c22589.
  • Shariati, M. 2018. The field effect transistor DNA biosensor based on ITO nanowires in label-free hepatitis B virus detecting compatible with CMOS technology. Biosensors & Bioelectronics 105:58–64. doi: 10.1016/j.bios.2018.01.022.
  • Shariati, M., M. Sadeghi, and S. H. R. Shojaei. 2022. Sensory analysis of hepatitis B virus DNA for medicinal clinical diagnostics based on molybdenum doped ZnO nanowires field effect transistor biosensor; a comparative study to PCR test results. Analytica Chimica Acta 1195:339442. doi: 10.1016/j.aca.2022.339442.
  • Shariati, M., M. Vaezjalali, and M. Sadeghi. 2021. Ultrasensitive and easily reproducible biosensor based on novel doped MoS2 nanowires field-effect transistor in label-free approach for detection of hepatitis B virus in blood serum. Analytica Chimica Acta 1156:338360. doi: 10.1016/j.aca.2021.338360.
  • Shen, Y. Z., Y. Y. Zhang, Z. F. Gao, Y. W. Ye, Q. P. Wu, H. Y. Chen, and J. J. Xu. 2021. Recent advances in nanotechnology for simultaneous detection of multiple pathogenic bacteria. Nano Today. 38:101121. doi: 10.1016/j.nantod.2021.101121.
  • Shockley, W. 1952. A unipolar "field-effect" transistor. Proceedings of the IRE 40 (11):1365–76. doi: 10.1109/JRPROC.1952.273964.
  • Silva, N. F. D., J. M. C. S. Magalhaes, C. Freire, and C. Delerue-Matos. 2018. Electrochemical biosensors for salmonella: State of the art and challenges in food safety assessment. Biosensors & Bioelectronics 99:667–82. doi: 10.1016/j.bios.2017.08.019.
  • Smith, C. J., and A. M. Osborn. 2009. Advantages and limitations of quantitative PCR (Q-PCR)-BASED approaches in microbial ecology. FEMS Microbiology Ecology 67 (1):6–20. doi: 10.1111/j.1574-6941.2008.00629.x.
  • So, H. M., D. W. Park, E. K. Jeon, Y. H. Kim, B. S. Kim, C. K. Lee, S. Y. Choi, S. C. Kim, H. Chang, and J. O. Lee. 2008. Detection and titer estimation of Escherichia coli using aptamer-functionalized single-walled carbon-nanotube field-effect transistors. Small (Weinheim an Der Bergstrasse, Germany) 4 (2):197–201. doi: 10.1002/smll.200700664.
  • So, H. M., K. Won, Y. H. Kim, B. K. Kim, B. H. Ryu, P. S. Na, H. Kim, and J. O. Lee. 2005. Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements. Journal of the American Chemical Society 127 (34):11906–7. doi: 10.1021/ja053094r.
  • Son, M., D. Kim, J. Kang, J. H. Lim, S. H. Lee, H. J. Ko, S. Hong, and T. H. Park. 2016. Bioelectronic nose using odorant binding protein-derived peptide and carbon nanotube field-effect transistor for the assessment of salmonella contamination in food. Analytical Chemistry 88 (23):11283–7. doi: 10.1021/acs.analchem.6b03284.
  • Spijkman, M.-J., J. J. Brondijk, T. C. T. Geuns, E. C. P. Smits, T. Cramer, F. Zerbetto, P. Stoliar, F. Biscarini, P. W. M. Blom, and D. M. de Leeuw. 2010. Dual-gate organic field-effect transistors as potentiometric sensors in aqueous solution. Advanced Functional Materials 20 (6):898–905. doi: 10.1002/adfm.200901830.
  • Srivastava, S., V. Kumar, M. A. Ali, P. R. Solanki, A. Srivastava, G. Sumana, P. S. Saxena, A. G. Joshi, and B. D. Malhotra. 2013. Electrophoretically deposited reduced graphene oxide platform for food toxin detection. Nanoscale 5 (7):3043–51. doi: 10.1039/c3nr32242d.
  • Stepurska, K. V., O. O. Soldatkin, V. M. Arkhypova, A. P. Soldatkin, F. Lagarde, N. Jaffrezic-Renault, and S. V. Dzyadevych. 2015. Development of novel enzyme potentiometric biosensor based on pH-sensitive field-effect transistors for aflatoxin B1 analysis in real samples. Talanta 144:1079–84. doi: 10.1016/j.talanta.2015.07.068.
  • Stern, E., R. Wagner, F. J. Sigworth, R. Breaker, T. M. Fahmy, and M. A. Reed. 2007. Importance of the Debye screening length on nanowire field effect transistor sensors. Nano Letters 7 (11):3405–9. doi: 10.1021/nl071792z.
  • Stoliar, P., E. Bystrenova, S. D. Quiroga, P. Annibale, M. Facchini, M. Spijkman, S. Setayesh, D. de Leeuw, and F. Biscarini. 2009. DNA adsorption measured with ultra-thin film organic field effect transistors. Biosensors & Bioelectronics 24 (9):2935–8. doi: 10.1016/j.bios.2009.02.003.
  • Subramanian, S., K. H. Aschenbach, J. P. Evangelista, M. B. Najjar, W. X. Song, and R. D. Gomez. 2012. Rapid, sensitive and label-free detection of Shiga-toxin producing Escherichia coli o157 using carbon nanotube biosensors. Biosensors & Bioelectronics 32 (1):69–75. doi: 10.1016/j.bios.2011.11.040.
  • Syedmoradi, L., A. Ahmadi, M. L. Norton, and K. Omidfar. 2019. A review on nanomaterial-based field effect transistor technology for biomarker detection. Microchimica Acta 186 (11):1–23. doi: 10.1007/s00604-019-3850-6.
  • Tan, X. B., M. Y. Yang, L. Zhu, G. Gunathilaka, Z. X. Zhou, P. Y. Chen, Y. F. Zhang, and M. M. C. Cheng. 2022. Ultrasensitive and selective bacteria sensors based on functionalized graphene transistors. IEEE Sensors Journal 22 (6):5514–20. doi: 10.1109/JSEN.2022.3147229.
  • Thakur, B., G. H. Zhou, J. B. Chang, H. H. Pu, B. Jin, X. Y. Sui, X. C. Yuan, C. H. Yang, M. Magruder, and J. H. Chen. 2018. Rapid detection of single E. coli bacteria using a graphene-based field-effect transistor device. Biosensors & Bioelectronics 110:16–22. doi: 10.1016/j.bios.2018.03.014.
  • Thu, V. V., P. D. Tam, and P. T. Dung. 2013. Rapid and label-free detection of H5N1 virus using carbon nanotube network field effect transistor. Current Applied Physics 13 (7):1311–5. doi: 10.1016/j.cap.2013.04.001.
  • Torsi, L., M. Magliulo, K. Manoli, and G. Palazzo. 2013. Organic field-effect transistor sensors: A tutorial review. Chemical Society Reviews 42 (22):8612–28. doi: 10.1039/c3cs60127g.
  • Tothill, I. E. 2009. Biosensors for cancer markers diagnosis. Seminars in Cell & Developmental Biology 20 (1):55–62. doi: 10.1016/j.semcdb.2009.01.015.
  • Tran, T. L., T. T. Nguyen, T. T. H. Tran, V. T. Chu, Q. T. Tran, and A. T. Mai. 2017. Detection of influenza a virus using carbon nanotubes field effect transistor based DNA sensor. Physica E: Low-Dimensional Systems and Nanostructures 93:83–6. doi: 10.1016/j.physe.2017.05.019.
  • Uhm, M., J.-M. Lee, J. Lee, J. H. Lee, S. Choi, B.-G. Park, D. M. Kim, S.-J. Choi, H.-S. Mo, Y.-J. Jeong, et al. 2019. Ultrasensitive electrical detection of hemagglutinin for point-of-care detection of influenza virus based on a CMP-NANA probe and top-down processed silicon nanowire field-effect transistors. Sensors 19 (20):4502. doi: 10.3390/s19204502.
  • Valderrama, W. B., E. G. Dudley, S. Doores, and C. N. Cutter. 2016. Commercially available rapid methods for detection of selected food-borne pathogens. Critical Reviews in Food Science and Nutrition 56 (9):1519–31. doi: 10.1080/10408398.2013.775567.
  • Villamizar, R. A., A. Maroto, and F. X. Rius. 2009. Improved detection of Candida albicans with carbon nanotube field-effect transistors. Sensors and Actuators B: Chemical 136 (2):451–7. doi: 10.1016/j.snb.2008.10.013.
  • Villamizar, R. A., A. Maroto, and F. X. Rius. 2011. Rapid detection of Aspergillus flavus in rice using biofunctionalized carbon nanotube field effect transistors. Analytical and Bioanalytical Chemistry 399 (1):119–26. doi: 10.1007/s00216-010-3975-2.
  • Villamizar, R. A., A. Maroto, F. X. Rius, I. Inza, and M. J. Figueras. 2008. Fast detection of Salmonella Infantis with carbon nanotube field effect transistors. Biosensors & Bioelectronics 24 (2):279–83. doi: 10.1016/j.bios.2008.03.046.
  • Vu, C. A., and W. Y. Chen. 2019. Field-effect transistor biosensors for biomedical applications: Recent advances and future prospects. Sensors 19 (19):4214. doi: 10.3390/s1919.
  • Wang, Z. Y., and Z. H. Dai. 2015. Carbon nanomaterial-based electrochemical biosensors: An overview. Nanoscale 7 (15):6420–31. doi: 10.1039/c5nr00585j.
  • Wang, Y. Q., T. Liu, M. Yang, C. J. Wu, W. Zhang, Z. Y. Chu, and W. Q. Jin. 2021. A handheld testing device for the fast and ultrasensitive recognition of cardiac troponin I via an ion-sensitive field-effect transistor. Biosensors and Bioelectronics 193. doi: 10.1016/j.bios.2021.113554.
  • Wang, L. Q., X. J. Wang, Y. G. Wu, M. Q. Guo, C. J. Gu, C. H. Dai, D. R. Kong, Y. Wang, C. Zhang, D. Qu, et al. 2022. Rapid and ultrasensitive electromechanical detection of ions, biomolecules and SARS-CoV-2 RNA in unamplified samples. Nature Biomedical Engineering 6 (3):276–85. doi: 10.1038/s41551-021-00833-7.
  • Wei, J. Q., Z. H. Zhao, F. T. Luo, K. B. Lan, R. B. Chen, and G. X. Qin. 2022. Sensitive and quantitative detection of SARS-CoV-2 antibodies from vaccinated serum by MoS2-field effect transistor. 2D Materials 9 (1):015030. doi: 10.1088/2053-1583/ac40c4.
  • Wu, C. C. 2022. Silicon nanowires length and numbers dependence on sensitivity of the field-effect transistor sensor for hepatitis B virus surface antigen detection. Biosensors 12 (2):115. doi: 10.3390/bios12020115.
  • Wu, G. F., Z. W. Dai, X. Tang, Z. H. Lin, P. K. Lo, M. Meyyappan, and K. W. C. Lai. 2017. Graphene field-effect transistors for the sensitive and selective detection of Escherichia coli using pyrene-tagged DNA aptamer. Advanced Healthcare Materials 6 (19):1700736. doi: 10.1002/adhm.201700736.
  • Xu, Y. W., Y. H. Li, W. L. Tan, J. Y. Shi, X. B. Zou, W. Zhang, X. N. Zhang, Y. X. Li, C. Q. Zhu, L. L. Ai, et al. 2021. Electrochemical determination of hantavirus using gold nanoparticle-modified graphene as an electrode material and Cu-based metal-organic framework assisted signal generation. Microchimica Acta 188:1-10. doi: 10.1007/s00604-021-04769-2.
  • Xu, S. C., J. Zhan, B. Y. Man, S. Z. Jiang, W. W. Yue, S. B. Gao, C. G. Guo, H. P. Liu, Z. H. Li, J. H. Wang, et al. 2017. Real-time reliable determination of binding kinetics of DNA hybridization using a multi-channel graphene biosensor. Nature Communications 8 (1):14902. doi: 10.1038/ncomms14902.
  • Xu, B. Z., M. S. Zhu, W. C. Zhang, X. Zhen, Z. X. Pei, Q. Xue, C. Y. Zhi, and P. Shi. 2016. Ultrathin MXene-micropattern-based field-effect transistor for probing neural activity. Advanced Materials (Deerfield Beach, Fla.) 28 (17):3333–9. doi: 10.1002/adma.201504657.
  • Yang, L., and R. Bashir. 2008. Electrical/electrochemical impedance for rapid detection of foodborne pathogenic bacteria. Biotechnology Advances 26 (2):135–50. doi: 10.1016/j.biotechadv.2007.10.003.
  • Yang, Y. B., X. D. Yang, X. M. Zou, S. T. Wu, D. Wan, A. Y. Cao, L. Liao, Q. Yuan, and X. F. Duan. 2017. Ultrafine graphene nanomesh with large on/off ratio for high-performance flexible biosensors. Advanced Functional Materials 27 (19):1604096. doi: 10.1002/adfm.201604096.
  • Yau, L. D. 1974. A simple theory to predict the threshold voltage of short-channel IGFET’s. Solid-State Electronics 17 (10):1059–63. doi: 10.1016/0038-1101(74)90145-2.
  • Ye, S., K. Shao, Z. Li, N. Guo, Y. Zuo, Q. Li, Z. Lu, L. Chen, Q. He, and H. Han. 2015. Antiviral activity of graphene oxide: How sharp edged structure and charge matter. ACS Applied Materials & Interfaces 7 (38):21571–9. doi: 10.1021/acsami.5b06876.
  • Yeni, F., S. Acar, Ö. Polat, Y. Soyer, and H. J. F. C. Alpas. 2014. Rapid and standardized methods for detection of foodborne pathogens and mycotoxins on fresh produce. Food Control. 40:359–67. doi: 10.1016/j.foodcont.2013.12.020.
  • Yong, S. K., S.-K. Shen, C.-W. Chiang, Y.-Y. Weng, M.-P. Lu, and Y.-S. Yang. 2021. Silicon nanowire field-effect transistor as label-free detection of hepatitis B virus proteins with opposite net charges. Biosensors 11 (11):442. doi: 10.3390/bios11110442.
  • You, Y. S., S. Lim, J. Hahn, Y. J. Choi, and S. Gunasekaran. 2018. Bifunctional linker-based immunosensing for rapid and visible ­detection of bacteria in real matrices. Biosensors & Bioelectronics 100:389–95. doi: 10.1016/j.bios.2017.09.033.
  • Zamzami, M. A., G. Rabbani, A. Ahmad, A. A. Basalah, W. H. Al-Sabban, S. N. Ahn, and H. Choudhry. 2022. Carbon nanotube field-effect transistor (CNT-FET)-based biosensor for rapid detection of SARS-CoV-2 (COVID-19) surface spike protein S1. Bioelectrochemistry 143:107982. doi: 10.1016/j.bioelechem.2021.107982.
  • Zelada-Guillen, G. A., J. Riu, A. Duzgun, and F. X. Rius. 2009. Immediate detection of living bacteria at ultralow concentrations using a carbon nanotube based potentiometric aptasensor. Angewandte Chemie (International ed. in English) 48 (40):7334–7. doi: 10.1002/anie.200902090.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.