1,512
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Neuron-immunity communication: mechanism of neuroprotective effects in EGCG

, &

References

  • Aarsland, D., L. Batzu, G. M. Halliday, G. J. Geurtsen, C. Ballard, K. Ray Chaudhuri, and D. Weintraub. 2021. Parkinson disease-associated cognitive impairment. Nature Reviews. Disease Primers 7 (1):47. doi: 10.1038/s41572-021-00280-3.
  • Abdelmeguid, N. E., T. M. Hammad, A. M. Abdel-Moneim, and S. A. Salam. 2022. Effect of epigallocatechin-3-gallate on stress-induced depression in a mouse model: role of interleukin-1β and brain-derived neurotrophic factor. Neurochemical Research 47 (11):3464–75. doi: 10.1007/s11064-022-03707-9.
  • Aelvoet, S.-A., A. Ibrahimi, F. Macchi, R. Gijsbers, C. Van den Haute, Z. Debyser, and V. Baekelandt. 2014. Noninvasive bioluminescence imaging of alpha-synuclein oligomerization in mouse brain using split firefly luciferase reporters. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 34 (49):16518–32. doi: 10.1523/JNEUROSCI.4933-13.2014.
  • Agirman, G., K. B. Yu, and E. Y. Hsiao. 2021. Signaling inflammation across the gut-brain axis. Science (New York, N.Y.) 374 (6571):1087–92. doi: 10.1126/science.abi6087.
  • Akhtar, N., and T. M. Haqqi. 2011. Epigallocatechin-3-gallate suppresses the global interleukin-1beta-induced inflammatory response in human chondrocytes. Arthritis Research & Therapy 13 (3):R93. doi: 10.1186/ar3368.
  • Albert-Bayo, M., I. Paracuellos, A. M. González-Castro, A. Rodríguez-Urrutia, M. J. Rodríguez-Lagunas, C. Alonso-Cotoner, J. Santos, and M. Vicario. 2019. Intestinal mucosal mast cells: Key modulators of barrier function and homeostasis. Cells 8 (2):135. doi: 10.3390/cells8020135.
  • Al-Diwani, A. A. J., T. A. Pollak, S. R. Irani, and B. R. Lennox. 2017. Psychosis: An autoimmune disease? Immunology 152 (3):388–401. doi: 10.1111/imm.12795.
  • Almeida-Toledano, L., V. Andreu-Fernandez, R. Aras-Lopez, O. Garcia-Algar, L. Martinez, and M. D. Gomez-Roig. 2021. Epigallocatechin gallate ameliorates the effects of prenatal alcohol exposure in a fetal alcohol spectrum disorder-like mouse model. International Journal of Molecular Sciences 22 (2):715. doi: 10.3390/ijms22020715.
  • Álvarez-Pérez, B., J. Homs, M. Bosch-Mola, T. Puig, F. Reina, E. Verdú, and P. Boadas-Vaello. 2016. Epigallocatechin-3-gallate treatment reduces thermal hyperalgesia after spinal cord injury by down-regulating RhoA expression in mice. European Journal of Pain (London, England) 20 (3):341–52. doi: 10.1002/ejp.722.
  • Armstrong, R. 2020. What causes neurodegenerative disease? Folia Neuropathologica 58 (2):93–112. doi: 10.5114/fn.2020.96707.
  • Bai, Q., Z. Lyu, X. Yang, Z. Pan, J. Lou, and T. Dong. 2017. Epigallocatechin-3-gallate promotes angiogenesis via up-regulation of Nfr2 signaling pathway in a mouse model of ischemic stroke. Behavioural Brain Research 321:79–86. doi: 10.1016/j.bbr.2016.12.037.
  • Bates, G. P., R. Dorsey, J. F. Gusella, M. R. Hayden, C. Kay, B. R. Leavitt, M. Nance, C. A. Ross, R. I. Scahill, R. Wetzel, et al. 2015. Huntington disease. Nature Reviews. Disease Primers 1:15005. doi: 10.1038/nrdp.2015.5.
  • Bell, K. F. 2013. Insight into a neuron’s preferential susceptibility to oxidative stress. Biochemical Society Transactions 41 (6):1541–5. doi: 10.1042/bst20130245.
  • Benlloch, M., M. Cuerda-Ballester, E. Drehmer, J. L. Platero, S. Carrera-Julia, M. M. Lopez-Rodriguez, J. J. Ceron, A. Tvarijonaviciute, M. A. Navarro, M. L. Moreno, et al. 2020. Possible reduction of cardiac risk after supplementation with epigallocatechin gallate and increase of ketone bodies in the blood in patients with multiple sclerosis. A pilot study. Nutrients 12 (12):3792. doi: 10.3390/nu12123792.
  • Bernardo-Faura, M., M. Rinas, J. Wirbel, I. Pertsovskaya, V. Pliaka, D. E. Messinis, G. Vila, T. Sakellaropoulos, W. Faigle, P. Stridh, et al. 2021. Prediction of combination therapies based on topological modeling of the immune signaling network in multiple sclerosis. Genome Medicine 13 (1):117. doi: 10.1186/s13073-021-00925-8.
  • Bessis, A., C. Béchade, D. Bernard, and A. Roumier. 2007. Microglial control of neuronal death and synaptic properties. Glia 55 (3):233–8. doi: 10.1002/glia.20459.
  • Biasibetti, R., A. C. Tramontina, A. P. Costa, M. F. Dutra, A. Quincozes-Santos, P. Nardin, C. L. Bernardi, K. M. Wartchow, P. S. Lunardi, and C.-A. Gonçalves. 2013. Green tea (-)epigallocatechin-3-gallate reverses oxidative stress and reduces acetylcholinesterase activity in a streptozotocin-induced model of dementia. Behavioural Brain Research 236 (1):186–93. doi: 10.1016/j.bbr.2012.08.039.
  • Bimonte, S., M. Cascella, V. Schiavone, F. Mehrabi-Kermani, and A. Cuomo. 2017. The roles of epigallocatechin-3-gallate in the treatment of neuropathic pain: An update on preclinical in vivo studies and future perspectives. Drug Design, Development and Therapy 11:2737–42. doi: 10.2147/DDDT.S142475.
  • Bohmwald, K., C. A. Andrade, V. P. Mora, J. T. Muñoz, R. Ramírez, M. F. Rojas, and A. M. Kalergis. 2022. Neurotrophin signaling impairment by viral infections in the central nervous system. International Journal of Molecular Sciences 23 (10):5817. doi: 10.3390/ijms23105817.
  • Burns, M., and R. Solinsky. 2022. Toward rebalancing blood pressure instability after spinal cord injury with spinal cord electrical stimulation: A mini review and critique of the evolving literature. Autonomic Neuroscience: Basic & Clinical 237:102905. doi: 10.1016/j.autneu.2021.102905.
  • Butterfield, D. A., and B. Halliwell. 2019. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nature Reviews. Neuroscience 20 (3):148–60. doi: 10.1038/s41583-019-0132-6.
  • Cai, J., D. Jing, M. Shi, Y. Liu, T. Lin, Z. Xie, Y. Zhu, H. Zhao, X. Shi, F. Du, et al. 2014. Epigallocatechin gallate (EGCG) attenuates infrasound-induced neuronal impairment by inhibiting microglia-mediated inflammation. The Journal of Nutritional Biochemistry 25 (7):716–25. doi: 10.1016/j.jnutbio.2014.02.012.
  • Cai, F., S. Liu, Y. Lei, S. Jin, Z. Guo, D. Zhu, X. Guo, H. Zhao, X. Niu, Y. Xi, et al. 2021. Epigallocatechin-3 gallate regulates macrophage subtypes and immunometabolism to ameliorate experimental autoimmune encephalomyelitis. Cellular Immunology 368:104421. doi: 10.1016/j.cellimm.2021.104421.
  • Cano, A., M. Ettcheto, J.-H. Chang, E. Barroso, M. Espina, B. A. Kuhne, M. Barenys, C. Auladell, J. Folch, E. B. Souto, et al. 2019. Dual-drug loaded nanoparticles of Epigallocatechin-3-gallate (EGCG)/Ascorbic acid enhance therapeutic efficacy of EGCG in a APPswe/PS1dE9 Alzheimer’s disease mice model. Journal of Controlled Release: Official Journal of the Controlled Release Society 301:62–75. doi: 10.1016/j.jconrel.2019.03.010.
  • Cano, A., M. Ettcheto, M. Espina, C. Auladell, A. C. Calpena, J. Folch, M. Barenys, E. Sánchez-López, A. Camins, and M. L. García. 2018. Epigallocatechin-3-gallate loaded PEGylated-PLGA nanoparticles: A new anti-seizure strategy for temporal lobe epilepsy. Nanomedicine: Nanotechnology, Biology, and Medicine 14 (4):1073–85. doi: 10.1016/j.nano.2018.01.019.
  • Cano, A., M. Ettcheto, M. Espina, C. Auladell, J. Folch, B. A. Kuhne, M. Barenys, E. Sanchez-Lopez, E. B. Souto, M. L. Garcia, et al. 2021. Epigallocatechin-3-gallate PEGylated poly(lactic-co-glycolic) acid nanoparticles mitigate striatal pathology and motor deficits in 3-nitropropionic acid intoxicated mice. Nanomedicine (London, England) 16 (1):19–35. doi: 10.2217/nnm-2020-0239.
  • Che, F., G. Wang, J. Yu, X. Wang, Y. Lu, Q. Fu, Q. Su, J. Jiang, and Y. Du. 2017. Effects of epigallocatechin-3-gallate on iron metabolism in spinal cord motor neurons. Molecular Medicine Reports 16 (3):3010–4. doi: 10.3892/mmr.2017.6919.
  • Chen, W. W., X. Zhang, and W. J. Huang. 2016. Role of neuroinflammation in neurodegenerative diseases (review). Molecular Medicine Reports 13 (4):3391–6. doi: 10.3892/mmr.2016.4948.
  • Cheng, C.-Y., L. Barro, S.-T. Tsai, T.-W. Feng, X.-Y. Wu, C.-W. Chao, R.-S. Yu, T.-Y. Chin, and M. F. Hsieh. 2021. Epigallocatechin-3-gallate-loaded liposomes favor anti-inflammation of microglia cells and promote neuroprotection. International Journal of Molecular Sciences 22 (6):3037. doi: 10.3390/ijms22063037.
  • Cheng-Chung Wei, J., H. C. Huang, W. J. Chen, C. N. Huang, C. H. Peng, and C. L. Lin. 2016. Epigallocatechin gallate attenuates ­amyloid β-induced inflammation and neurotoxicity in EOC 13.31 microglia. European Journal of Pharmacology 770:16–24. doi: 10.1016/j.ejphar.2015.11.048.
  • Chi, X., X. Ma, Z. Li, Y. Zhang, Y. Wang, L. Yuan, Y. Wu, W. Xu, and S. Hu. 2020. Protective effect of epigallocatechin-3-gallate in hydrogen peroxide-induced oxidative damage in chicken lymphocytes. Oxidative Medicine and Cellular Longevity 2020:7386239. doi: 10.1155/2020/7386239.
  • Choi, J.-Y., C.-S. Park, D.-J. Kim, M.-H. Cho, B.-K. Jin, J.-E. Pie, and W.-G. Chung. 2002. Prevention of nitric oxide-mediated 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson’s disease in mice by tea phenolic epigallocatechin 3-gallate. Neurotoxicology 23 (3):367–74. doi: 10.1016/S0161-813X(02)00079-7.
  • Chu, C., J. Deng, C. Cao, Y. Man, and Y. Qu. 2017. Evaluation of epigallocatechin-3-gallate modified collagen membrane and concerns on schwann cells. BioMed Research International 2017:1–8. doi: 10.1155/2017/9641801.
  • Chu, C., L. Liu, Y. Wang, S. Wei, Y. Wang, Y. Man, and Y. Qu. 2018. Macrophage phenotype in the epigallocatechin-3-gallate (EGCG)-modified collagen determines foreign body reaction. Journal of Tissue Engineering and Regenerative Medicine 12 (6):1499–507. doi: 10.1002/term.2687.
  • Chu, E., R. Mychasiuk, M. L. Hibbs, and B. D. Semple. 2021. Dysregulated phosphoinositide 3-kinase signaling in microglia: Shaping chronic neuroinflammation. Journal of Neuroinflammation 18 (1):276. doi: 10.1186/s12974-021-02325-6.
  • Cobley, J. N., M. L. Fiorello, and D. M. Bailey. 2018. 13 reasons why the brain is susceptible to oxidative stress. Redox Biology 15:490–503. doi: 10.1016/j.redox.2018.01.008.
  • Conde, S. V., J. F. Sacramento, and F. O. Martins. 2020. Immunity and the carotid body: Implications for metabolic diseases. Bioelectronic Medicine 6 (1):24– doi: 10.1186/s42234-020-00061-5.
  • Dantzer, R. 2018. Neuroimmune interactions: From the brain to the immune system and vice versa. Physiological Reviews 98 (1):477–504. doi: 10.1152/physrev.00039.2016.
  • de la Rubia Orti, J. E., J. L. Platero, M. Benlloch, L. Franco-Martinez, A. Tvarijonaviciute, J. Escriba-Alepuz, and S. Sancho-Castillo. 2021. Role of haptoglobin as a marker of muscular improvement in patients with multiple sclerosis after administration of epigallocatechin gallate and increase of beta-hydroxybutyrate in the blood: A pilot study. Biomolecules 11 (5):617. doi: 10.3390/biom11050617.
  • Du, K., M. Liu, X. Zhong, W. Yao, Q. Xiao, Q. Wen, B. Yang, and M. Wei. 2018. Epigallocatechin gallate reduces amyloid beta-induced neurotoxicity via inhibiting endoplasmic reticulum stress-mediated apoptosis. Molecular Nutrition & Food Research 62 (8):1700890. doi: 10.1002/mnfr.201700890.
  • Ehrnhoefer, D. E., M. Duennwald, P. Markovic, J. L. Wacker, S. Engemann, M. Roark, J. Legleiter, J. L. Marsh, L. M. Thompson, S. Lindquist, et al. 2006. Green tea (-)-epigallocatechin-gallate modulates early events in huntingtin misfolding and reduces toxicity in Huntington’s disease models. Human Molecular Genetics 15 (18):2743–51. doi: 10.1093/hmg/ddl210.
  • Ellrichmann, G., C. Reick, C. Saft, and R. A. Linker. 2013. The role of the immune system in Huntington’s disease. Clinical & Developmental Immunology 2013:541259. doi: 10.1155/2013/541259.
  • El-Missiry, M. A., A. I. Othman, M. R. El-Sawy, and M. F. Lebede. 2018. Neuroprotective effect of epigallocatechin-3-gallate (EGCG) on radiation-induced damage and apoptosis in the rat hippocampus. International Journal of Radiation Biology 94 (9):798–808. doi: 10.1080/09553002.2018.1492755.
  • Falsini, B., D. Marangoni, T. Salgarello, G. Stifano, L. Montrone, S. Di Landro, L. Guccione, E. Balestrazzi, and A. Colotto. 2009. Effect of epigallocatechin-gallate on inner retinal function in ocular hypertension and glaucoma: A short-term study by pattern electroretinogram. Graefe’s Archive for Clinical and Experimental Ophthalmology = Albrecht Von Graefes Archiv Fur Klinische Und Experimentelle Ophthalmologie 247 (9):1223–33. doi: 10.1007/s00417-009-1064-z.
  • Farrar, J. D. 2020. Neuro-immune interactions. Seminars in Immunopathology 42 (6):667–8. doi: 10.1007/s00281-020-00825-w.
  • Feng, S., J. Liu, B. Cheng, A. Deng, and H. Zhang. 2018. (-)-Epigallocatechin-3-gallate protects PC12 cells against corticosterone-induced neurotoxicity via the hedgehog signaling pathway. Experimental and Therapeutic Medicine 15 (5):4284–90. doi: 10.3892/etm.2018.5936.
  • Fernandes, L., B. Messias, A. Pereira-Neves, E. P. Azevedo, J. Araujo, D. Foguel, and F. L. Palhano. 2020. Green tea polyphenol microparticles based on the oxidative coupling of EGCG inhibit amyloid aggregation/cytotoxicity and serve as a platform for drug delivery. ACS Biomaterials Science & Engineering 6 (8):4414–23. doi: 10.1021/acsbiomaterials.0c00188.
  • Ferrini, F., and Y. De Koninck. 2013. Microglia control neuronal network excitability via BDNF signalling. Neural Plasticity 2013:429815. doi: 10.1155/2013/429815.
  • Forcano, L., K. Fauria, N. Soldevila-Domenech, C. Minguillón, T. Lorenzo, A. Cuenca-Royo, S. Menezes-Cabral, N. Pizarro, A. Boronat, J. L. Molinuevo, et al. 2021. Prevention of cognitive decline in subjective cognitive decline APOE ε4 carriers after EGCG and a multimodal intervention (PENSA): Study design. Alzheimer’s & Dementia (New York, N. Y.) 7 (1):e12155-e12155. doi: 10.1002/trc2.12155.
  • Ge, R., Y. Zhu, Y. Diao, L. Tao, W. Yuan, and X-c Xiong. 2013. Anti-edema effect of epigallocatechin gallate on spinal cord injury in rats. Brain Research 1527:40–6. doi: 10.1016/j.brainres.2013.06.009.
  • Giunta, B., D. Obregon, H. Hou, J. Zeng, N. Sun, V. Nikolic, J. Ehrhart, D. Shytle, F. Fernandez, and J. Tan. 2006. EGCG mitigates neurotoxicity mediated by HIV-1 proteins gp120 and Tat in the presence of IFN-gamma: Role of JAK/STAT1 signaling and implications for HIV-associated dementia. Brain Research 1123 (1):216–25. doi: 10.1016/j.brainres.2006.09.057.
  • Giunta, B., Y. Zhou, H. Hou, E. Rrapo, F. Fernandez, and J. Tan. 2008. HIV-1 Tat inhibits microglial phagocytosis of Aβ peptide. International Journal of Clinical and Experimental Pathology 1 (3):260–75.
  • Gomes, C., R. Ferreira, J. George, R. Sanches, D. I. Rodrigues, N. Gonçalves, and R. A. Cunha. 2013. Activation of microglial cells triggers a release of brain-derived neurotrophic factor (BDNF) inducing their proliferation in an adenosine A2A receptor-dependent manner: A2A receptor blockade prevents BDNF release and proliferation of microglia. Journal of Neuroinflammation 10:16. doi: 10.1186/1742-2094-10-16.
  • Goncalves, P. B., A. C. R. Sodero, and Y. Cordeiro. 2021. Green tea epigallocatechin-3-gallate (EGCG) targeting protein misfolding in drug discovery for neurodegenerative diseases. Biomolecules 11 (5):767. doi: 10.3390/biom11050767.
  • Grelle, G., A. Otto, M. Lorenz, R. F. Frank, E. E. Wanker, and J. Bieschke. 2011. Black tea theaflavins inhibit formation of toxic amyloid-beta and alpha-synuclein fibrils. Biochemistry 50 (49):10624–36. doi: 10.1021/bi2012383.
  • Gundimeda, U., T. H. McNeill, B. A. Barseghian, W. S. Tzeng, D. V. Rayudu, E. Cadenas, and R. Gopalakrishna. 2015. Polyphenols from green tea prevent antineuritogenic action of Nogo-A via 67-kDa laminin receptor and hydrogen peroxide. Journal of Neurochemistry 132 (1):70–84. doi: 10.1111/jnc.12964.
  • Gundimeda, U., T. H. McNeill, A. A. Elhiani, J. E. Schiffman, D. R. Hinton, and R. Gopalakrishna. 2012. Green tea polyphenols precondition against cell death induced by oxygen-glucose deprivation via stimulation of laminin receptor, generation of reactive oxygen species, and activation of protein kinase Cε. The Journal of Biological Chemistry 287 (41):34694–708. doi: 10.1074/jbc.M112.356899.
  • Gundimeda, U., T. H. McNeill, T. K. Fan, R. Deng, D. Rayudu, Z. Chen, E. Cadenas, and R. Gopalakrishna. 2014. Green tea catechins potentiate the neuritogenic action of brain-derived neurotrophic factor: Role of 67-kDa laminin receptor and hydrogen peroxide. Biochemical and Biophysical Research Communications 445 (1):218–24. doi: 10.1016/j.bbrc.2014.01.166.
  • Gundimeda, U., T. H. McNeill, J. E. Schiffman, D. R. Hinton, and R. Gopalakrishna. 2010. Green tea polyphenols potentiate the action of nerve growth factor to induce neuritogenesis: possible role of reactive oxygen species. Journal of Neuroscience Research 88 (16):3644–55. doi: 10.1002/jnr.22519.
  • Hamed, F. N., A. J. G. McDonagh, S. Almaghrabi, Y. Bakri, A. G. Messenger, and R. Tazi-Ahnini. 2018. Epigallocatechin-3 gallate inhibits STAT-1/JAK2/IRF-1/HLA-DR/HLA-B and reduces CD8 MKG2D lymphocytes of alopecia areata patients. International Journal of Environmental Research and Public Health 15 (12):2882. doi: 10.3390/ijerph15122882.
  • Han, J. Y., J. K. Kim, J. H. Kim, B. S. Oh, W. J. Cho, Y. D. Jung, and S. G. Lee. 2016. Neurorestorative effects of epigallocatechin-3-gallate on cognitive function in a chronic cerebral hypoperfusion rat model. Restorative Neurology and Neuroscience 34 (3):367–77. doi: 10.3233/rnn-150586.
  • He, Y., D. Tan, Y. Mi, Q. Zhou, and S. Ji. 2017. Epigallocatechin-3-gallate attenuates cerebral cortex damage and promotes brain regeneration in acrylamide-treated rats. Food & Function 8 (6):2275–82. doi: 10.1039/c6fo01823h.
  • He, M., L. Zhao, W. Yao, H. Zhao, F. Chen, and M. Wei. 2009. Protective effects of (-)-epigallocatechin-3-gallate on D-galactose-induced neuronal apoptosis in mice. Neural Regeneration RESEARCH 4:1024–9. doi: 10.3969/j.issn.1673-5374.2009.12.010.
  • Hoyos-Ceballos, G. P., V. Sanchez-Giraldo, M. Mendivil-Perez, M. Jimenez-Del-Rio, L. Sierra-Garcia, C. Velez-Pardo, and B. L. Lopez-Osorio. 2018. Design of epigallocatechin gallate loaded PLGA/PF127 nanoparticles and their effect upon an oxidative stress ­model. Journal of Drug Delivery Science and Technology 48:152–60. doi: 10.1016/j.jddst.2018.09.010.
  • Hu, Q., X. Chang, R. Yan, C. Rong, C. Yang, S. Cheng, X. Gu, H. Yao, X. Hou, Y. Mo, et al. 2015. (-)-Epigallocatechin-3-gallate induces cancer cell apoptosis via acetylation of amyloid precursor protein. Medical Oncology 32 (1):390. doi: 10.1007/s12032-014-0390-0.
  • Huang, S. C., Y. H. Kao, S. F. Shih, M. C. Tsai, C. S. Lin, L. W. Chen, Y. P. Chuang, P. F. Tsui, L. J. Ho, J. H. Lai, et al. 2021. Epigallocatechin-3-gallate exhibits immunomodulatory effects in human primary T cells. Biochemical and Biophysical Research Communications 550:70–6. doi: 10.1016/j.bbrc.2021.02.132.
  • Jakob, M. O., S. Murugan, and C. S. N. Klose. 2020. Neuro-immune circuits regulate immune responses in tissues and organ homeostasis. Frontiers in Immunology 11:308. doi: 10.3389/fimmu.2020.00308.
  • Jassam, Y. N., S. Izzy, M. Whalen, D. B. McGavern, and J. El Khoury. 2017. Neuroimmunology of traumatic brain injury: Time for a paradigm shift. Neuron 95 (6):1246–65. doi: 10.1016/j.neuron.2017.07.010.
  • Jeong, H.-S., S. Jang, M.-J. Jang, S.-G. Lee, T.-S. Kim, H. Tag, J.-H. Lee, J. Y. Jun, and J.-S. Park. 2007. Effects of (-)-epigallocatechin-3-gallate on the activity of substantia nigra dopaminergic neurons. Brain Research 1130 (1):114–8. doi: 10.1016/j.brainres.2006.10.078.
  • Jia, N., K. Han, J.-J. Kong, X.-M. Zhang, S. Sha, G.-R. Ren, and Y.-P. Cao. 2013. (-)-Epigallocatechin-3-gallate alleviates spatial memory impairment in APP/PS1 mice by restoring IRS-1 signaling defects in the hippocampus. Molecular and Cellular Biochemistry 380 (1–2):211–8. doi: 10.1007/s11010-013-1675-x.
  • Jin, S., M. Park, and J.-H. Song. 2013. (-)-Epigallocatechin-3-gallate inhibits voltage-gated proton currents in BV2 microglial cells. European Journal of Pharmacology 698 (1–3):154–60. doi: 10.1016/j.ejphar.2012.11.036.
  • Kamimura, D., Y. Tanaka, R. Hasebe, and M. Murakami. 2020. Bidirectional communication between neural and immune systems. International Immunology 32 (11):693–701. doi: 10.1093/intimm/dxz083.
  • Kang, K. S., Y. Wen, N. Yamabe, M. Fukui, S. C. Bishop, and B. T. Zhu. 2010. Dual beneficial effects of (-)-epigallocatechin-3-gallate on levodopa methylation and hippocampal neurodegeneration: In vitro and in vivo studies. PLoS One 5 (8):e11951. doi: 10.1371/journal.pone.0011951.
  • Kawai, K., N. H. Tsuno, J. Kitayama, E. Sunami, K. Takahashi, and H. Nagawa. 2011. Catechin inhibits adhesion and migration of peripheral blood B cells by blocking CD11b. Immunopharmacology and Immunotoxicology 33 (2):391–7. doi: 10.3109/08923973.2010.522195.
  • Kerr, D., C. Krishnan, M. L. Pucak, and J. Carmen. 2005. The immune system and neuropsychiatric diseases. International Review of Psychiatry (Abingdon, England) 17 (6):443–9. doi: 10.1080/0264830500381435.
  • Khalatbary, A. R., and H. Ahmadvand. 2011. Anti-inflammatory effect of the epigallocatechin gallate following spinal cord trauma in rat. Iranian Biomedical Journal 15 (1–2):31–7.
  • Khalatbary, A. R., T. Tiraihi, M. B. Boroujeni, H. Ahmadvand, M. Tavafi, and A. Tamjidipoor. 2010. Effects of epigallocatechin gallate on tissue protection and functional recovery after contusive spinal cord injury in rats. Brain Research 1306:168–75. doi: 10.1016/j.brainres.2009.09.109.
  • Khalil, H., M. Tazi, K. Caution, A. Ahmed, A. Kanneganti, K. Assani, B. Kopp, C. Marsh, D. Dakhlallah, and A. O. Amer. 2016. Aging is associated with hypermethylation of autophagy genes in macrophages. Epigenetics 11 (5):381–8. doi: 10.1080/15592294.2016.1144007.
  • Kian, K., A. R. Khalatbary, H. Ahmadvand, A. K. Malekshah, and Z. Shams. 2019. Neuroprotective effects of (-)-epigallocatechin-3-gallate (EGCG) against peripheral nerve transection-induced apoptosis. Nutritional Neuroscience 22 (8):578–86. doi: 10.1080/1028415X.2017.1419542.
  • Kim, C.-Y., C. Lee, G. H. Park, and J.-H. Jang. 2009. Neuroprotective effect of epigallocatechin-3-gallate against beta-amyloid-induced oxidative and nitrosative cell death via augmentation of antioxidant defense capacity. Archives of Pharmacal Research 32 (6):869–81. doi: 10.1007/s12272-009-1609-z.
  • Koh, S.-H., S. M. Lee, H. Y. Kim, K.-Y. Lee, Y. J. Lee, H.-T. Kim, J. Kim, M.-H. Kim, M. S. Hwang, C. Song, et al. 2006. The effect of epigallocatechin gallate on suppressing disease progression of ALS model mice. Neuroscience Letters 395 (2):103–7. doi: 10.1016/j.neulet.2005.10.056.
  • Köhli, P., E. Otto, D. Jahn, M. J. Reisener, J. Appelt, A. Rahmani, N. Taheri, J. Keller, M. Pumberger, and S. Tsitsilonis. 2021. Future perspectives in spinal cord repair: Brain as saviour? TSCI with concurrent TBI: Pathophysiological interaction and impact on MSC treatment. Cells 10 (11):2955. doi: 10.3390/cells10112955.
  • Kose, T., M. Vera-Aviles, P. A. Sharp, and G. O. Latunde-Dada. 2019. Curcumin and (-)- epigallocatechin-3-gallate protect murine MIN6 pancreatic beta-cells against iron toxicity and erastin-induced ferroptosis. Pharmaceuticals 12 (1):26. doi: 10.3390/ph12010026.
  • Kovacs, G. G., I. Alafuzoff (Eds). 2017. Concepts and classification of neurodegenerative diseases. In Handbook of clinical neurology. Vol. 145, 301–7. Elsevier.
  • Krupkova, O., M. Sekiguchi, J. Klasen, O. Hausmann, S. Konno, S. J. Ferguson, and K. Wuertz-Kozak. 2014. Epigallocatechin 3-gallate suppresses interleukin-1 beta-induced inflammatory responses in intervertebral disc cells in vitro and reduces radiculopathic pain in rats. European Cells & Materials 28:372–86. doi: 10.22203/eCM.v028a26.
  • Kumar, P., and A. Kumar. 2009. Effect of lycopene and epigallocatechin-3-gallate against 3-nitropropionic acid induced cognitive dysfunction and glutathione depletion in rat: A novel nitric oxide mechanism. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 47 (10):2522–30. doi: 10.1016/j.fct.2009.07.011.
  • Lafay, S., and A. Gil-Izquierdo. 2008. Bioavailability of phenolic acids. Phytochemistry Reviews 7 (2):301–11. doi: 10.1007/s11101-007-9077-x.
  • Lai, S.-W., J.-H. Chen, H.-Y. Lin, Y.-S. Liu, C.-F. Tsai, P.-C. Chang, D.-Y. Lu, and C. Lin. 2018. Regulatory effects of ­neuroinflammatory responses through brain-derived neurotrophic factor signaling in microglial cells. Molecular Neurobiology 55 (9):7487–99. doi: 10.1007/s12035-018-0933-z.
  • Lambert, J. D., M.-J. Lee, H. Lu, X. Meng, J. J. J. Hong, D. N. Seril, M. G. Sturgill, and C. S. Yang. 2003. Epigallocatechin-3-gallate is absorbed but extensively glucuronidated following oral administration to mice. The Journal of Nutrition 133 (12):4172–7. doi: 10.1093/jn/133.12.4172.
  • Lane, C. A., J. Hardy, and J. M. Schott. 2018. Alzheimer’s disease. European Journal of Neurology 25 (1):59–70. doi: 10.1111/ene.13439.
  • Leaver, K. R., H. N. Allbutt, N. J. Creber, M. Kassiou, and J. M. Henderson. 2009. Oral pre-treatment with epigallocatechin gallate in 6-OHDA lesioned rats produces subtle symptomatic relief but not neuroprotection. Brain Research Bulletin 80 (6):397–402. doi: 10.1016/j.brainresbull.2009.08.013.
  • Leclerc, M., S. Dudonné, and F. Calon. 2021. Can natural products exert neuroprotection without crossing the blood-brain barrier? International Journal of Molecular Sciences 22 (7):3356. doi: 10.3390/ijms22073356.
  • Lee, H., J. H. Bae, and S.-R. Lee. 2004. Protective effect of green tea polyphenol EGCG against neuronal damage and brain edema after unilateral cerebral ischemia in gerbils. Journal of Neuroscience Research 77 (6):892–900. doi: 10.1002/jnr.20193.
  • Lee, Y. J., D. Y. Choi, Y. P. Yun, S. B. Han, K. W. Oh, and J. T. Hong. 2013. Epigallocatechin-3-gallate prevents systemic inflammation-induced memory deficiency and amyloidogenesis via its anti-neuroinflammatory properties. The Journal of Nutritional Biochemistry 24 (1):298–310. doi: 10.1016/j.jnutbio.2012.06.011.
  • Lee, I. T., C. C. Lin, C. Y. Lee, P. W. Hsieh, and C. M. Yang. 2013. Protective effects of (-)-epigallocatechin-3-gallate against TNF-α-induced lung inflammation via ROS-dependent ICAM-1 inhibition. The Journal of Nutritional Biochemistry 24 (1):124–36. doi: 10.1016/j.jnutbio.2012.03.009.
  • Lee, B., I. Shim, H. Lee, and D.-H. Hahm. 2018. Effects of epigallocatechin gallate on behavioral and cognitive impairments, hypothalamic-pituitary-adrenal axis dysfunction, and alternations in hippocampal BDNF expression under single prolonged stress. Journal of Medicinal Food 21 (10):979–89. doi: 10.1089/jmf.2017.4161.
  • Leta, V., P. Jenner, K. R. Chaudhuri, and A. Antonini. 2019. Can therapeutic strategies prevent and manage dyskinesia in Parkinson’s disease? An update. Expert Opinion on Drug Safety 18 (12):1203–18. doi: 10.1080/14740338.2019.1681966.
  • Levin, J., S. Maass, M. Schuberth, G. Respondek, F. Paul, U. Mansmann, W. H. Oertel, S. Lorenzl, F. Krismer, K. Seppi, et al. 2016. The PROMESA-protocol: Progression rate of multiple system atrophy under EGCG supplementation as anti-aggregation-approach. Journal of Neural Transmission (Vienna, Austria : 1996) 123 (11):1357–8. doi: 10.1007/s00702-016-1602-x.
  • Li, R., Y. G. Huang, D. Fang, and W. D. Le. 2004. (-)-Epigallocatechin gallate inhibits lipopolysaccharide-induced microglial activation and protects against inflammation-mediated dopaminergic neuronal ­injury. Journal of Neuroscience Research 78 (5):723–31. doi: 10.1002/jnr.20315.
  • Li, R., N. Peng, F. Du, X. P. Li, and W. D. Le. 2006. Epigallocatechin gallate protects dopaminergic neurons against 1-methyl-4- phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity by inhibiting ­microglial cell activation. Nan Fang Yi Ke Da Xue Xue Bao 26:376–80.
  • Li, W., A. H. Wu, S. Zhu, J. Li, R. Wu, J. D’Angelo, and H. Wang. 2015. EGCG induces G-CSF expression and neutrophilia in experimental sepsis. Immunologic Research 63 (1–3):144–52. doi: 10.1007/s12026-015-8681-x.
  • Li, G., J. Yang, X. Wang, C. Zhou, X. Zheng, and W. Lin. 2020. Effects of EGCG on depression-related behavior and serotonin concentration in a rat model of chronic unpredictable mild stress. Food & Function 11 (10):8780–7. doi: 10.1039/d0fo00524j.
  • Li, C. D., J. Y. Zhao, J. L. Chen, J. H. Lu, M. B. Zhang, Q. Huang, Y. N. Cao, G. L. Jia, Y. X. Tao, J. Li, et al. 2019. Mechanism of the JAK2/STAT3-CAV-1-NR2B signaling pathway in painful diabetic neuropathy. Endocrine 64 (1):55–66. doi: 10.1007/s12020-019-01880-6.
  • Li, W., S. Zhu, J. Li, A. Assa, A. Jundoria, J. Xu, S. Fan, N. T. Eissa, K. J. Tracey, A. E. Sama, et al. 2011. EGCG stimulates autophagy and reduces cytoplasmic HMGB1 levels in endotoxin-stimulated macrophages. Biochemical Pharmacology 81 (9):1152–63. doi: 10.1016/j.bcp.2011.02.015.
  • Liu, J., B. H. Bodnar, F. Meng, A. I. Khan, X. Wang, S. Saribas, T. Wang, S. Lohani, C. Wang, P. Wei, et al. 2021. Epigallocatechin gallate from green tea effectively blocks infection of SARS-CoV-2 and new variants by inhibiting spike binding to ACE2 receptor. Cell & Bioscience 11 (1):168. doi: 10.1186/s13578-021-00680-8.
  • Liu, M., F. Chen, L. Sha, S. Wang, L. Tao, L. Yao, M. He, Z. Yao, H. Liu, Z. Zhu, et al. 2014. (-)-Epigallocatechin-3-gallate ameliorates learning and memory deficits by adjusting the balance of TrkA/p75NTR signaling in APP/PS1 transgenic mice. Molecular Neurobiology 49 (3):1350–63. doi: 10.1007/s12035-013-8608-2.
  • Liu, Z., W. J. C. de Bruijn, M. E. Bruins, and J. P. Vincken. 2020. Reciprocal interactions between epigallocatechin-3-gallate (EGCG) and human gut microbiota in vitro. Journal of Agricultural and Food Chemistry 68 (36):9804–15. doi: 10.1021/acs.jafc.0c03587.
  • Liu, Q., D. Xie, and X. Yang. 2011. (-) Epigallocatechin-3-gallate protects spiral ganglion neurons against amikacin-induced apoptosis. Neural Regeneration Research 6:2112–7. doi: 10.3969/j.issn.1673-5374.2011.27.005.
  • Loftis, J. M., C. J. Wilhelm, and M. Huckans. 2013. Effect of epigallocatechin gallate supplementation in schizophrenia and bipolar disorder: An 8-week, randomized, double-blind, placebo-controlled study. Therapeutic Advances in Psychopharmacology 3 (1):21–7. doi: 10.1177/2045125312464103.
  • Lu, B., G. Nagappan, and Y. Lu. 2014. BDNF and synaptic plasticity, cognitive function, and dysfunction. Handbook of Experimental Pharmacology 220:223–50. doi: 10.1007/978-3-642-45106-5_9.
  • Luo, Y. P., X. F. Tang, Y. C. Zhang, S. M. Chen, Q. Wu, and W. J. Li. 2022. Epigallocatechin-3-gallate alleviates galactose-induced aging impairment via gut-brain communication. Food & Function 13 (21):11200–9. doi: 10.1039/d2fo00994c.
  • Ma, Y., G. Liu, M. Tang, J. Fang, and H. Jiang. 2021. Epigallocatechin gallate can protect mice from acute stress induced by LPS while stabilizing gut microbes and serum metabolites levels. Frontiers in Immunology 12:640305. doi: 10.3389/fimmu.2021.640305.
  • Machin, A., I. Susilo, and D. A. Purwanto. 2021. Green tea and its active compound epigallocathechin-3-gallate (EGCG) inhibit neuronal apoptosis in a middle cerebral artery occlusion (MCAO) model. Journal of Basic and Clinical Physiology and Pharmacology 32 (4):319–25. doi: 10.1515/jbcpp-2020-0454.
  • Mähler, A., J. Steiniger, M. Bock, L. Klug, N. Parreidt, M. Lorenz, B. F. Zimmermann, A. Krannich, F. Paul, and M. Boschmann. 2015. Metabolic response to epigallocatechin-3-gallate in relapsing-remitting multiple sclerosis: A randomized clinical trial. The American Journal of Clinical Nutrition 101 (3):487–95. doi: 10.3945/ajcn.113.075309.
  • Maiti, S., A. Banerjee, and M. Kanwar. 2021. In silico Nigellidine (N. sativa) bind to viral spike/active-sites of ACE1/2, AT1/2 to prevent COVID-19 induced vaso-tumult/vascular-damage/comorbidity. Vascular Pharmacology 138:106856. doi: 10.1016/j.vph.2021.106856.
  • Mandel, S., T. Amit, O. Bar-Am, and M. B. H. Youdim. 2007. Iron dysregulation in Alzheimer’s disease: Multimodal brain permeable iron chelating drugs, possessing neuroprotective-neurorescue and amyloid precursor protein-processing regulatory activities as therapeutic agents. Progress in Neurobiology 82 (6):348–60. doi: 10.1016/j.pneurobio.2007.06.001.
  • Mandel, S. A., Y. Avramovich-Tirosh, L. Reznichenko, H. Zheng, O. Weinreb, T. Amit, and M. B. H. Youdim. 2005. Multifunctional activities of green tea catechins in neuroprotection. Modulation of cell survival genes, iron-dependent oxidative stress and PKC signaling pathway. Neuro-Signals 14 (1–2):46–60. doi: 10.1159/000085385.
  • Mantovani, A., C. A. Dinarello, M. Molgora, and C. Garlanda. 2019. Interleukin-1 and related cytokines in the regulation of inflammation and immunity. Immunity 50 (4):778–95. doi: 10.1016/j.immuni.2019.03.012.
  • Mao, L., D. Hochstetter, L. Yao, Y. Zhao, J. Zhou, Y. Wang, and P. Xu. 2019. Green tea polyphenol (-)-epigallocatechin gallate (EGCG) attenuates neuroinflammation in palmitic acid-stimulated BV-2 ­microglia and high-fat diet-induced obese mice. International Journal of Molecular Sciences 20 (20):5081. doi: 10.3390/ijms20205081.
  • Marizzoni, M., A. Cattaneo, P. Mirabelli, C. Festari, N. Lopizzo, V. Nicolosi, E. Mombelli, M. Mazzelli, D. Luongo, D. Naviglio, et al. 2020. Short-chain fatty acids and lipopolysaccharide as mediators between gut dysbiosis and amyloid pathology in Alzheimer’s disease. Journal of Alzheimer’s Disease: JAD 78 (2):683–97. doi: 10.3233/jad-200306.
  • Martinez-Perez, D. A., M. Jimenez-Del-Rio, and C. Velez-Pardo. 2018. Epigallocatechin-3-gallate protects and prevents paraquat-induced oxidative stress and neurodegeneration in knockdown dj-1-beta Drosophila melanogaster. Neurotoxicity Research 34 (3):401–16. doi: 10.1007/s12640-018-9899-x.
  • Mazon, J. N., A. H. de Mello, G. K. Ferreira, and G. T. Rezin. 2017. The impact of obesity on neurodegenerative diseases. Life Sciences 182:22–8. doi: 10.1016/j.lfs.2017.06.002.
  • McCarty, M. F., and A. Lerner. 2021. The second phase of brain ­trauma can be controlled by nutraceuticals that suppress DAMP-mediated microglial activation. Expert Review of Neurotherapeutics 21 (5):559–70. doi: 10.1080/14737175.2021.1907182.
  • McGavern, D. B., and S. S. Kang. 2011. Illuminating viral infections in the nervous system. Nature Reviews. Immunology 11 (5):318–29. doi: 10.1038/nri2971.
  • Mena, P., L. Bresciani, N. Brindani, I. A. Ludwig, G. Pereira-Caro, D. Angelino, R. Llorach, L. Calani, F. Brighenti, M. N. Clifford, et al. 2019. Phenyl-γ-valerolactones and phenylvaleric acids, the main colonic metabolites of flavan-3-ols: Synthesis, analysis, bioavailability, and bioactivity. Natural Product Reports 36 (5):714–52. doi: 10.1039/c8np00062j.
  • Menegazzi, M., R. Campagnari, M. Bertoldi, R. Crupi, R. Di Paola, and S. Cuzzocrea. 2020. Protective effect of epigallocatechin-3-gallate (EGCG) in diseases with uncontrolled immune activation: could such a scenario be helpful to counteract COVID-19? International Journal of Molecular Sciences 21 (14):5171. doi: 10.3390/ijms21145171.
  • Meng, X. Y., B. Li, S. Liu, H. Kang, L. Zhao, and R. Zhou. 2016. EGCG in green tea induces aggregation of HMGB1 protein through large conformational changes with polarized charge redistribution. Scientific Reports 6:22128. doi: 10.1038/srep22128.
  • Mi, Y., G. Qi, R. Fan, Q. Qiao, Y. Sun, Y. Gao, and X. Liu. 2017. EGCG ameliorates high-fat- and high-fructose-induced cognitive defects by regulating the IRS/AKT and ERK/CREB/BDNF signaling pathways in the CNS. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 31 (11):4998–5011. doi: 10.1096/fj.201700400RR.
  • Michalickova, D., T. Hrncir, N. K. Canova, and O. Slanar. 2020. Targeting Keap1/Nrf2/ARE signaling pathway in multiple sclerosis. European Journal of Pharmacology 873:172973. doi: 10.1016/j.ejphar.2020.172973.
  • Mossine, V. V., J. K. Waters, Z. Gu, G. Y. Sun, and T. P. Mawhinney. 2022. Bidirectional responses of eight neuroinflammation-related transcriptional factors to 64 flavonoids in astrocytes with transposable insulated signaling pathway reporters. ACS Chemical Neuroscience 13 (5):613–23. doi: 10.1021/acschemneuro.1c00750.
  • Nath, S., M. Bachani, D. Harshavardhana, and J. P. Steiner. 2012. Catechins protect neurons against mitochondrial toxins and HIV proteins via activation of the BDNF pathway. Journal of Neurovirology 18 (6):445–55. doi: 10.1007/s13365-012-0122-1.
  • Ng, C.-H., M. S. H. Guan, C. Koh, X. Ouyang, F. Yu, E.-K. Tan, S. P. O’Neill, X. Zhang, J. Chung, and K.-L. Lim. 2012. AMP kinase activation mitigates dopaminergic dysfunction and mitochondrial abnormalities in drosophila models of Parkinson’s disease. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 32 (41):14311–7. doi: 10.1523/JNEUROSCI.0499-12.2012.
  • Ning, K., K. Lu, Q. Chen, Z. Guo, X. Du, F. Riaz, L. Feng, Y. Fu, C. Yin, F. Zhang, et al. 2020. Epigallocatechin gallate protects mice against methionine-choline-deficient-diet-induced nonalcoholic ­steatohepatitis by improving gut microbiota to attenuate hepatic ­injury and regulate metabolism. ACS Omega 5 (33):20800–9. doi: 10.1021/acsomega.0c01689.
  • Obrador, E., Salvador-Palmer, R. López-Blanch, R. Jihad-Jebbar, A. Vallés, S. L. Estrela, and J. M. 2021. The link between oxidative stress, redox status, bioenergetics and mitochondria in the pathophysiology of ALS. International Journal of Molecular Sciences 22 (12):6352. doi: 10.3390/ijms22126352.
  • Omoigui, S. 2007. The biochemical origin of pain: The origin of all pain is inflammation and the inflammatory response. Part 2 of 3 - Inflammatory profile of pain syndromes. Medical Hypotheses 69 (6):1169–78. doi: 10.1016/j.mehy.2007.06.033.
  • Ortiz-Romero, P., C. Borralleras, M. Bosch-Morato, B. Guivernau, G. Albericio, F. J. Munoz, L. A. Perez-Jurado, and V. Campuzano. 2018. Epigallocatechin-3-gallate improves cardiac hypertrophy and short-term memory deficits in a Williams-Beuren syndrome mouse model. Plos ONE 13 (3):e0194476. doi: 10.1371/journal.pone.0194476.
  • Pape, K., R. Tamouza, M. Leboyer, and F. Zipp. 2019. Immunoneuropsychiatry - novel perspectives on brain disorders. Nature Reviews. Neurology 15 (6):317–28. doi: 10.1038/s41582-019-0174-4.
  • Park, E., and H. S. Chun. 2016. Green tea polyphenol epigallocatechine gallate (EGCG) Prevented LPS- induced BV-2 micoglial cell activation. Journal of Life Science 26:640–5.
  • Park, K.-S., J. S. Eun, H.-C. Kim, D.-C. Moon, J.-T. Hong, and K.-W. Oh. 2010. (-)-Epigallocatethin-3-O-gallate counteracts caffeine-induced hyperactivity: Evidence of dopaminergic blockade. Behavioural Pharmacology 21 (5–6):572–5. doi: 10.1097/FBP.0b013e32833beffb.
  • Park, D.-J., J.-B. Kang, M.-A. Shah, and P.-O. Koh. 2021. Epigallocatechin gallate alleviates down-regulation of thioredoxin in ischemic brain damage and glutamate-exposed neuron. Neurochemical Research 46 (11):3035–49. doi: 10.1007/s11064-021-03403-0.
  • Parkhurst, C. N., G. Yang, I. Ninan, J. N. Savas, J. R. Yates, J. J. Lafaille, B. L. Hempstead, D. R. Littman, and W.-B. Gan. 2013. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155 (7):1596–609. doi: 10.1016/j.cell.2013.11.030.
  • Pavlov, V. A., and K. J. Tracey. 2015. Neural circuitry and immunity. Immunologic Research 63 (1–3):38–57. doi: 10.1007/s12026-015-8718-1.
  • Peng, P.-H., M.-L. Ko, and C.-F. Chen. 2008. Epigallocatechin-3-gallate reduces retinal ischemia/reperfusion injury by attenuating neuronal nitric oxide synthase expression and activity. Experimental Eye Research 86 (4):637–46. doi: 10.1016/j.exer.2008.01.008.
  • Pervin, M., K. Unno, A. Nakagawa, Y. Takahashi, K. Iguchi, H. Yamamoto, M. Hoshino, A. Hara, A. Takagaki, F. Nanjo, et al. 2017. Blood brain barrier permeability of (-)-epigallocatechin gallate, its proliferation-enhancing activity of human neuroblastoma SH-SY5Y cells, and its preventive effect on age-related cognitive dysfunction in mice. Biochemistry and Biophysics Reports 9:180–6. doi: 10.1016/j.bbrep.2016.12.012.
  • Pervin, M., K. Unno, A. Takagaki, M. Isemura, and Y. Nakamura. 2019. Function of green tea catechins in the brain: Epigallocatechin gallate and its metabolites. International Journal of Molecular Sciences 20 (15):3630. doi: 10.3390/ijms20153630.
  • Prakoeswa, C. R. S., R. N. Oktaviyanti, D. M. Indramaya, E. Hendradri, S. Sawitri, L. Astari, D. Damayanti, and M. Y. Listiawan. 2021. Efficacy of topical epigallocatechin gallate (EGCG) 1% on the ­healing of chronic plantar ulcers in leprosy. Journal of Dermatological Treatment, 32 (8):1026–30. doi: 10.1080/09546634.2020.1729333.
  • Priyanka, H. P., and R. S. Nair. 2020. Neuroimmunomodulation by estrogen in health and disease. AIMS Neuroscience 7 (4):401–17. doi: 10.3934/Neuroscience.2020025.
  • Qu, Z., F. Meng, H. Zhou, J. Li, Q. Wang, F. Wei, J. Cheng, C. M. Greenlief, D. B. Lubahn, G. Y. Sun, et al. 2014. NitroDIGE analysis reveals inhibition of protein S-nitrosylation by epigallocatechin gallates in lipopolysaccharide-stimulated microglial cells. Journal of Neuroinflammation 11 (1):17 doi: 10.1186/1742-2094-11-17.
  • Ransohoff, R. M. 2016. How neuroinflammation contributes to neurodegeneration. Science (New York, N.Y.) 353 (6301):777–83. doi: 10.1126/science.aag2590.
  • Renno, W. M., G. Al-Khaledi, A. Mousa, S. M. Karam, H. Abul, and S. Asfar. 2014. (-)-Epigallocatechin-3-gallate (EGCG) modulates neurological function when intravenously infused in acute and, chronically injured spinal cord of adult rats. Neuropharmacology 77:100–19. doi: 10.1016/j.neuropharm.2013.09.013.
  • Renno, W. M., M. Al-Maghrebi, M. S. Rao, and H. Khraishah. 2015. (-)-Epigallocatechin-3-gallate modulates spinal cord neuronal ­degeneration by enhancing growth-associated protein 43, B-cell lymphoma 2, and decreasing b-cell lymphoma 2-associated X protein expression after sciatic nerve crush injury. Journal of Neurotrauma 32 (3):170–84. doi: 10.1089/neu.2014.3491.
  • Renno, W. M., K. M. Khan, and L. Benov. 2016. Is there a role for neurotrophic factors and their receptors in augmenting the neuroprotective effect of (-)-epigallocatechin-3-gallate treatment of sciatic nerve crush injury? Neuropharmacology 102:1–20. doi: 10.1016/j.neuropharm.2015.10.029.
  • Reznichenko, L., T. Amit, H. Zheng, Y. Avramovich-Tirosh, M. B. H. Youdim, O. Weinreb, and S. Mandel. 2006. Reduction of iron-regulated amyloid precursor protein and beta-amyloid peptide by (-)-epigallocatechin-3-gallate in cell cultures: Implications for iron chelation in Alzheimer’s disease. Journal of Neurochemistry 97 (2):527–36. doi: 10.1111/j.1471-4159.2006.03770.x.
  • Ristori, M. V., A. Quagliariello, S. Reddel, G. Ianiro, S. Vicari, A. Gasbarrini, and L. Putignani. 2019. Autism, gastrointestinal symptoms and modulation of gut microbiota by nutritional interventions. Nutrients 11 (11):2812. doi: 10.3390/nu11112812.
  • Rose-John, S. 2018. Interleukin-6 family cytokines. Cold Spring Harbor Perspectives in Biology 10 (2):a028415. doi: 10.1101/cshperspect.a028415.
  • Rosen, S., B. Ham, and J. S. Mogil. 2017. Sex differences in neuroimmunity and pain. Journal of Neuroscience Research 95 (1-2):500–8. doi: 10.1002/jnr.23831.
  • Rothenberg, D. O. N., and L. Zhang. 2019. Mechanisms underlying the anti-depressive effects of regular tea consumption. Nutrients 11 (6):1361. doi: 10.3390/nu11061361.
  • Rudzki, L., and M. Maes. 2020. The microbiota-gut-immune-glia (MGIG) axis in major depression. Molecular Neurobiology 57 (10):4269–95. doi: 10.1007/s12035-020-01961-y.
  • Ruzicka, J., L. M. Urdzikova, B. Svobodova, A. G. Amin, K. Karova, J. Dubisova, K. Zaviskova, S. Kubinova, M. Schmidt, M. Jhanwar-Uniyal, et al. 2018. Does combined therapy of curcumin and epigallocatechin gallate have a synergistic neuroprotective effect against spinal cord injury? Neural Regeneration Research 13 (1):119–27. doi: 10.4103/1673-5374.224379.
  • Salvador, A. F., K. A. de Lima, and J. Kipnis. 2021. Neuromodulation by the immune system: A focus on cytokines. Nature Reviews. Immunology 21 (8):526–41. doi: 10.1038/s41577-021-00508-z.
  • Sanadgol, N., S. Shahraki-Zahedani, M. Sharifzadeh, R. Khalseh, G. R. Barbari, and M. Abdollahi. 2017. Recent updates in imperative natural compounds for healthy brain and nerve function: A systematic review of implications for multiple sclerosis. Current Drug Targets 18 (13):1499–517. doi: 10.2174/1389450118666161108124414.
  • Sanchez-Giraldo, V., Y. Monsalve, J. Palacio, M. Mendivil-Perez, L. Sierra, C. Velez-Pardo, B. L. Lopez, and M. Jimenez-Del-Rio. 2020. Role of a novel (-)-epigallocatechin-3-gallate delivery system on the prevention against oxidative stress damage in vitro and in vivo model of Parkinson’s disease. Journal of Drug Delivery Science and Technology 55:101466. doi: 10.1016/j.jddst.2019.101466.
  • Scala, I., D. Valenti, V. Scotto D’Aniello, M. Marino, M. P. Riccio, C. Bravaccio, R. A. Vacca, and P. Strisciuglio. 2021. Epigallocatechin-3-gallate plus omega-3 restores the mitochondrial complex I and F0F1-ATP synthase activities in PBMCs of young children with Down syndrome: A pilot study of safety and efficacy. Antioxidants 10 (3):469. doi: 10.3390/antiox10030469.
  • Scharfman, H. E., and N. J. MacLusky. 2006. Estrogen and brain-derived neurotrophic factor (BDNF) in hippocampus: Complexity of steroid hormone-growth factor interactions in the adult CNS. Frontiers in Neuroendocrinology 27 (4):415–35. doi: 10.1016/j.yfrne.2006.09.004.
  • Schmitt, N. C., E. W. Rubel, and N. M. Nathanson. 2009. Cisplatin-induced hair cell death requires STAT1 and is attenuated by epigallocatechin gallate. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 29 (12):3843–51. doi: 10.1523/jneurosci.5842-08.2009.
  • Semnani, M., F. Mashayekhi, M. Azarnia, and Z. Salehi. 2017. Effects of green tea epigallocatechin-3-gallate on the proteolipid protein and oligodendrocyte transcription factor 1 messenger RNA gene expression in a mouse model of multiple sclerosis. Folia Neuropathologica 55 (3):199–205. doi: 10.5114/fn.2017.70484.
  • Sharabi, Y., G. D. Vatine, and A. Ashkenazi. 2021. Parkinson’s disease outside the brain: Targeting the autonomic nervous system. The Lancet. Neurology 20 (10):868–76. doi: 10.1016/S1474-4422(21)00219-2.
  • Sharma, R., A. Sharma, A. Kumari, P. M. Kulurkar, R. Raj, A. Gulati, and Y. S. Padwad. 2017. Consumption of green tea epigallocatechin-3-gallate enhances systemic immune response, antioxidative capacity and HPA axis functions in aged male swiss albino mice. Biogerontology 18 (3):367–82. doi: 10.1007/s10522-017-9696-6.
  • Shimizu, K., T. Asakawa, N. Harada, D. Fukumoto, H. Tsukada, T. Asai, S. Yamada, T. Kan, and N. Oku. 2014. Use of positron emission tomography for real-time imaging of biodistribution of green tea catechin. PloS One 9 (2):e85520. doi: 10.1371/journal.pone.0085520.
  • Šimončičová, E., E. Gonçalves de Andrade, H. A. Vecchiarelli, I. O. Awogbindin, C. I. Delage, and M. Tremblay. 2022. Present and future of microglial pharmacology. Trends in Pharmacological Sciences. 43 (8):669–85. doi: 10.1016/j.tips.2021.11.006.
  • Singh, M. V., M. W. Chapleau, S. C. Harwani, and F. M. Abboud. 2014. The immune system and hypertension. Immunologic Research 59 (1-3):243–53. doi: 10.1007/s12026-014-8548-6.
  • So, M., Y. Kimura, K. Yamaguchi, T. Sugiki, T. Fujiwara, C. Aguirre, K. Ikenaka, H. Mochizuki, Y. Kawata, and Y. Goto. 2021. Polyphenol-solubility alters amyloid fibril formation of alpha-synuclein. Protein Science : A Publication of the Protein Society 30 (8):1701–13. doi: 10.1002/pro.4130.
  • Stakenborg, N., M. F. Viola, and G. E. Boeckxstaens. 2020. Intestinal neuro-immune interactions: Focus on macrophages, mast cells and innate lymphoid cells. Current Opinion in Neurobiology 62:68–75. doi: 10.1016/j.conb.2019.11.020.
  • Sun, X., P. Dey, R. S. Bruno, and J. Zhu. 2022. EGCG and catechin relative to green tea extract differentially modulate the gut microbial metabolome and liver metabolome to prevent obesity in mice fed a high-fat diet. The Journal of Nutritional Biochemistry 109:109094. doi: 10.1016/j.jnutbio.2022.109094.
  • Sun, P., X. Li, C. Chen, Q. Chen, Q. Ouyang, F. Liu, Z. Xiang, and H. Yuan. 2014. Activating transcription factor 4 modulates BDNF release from microglial cells. Journal of Molecular Neuroscience : MN 52 (2):225–30. doi: 10.1007/s12031-013-0126-1.
  • Sun, J., J. Xu, Y. Ling, F. Wang, T. Gong, C. Yang, S. Ye, K. Ye, D. Wei, Z. Song, et al. 2019. Fecal microbiota transplantation ­alleviated Alzheimer’s disease-like pathogenesis in APP/PS1 transgenic mice. Translational Psychiatry 9 (1):189. doi: 10.1038/s41398-019-0525-3.
  • Taghavi, S. M., A. Shadboorestan, S. Sabzevari, M. Gholami, R. Keshavarz-Maleki, H. Mozdarani, S. N. Ostad, and O. Sabzevari. 2020. Protective role of EGCG against malathion induced genotoxicity using human lymphocytes. Drug Research 70 (8):360–6. doi: 10.1055/a-1201-2436.
  • Tai, K.-K., and D. D. Truong. 2010. (-)-Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, reduces dichlorodiphenyl-trichloroethane (DDT)-induced cell death in dopaminergic SHSY-5Y cells. Neuroscience Letters 482 (3):183–7. doi: 10.1016/j.neulet.2010.06.018.
  • Takagaki, A., S. Otani, and F. Nanjo. 2011. Antioxidative activity of microbial metabolites of (-)-epigallocatechin gallate produced in rat intestines. Bioscience, Biotechnology, and Biochemistry 75 (3):582–5. doi: 10.1271/bbb.100683.
  • Takano, K., K. Nakaima, M. Nitta, F. Shibata, and H. Nakagawa. 2004. Inhibitory effect of (-)-epigallocatechin 3-gallate, a polyphenol of green tea, on neutrophil chemotaxis in vitro and in vivo. Journal of Agricultural and Food Chemistry 52 (14):4571–6. doi: 10.1021/jf0355194.
  • Tarnawski, L., and P. S. Olofsson. 2021. Inflammation neuroscience: Neuro-immune crosstalk and interfaces. Clinical & Translational Immunology 10 (11):e1352-e1352. doi: 10.1002/cti2.1352.
  • Thapa, M., Y. Kim, J. Desper, K. O. Chang, and D. H. Hua. 2012. Synthesis and antiviral activity of substituted quercetins. Bioorganic & Medicinal Chemistry Letters 22 (1):353–6. doi: 10.1016/j.bmcl.2011.10.119.
  • Tian, R., Y. Ding, Y. Y. Peng, and N. Lu. 2017. Inhibition of myeloperoxidase- and neutrophil-mediated hypochlorous acid formation in vitro and endothelial cell injury by (-)-epigallocatechin gallate. Journal of Agricultural and Food Chemistry 65 (15):3198–203. doi: 10.1021/acs.jafc.7b00631.
  • Tian, X., H. Gan, Y. Zeng, H. Zhao, R. Tang, and Y. Xia. 2018. Inhibition of semaphorin-3a suppresses lipopolysaccharide-induced acute kidney injury. Journal of Molecular Medicine (Berlin, Germany) 96 (7):713–24. doi: 10.1007/s00109-018-1653-6.
  • Tramutola, A., C. Lanzillotta, M. Perluigi, and D. A. Butterfield. 2017. Oxidative stress, protein modification and Alzheimer disease. Brain Research Bulletin 133:88–96. doi: 10.1016/j.brainresbull.2016.06.005.
  • Uniyal, A., V. Tiwari, A. Gadepalli, O. Ummadisetty, and V. Tiwari. 2021. Epigallocatechin-3-gallate improves chronic alcohol-induced cognitive dysfunction in rats by interfering with neuro-inflammatory, cell death and oxido-nitrosative cascade. Metabolic Brain Disease 36 (7):2141–53., doi: 10.1007/s11011-021-00794-5.
  • Unno, K., and Y. Nakamura. 2021. Green tea suppresses brain aging. Molecules (Basel, Switzerland) 26 (16):4897. doi: 10.3390/molecules26164897.
  • Unno, K., M. Pervin, A. Nakagawa, K. Iguchi, A. Hara, A. Takagaki, F. Nanjo, A. Minami, and Y. Nakamura. 2017. Blood-brain barrier permeability of green tea catechin metabolites and their neuritogenic activity in human neuroblastoma SH-SY5Y cells. Molecular Nutrition & Food Research 61 (12):1700294. doi: 10.1002/mnfr.201700294.
  • Urdzikova, L. M., J. Ruzicka, K. Karova, A. Kloudova, B. Svobodova, A. Amin, J. Dubisova, M. Schmidt, S. Kubinova, M. Jhanwar-Uniyal, et al. 2017. A green tea polyphenol epigallocatechin-3-gallate ­enhances neuroregeneration after spinal cord injury by altering levels of inflammatory cytokines. Neuropharmacology 126:213–23. doi: 10.1016/j.neuropharm.2017.09.006.
  • Valenti, D., D. De Rasmo, A. Signorile, L. Rossi, L. de Bari, I. Scala, B. Granese, S. Papa, and R. A. Vacca. 2013. Epigallocatechin-3-gallate prevents oxidative phosphorylation deficit and promotes mitochondrial biogenesis in human cells from subjects with Down’s syndrome. Biochimica et Biophysica Acta 1832 (4):542–52. doi: 10.1016/j.bbadis.2012.12.011.
  • Valerio, F., D. P. Whitehouse, D. K. Menon, and V. F. J. Newcombe. 2021. The neurological sequelae of pandemics and epidemics. Journal of Neurology 268 (8):2629–55. doi: 10.1007/s00415-020-10261-3.
  • Vogt, N. M., R. L. Kerby, K. A. Dill-McFarland, S. J. Harding, A. P. Merluzzi, S. C. Johnson, C. M. Carlsson, S. Asthana, H. Zetterberg, K. Blennow, et al. 2017. Gut microbiome alterations in Alzheimer’s disease. Scientific Reports 7 (1):13537. doi: 10.1038/s41598-017-13601-y.
  • Wang, J., Y. Chen, L. Chen, Y. Duan, X. Kuang, Z. Peng, C. Li, Y. Li, Y. Xiao, H. Jin, et al. 2020. EGCG modulates PKD1 and ferroptosis to promote recovery in ST rats. Translational Neuroscience 11 (1):173–81. doi: 10.1515/tnsci-2020-0119.
  • Wang, J., S. M. Fan, and J. Zhang. 2019. Epigallocatechin-3-gallate ameliorates lipopolysaccharide-induced acute lung injury by suppression of TLR4/NF-κB signaling activation. Brazilian Journal of Medical and Biological Research = Revista Brasileira de Pesquisas Medicas e Biologicas 52 (7):e8092. doi: 10.1590/1414-431x20198092.
  • Wang, Y., Y. Huang, Y. Xu, W. Ruan, H. Wang, Y. Zhang, J. M. Saavedra, L. Zhang, Z. Huang, and T. Pang. 2018. A dual AMPK/Nrf2 activator reduces brain inflammation after stroke by enhancing microglia M2 polarization. Antioxidants & Redox Signaling 28 (2):141–63. doi: 10.1089/ars.2017.7003.
  • Wang, M.-H., R.-F. Lin, H.-C. Tseng, H.-S. Soung, K.-C. Chang, and C.-C. Tsai. 2015. (-) Epigallocatechin-3-gallate attenuates reserpine-induced orofacial dyskinesia and oxidative stress in rat striatum. Pharmacology, Biochemistry, and Behavior 131:71–6. doi: 10.1016/j.pbb.2015.02.003.
  • Wang, J., Z. Ren, Y. Xu, S. Xiao, S. N. Meydani, and D. Wu. 2012. Epigallocatechin-3-gallate ameliorates experimental autoimmune encephalomyelitis by altering balance among CD4(+) T-cell subsets. The American Journal of Pathology 180 (1):221–34. doi: 10.1016/j.ajpath.2011.09.007.
  • Wang, L., and X. Tian. 2018. Epigallocatechin-3-gallate protects against homocysteine-induced brain damage in rats. Planta Medica 84 (1):34–41. doi: 10.1055/s-0043-114865.
  • Wang, C., and C. Zheng. 2022. Using Caenorhabditis elegans to model therapeutic interventions of neurodegenerative diseases targeting microbe-host interactions. Frontiers in Pharmacology 13:875349. doi: 10.3389/fphar.2022.875349.
  • Webster, E. L., I. J. Elenkov, and G. P. Chrousos. 1997. The role of corticotropin-releasing hormone in neuroendocrine-immune interactions. Molecular Psychiatry 2 (5):368–72. doi: 10.1038/sj.mp.4000305.
  • Wei, B-b., M-y Liu, X. Zhong, W-f Yao, and M-j Wei. 2019. Increased BBB permeability contributes to EGCG-caused cognitive function improvement in natural aging rats: Pharmacokinetic and distribution analyses. Acta Pharmacologica Sinica 40 (11):1490–500. doi: 10.1038/s41401-019-0243-7.
  • Weinreb, O., S. Mandel, M. B. H. Youdim, and T. Amit. 2013. Targeting dysregulation of brain iron homeostasis in Parkinson’s disease by iron chelators. Free Radical Biology & Medicine 62:52–64. doi: 10.1016/j.freeradbiomed.2013.01.017.
  • Wheeler, D. S., P. M. Lahni, P. W. Hake, A. G. Denenberg, H. R. Wong, C. Snead, J. D. Catravas, and B. Zingarelli. 2007. The green tea polyphenol epigallocatechin-3-gallate improves systemic hemodynamics and survival in rodent models of polymicrobial sepsis. Shock (Augusta, Ga.) 28 (3):353–9. doi: 10.1097/shk.0b013e3180485823.
  • Wong, C. P., L. P. Nguyen, S. K. Noh, T. M. Bray, R. S. Bruno, and E. Ho. 2011. Induction of regulatory T cells by green tea polyphenol EGCG. Immunology Letters 139 (1-2):7–13. doi: 10.1016/j.imlet.2011.04.009.
  • Wu, D. 2016. Green tea EGCG, T-cell function, and T-cell-mediated autoimmune encephalomyelitis. Journal of Investigative Medicine: The Official Publication of the American Federation for Clinical Research 64 (8):1213–9. doi: 10.1136/jim-2016-000158.
  • Wu, S. Y., B. S. Pan, S. F. Tsai, Y. T. Chiang, B. M. Huang, F. E. Mo, and Y. M. Kuo. 2020. BDNF reverses aging-related microglial activation. Journal of Neuroinflammation 17 (1):210. doi: 10.1186/s12974-020-01887-1.
  • Wu, X., F. Shao, Y. Yang, L. Gu, W. Zheng, X. Wu, Y. Gu, Y. Shu, Y. Sun, and Q. Xu. 2014. Epigallocatechin-3-gallate sensitizes IFN-γ-stimulated CD4+ T cells to apoptosis via alternative activation of STAT1. International Immunopharmacology 23 (2):434–41. doi: 10.1016/j.intimp.2014.09.014.
  • Wu, Z., J. Shen, Q. Xu, Q. Xiang, Y. Chen, L. Lv, B. Zheng, Q. Wang, S. Wang, and L. Li. 2022. Epigallocatechin-3-gallate improves intestinal gut microbiota homeostasis and ameliorates clostridioides difficile infection. Nutrients 14 (18):3756. doi: 10.3390/nu14183756.
  • Wu, D., J. Wang, M. Pae, and S. N. Meydani. 2012. Green tea EGCG, T cells, and T cell-mediated autoimmune diseases. Molecular Aspects of Medicine 33 (1):107–18. doi: 10.1016/j.mam.2011.10.001.
  • Wyganowska-Swiatkowska, M., M. Matthews-Kozanecka, T. Matthews-Brzozowska, E. Skrzypczak-Jankun, and J. Jankun. 2018. Can EGCG alleviate symptoms of down syndrome by altering proteolytic activity? International Journal of Molecular Sciences 19 (1):248. doi: 10.3390/ijms19010248.
  • Xie, L. W., S. Cai, T. S. Zhao, M. Li, and Y. Tian. 2020. Green tea derivative (-)-epigallocatechin-3-gallate (EGCG) confers protection against ionizing radiation-induced intestinal epithelial cell death both in vitro and in vivo. Free Radical Biology & Medicine 161:175–86. doi: 10.1016/j.freeradbiomed.2020.10.012.
  • Xu, X., S. Fu, X. Shi, and R. Liu. 2019. Microglial BDNF, PI3K, and p-ERK in the spinal cord are suppressed by pulsed radiofrequency on dorsal root ganglion to ease SNI-induced neuropathic pain in rats. Pain Research & Management 2019:5948686. doi: 10.1155/2019/5948686.
  • Xu, F.-W., Y.-L. Lv, Y.-F. Zhong, Y.-N. Xue, Y. Wang, L.-Y. Zhang, X. Hu, and W.-Q. Tan. 2021. Beneficial effects of green tea EGCG on skin wound healing: A comprehensive review. Molecules 26 (20):6123. doi: 10.3390/molecules26206123.
  • Xu, Y., M. Xie, J. Xue, L. Xiang, Y. Li, J. Xiao, G. Xiao, and H.-L. Wang. 2020. EGCG ameliorates neuronal and behavioral defects by remodeling gut microbiota and TotM expression in Drosophila models of Parkinson’s disease. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 34 (4):5931–50. doi: 10.1096/fj.201903125RR.
  • Xu, Y., Y. Zhang, Z. Quan, W. Wong, J. Guo, R. Zhang, Q. Yang, R. Dai, P. L. McGeer, and H. Qing. 2016. Epigallocatechin gallate (EGCG) inhibits alpha-synuclein aggregation: A potential agent for Parkinson’s disease. Neurochemical Research 41 (10):2788–96. doi: 10.1007/s11064-016-1995-9.
  • Yang, X., G. He, Y. Hao, C. Chen, M. Li, Y. Wang, G. Zhang, and Z. Yu. 2010. The role of the JAK2-STAT3 pathway in pro-inflammatory responses of EMF-stimulated N9 microglial cells. Journal of Neuroinflammation 7:54. doi: 10.1186/1742-2094-7-54.
  • Yang, G., Q. Tan, Z. Li, K. Liu, J. Wu, W. Ye, H. Mei, and H. Yu. 2020. The AMPK pathway triggers autophagy during CSF1-induced microglial activation and may be implicated in inducing ­neuropathic pain. Journal of Neuroimmunology 345:577261. doi: 10.1016/j.jneuroim.2020.577261.
  • Yang, L., R. Zhou, Y. Tong, P. Chen, Y. Shen, S. Miao, and X. Liu. 2020. Neuroprotection by dihydrotestosterone in LPS-induced neuroinflammation. Neurobiology of Disease 140:104814. doi: 10.1016/j.nbd.2020.104814.
  • Yao, Y., Y. Tang, and G. Wei. 2020. Epigallocatechin gallate destabilizes alpha-synuclein fibril by disrupting the E46-K80 salt-bridge and inter-protofibril interface. ACS Chemical Neuroscience 11 (24):4351–61. doi: 10.1021/acschemneuro.0c00598.
  • Yi, Q.-Y., H.-B. Li, J. Qi, X.-J. Yu, C.-J. Huo, X. Li, J. Bai, H.-L. Gao, B. Kou, K.-L. Liu, et al. 2016. Chronic infusion of epigallocatechin-3-O-gallate into the hypothalamic paraventricular nucleus attenuates hypertension and sympathoexcitation by restoring neurotransmitters and cytokines. Toxicology Letters 262:105–13. doi: 10.1016/j.toxlet.2016.09.010.
  • Yu, S., G. Zhao, F. Han, W. Liang, Y. Jiao, Z. Li, and L. Li. 2020. Muscone relieves inflammatory pain by inhibiting microglial activation-mediated inflammatory response via abrogation of the NOX4/JAK2-STAT3 pathway and NLRP3 inflammasome. International Immunopharmacology 82:106355. doi: 10.1016/j.intimp.2020.106355.
  • Zawadzka, M., A. Kwaśniewska, K. Miazga, and U. Sławińska. 2021. Perspectives in the cell-based therapies of various aspects of the spinal cord injury-associated pathologies: Lessons from the animal models. Cells 10 (11):2995. doi: 10.3390/cells10112995.
  • Zhang, L., W. Liu, H. You, Z. Chen, L. Xu, and H. He. 2020. Assessing the analgesic efficacy of oral epigallocatechin-3-gallate on epidural catheter analgesia in patients after surgical stabilisation of multiple rib fractures: A prospective double-blind, placebo-controlled clinical trial. Pharmaceutical Biology 58 (1):741–4. doi: 10.1080/13880209.2020.1797123.
  • Zhang, B., R. Safa, D. Rusciano, and N. N. Osborne. 2007. Epigallocatechin gallate, an active ingredient from green tea, attenuates damaging influences to the retina caused by ischemia/reperfusion. Brain Research 1159:40–53. doi: 10.1016/j.brainres.2007.05.029.
  • Zhang, B., B. Wang, S. Cao, and Y. Wang. 2015. Epigallocatechin-3-gallate (EGCG) attenuates traumatic brain injury by inhibition of edema formation and oxidative stress. The Korean Journal of Physiology & Pharmacology: Official Journal of the Korean Physiological Society and the Korean Society of Pharmacology 19 (6):491–7. doi: 10.4196/kjpp.2015.19.6.491.
  • Zhang, S., Y. Xu, L. Zeng, X. An, D. Su, Y. Qu, J. Ma, X. Tang, X. Wang, J. Yang, et al. 2021. Epigallocatechin-3-gallate allosterically activates protein kinase c-α and improves the cognition of estrogen deficiency mice. ACS Chemical Neuroscience 12 (19):3672–82. doi: 10.1021/acschemneuro.1c00401.
  • Zhao, X., F. Liu, H. Jin, R. Li, Y. Wang, W. Zhang, H. Wang, and W. Chen. 2017. Involvement of PKCα and ERK1/2 signaling pathways in EGCG’s protection against stress-induced neural injuries in Wistar rats. Neuroscience 346:226–37. doi: 10.1016/j.neuroscience.2017.01.025.
  • Zhao, J., L. Xu, Q. Liang, Q. Sun, C. Chen, Y. Zhang, Y. Ding, and P. Zhou. 2017. Metal chelator EGCG attenuates Fe(III)-induced conformational transition of alpha-synuclein and protects AS-PC12 cells against Fe(III)-induced death. Journal of Neurochemistry 143 (1):136–46. doi: 10.1111/jnc.14142.
  • Zhong, X., M. Liu, W. Yao, K. Du, M. He, X. Jin, L. Jiao, G. Ma, B. Wei, and M. Wei. 2019. Epigallocatechin-3-gallate attenuates microglial inflammation and neurotoxicity by suppressing the activation of canonical and noncanonical inflammasome via TLR4/NF-kappa B pathway. Molecular Nutrition & Food Research 63 (21):1801230. doi: 10.1002/mnfr.201801230.
  • Zhou, J., L. Mao, P. Xu, and Y. Wang. 2018. Effects of (-)- epigallocatechin gallate (EGCG) on energy expenditure and microglia-mediated hypothalamic inflammation in mice fed a high-fat diet. Nutrients 10 (11):1681. doi: 10.3390/nu10111681.
  • Zhou, J., M. Wang, and D. Deng. 2020. KLF2 protects BV2 microglial cells against oxygen and glucose deprivation injury by modulating BDNF/TrkB pathway. Gene 735:144277. doi: 10.1016/j.gene.2019.144277.
  • Zhou, T., M. Zhu, and Z. Liang. 2018. (-)-Epigallocatechin-3-gallate modulates peripheral immunity in the MPTP-induced mouse model of Parkinson’s disease. Molecular Medicine Reports 17 (4):4883–8. doi: 10.3892/mmr.2018.8470.
  • Zhu, Y., M. Dwidar, I. Nemet, J. A. Buffa, N. Sangwan, X. S. Li, J. T. Anderson, K. A. Romano, X. Fu, M. Funabashi, et al. 2023. Two distinct gut microbial pathways contribute to meta-organismal ­production of phenylacetylglutamine with links to cardiovascular disease. Cell Host & Microbe 31 (1):18–32.e19. doi: 10.1016/j.chom.2022.11.015.
  • Zhu, W., L. Jia, G. Chen, H. Zhao, X. Sun, X. Meng, X. Zhao, L. Xing, J. Yu, and M. Zheng. 2016. Epigallocatechin-3-gallate ameliorates radiation-induced acute skin damage in breast cancer patients ­undergoing adjuvant radiotherapy. Oncotarget 7 (30):48607–13. doi: 10.18632/oncotarget.9495.
  • Zhu, S., W. Li, M. F. Ward, A. E. Sama, and H. Wang. 2010. High mobility group box 1 protein as a potential drug target for infection- and injury-elicited inflammation. Inflammation & Allergy Drug Targets 9 (1):60–72. doi: 10.2174/187152810791292872.
  • Zhu, W., H. Mei, L. Jia, H. Zhao, X. Li, X. Meng, X. Zhao, L. Xing, and J. Yu. 2020. Epigallocatechin-3-gallate mouthwash protects mucosa from radiation-induced mucositis in head and neck cancer patients: A prospective, non-randomised, phase 1 trial. Investigational New Drugs 38 (4):1129–36. doi: 10.1007/s10637-019-00871-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.