220
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Perspective of sodium reduction based on endogenous proteases via the strategy of sodium replacement in conjunction with mediated-curing

, , , , , , , ORCID Icon & ORCID Icon show all

References

  • Abellán, A., E. Salazar, J. Vázquez, J. M. Cayuela, and L. Tejada. 2018. Changes in proteolysis during the dry-cured processing of refrigerated and frozen loin. LWT 96:507–12. doi: 10.1016/j.lwt.2018.06.002.
  • Afshin, A., P. J. Sur, K. A. Fay, L. Cornaby, G. Ferrara, J. S. Salama, E. C. Mullany, K. H. Abate, C. Abbafati, Z. Abebe, et al. 2019. Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. The Lancet 393 (10184):1958–72. doi: 10.1016/S0140-6736(19)30041-8.
  • Aliño, M., R. Grau, A. Fuentes, and J. M. Barat. 2010. Influence of low-sodium mixtures of salts on the post-salting stage of dry-cured ham process. Journal of Food Engineering 99 (2):198–205. doi: 10.1016/j.jfoodeng.2010.02.020.
  • Alino, M., R. Grau, F. Toldra, E. Blesa, M. J. Pagan, and J. M. Barat. 2009. Influence of sodium replacement on physicochemical properties of dry-cured loin. Meat Science 83 (3):423–30. doi: 10.1016/j.meatsci.2009.06.022.
  • Alino, M., R. Grau, F. Toldra, E. Blesa, M. J. Pagan, and J. M. Barat. 2010. Physicochemical properties and microbiology of dry-cured loins obtained by partial sodium replacement with potassium, calcium and magnesium. Meat Science 85 (3):580–8. doi: 10.1016/j.meatsci.2010.03.009.
  • Armenteros, M., M.-C. Aristoy, J. M. Barat, and F. Toldra. 2012. Biochemical and sensory changes in dry-cured ham salted with partial replacements of NaCl by other chloride salts. Meat Science 90 (2):361–7. doi: 10.1016/j.meatsci.2011.07.023.
  • Armenteros, M., M. C. Aristoy, and F. Toldra. 2009. Effect of sodium, potassium, calcium and magnesium chloride salts on porcine muscle proteases. European Food Research and Technology 229 (1):93–8. doi: 10.1007/s00217-009-1029-9.
  • Armenteros, M., F. Toldra, M. C. Aristoy, J. Ventanas, and M. Estevez. 2012. Effect of the partial replacement of sodium chloride by other salts on the formation of volatile compounds during ripening of dry-cured ham. Journal of Agricultural and Food Chemistry 60 (31):7607–15. doi: 10.1021/jf3013772.
  • Auld, D. S. 2013. Chapter 289 – Carboxypeptidase A. Handbook of Proteolytic Enzymes. 3rd ed., 1289–301. Waltham, MA: Academic Press. doi: 10.1016/B978-0-12-382219-2.00290-8.
  • Avilés, F. X., and J. Vendrell. 2013. Chapter 296 – Carboxypeptidase B. Handbook of Proteolytic Enzymes. 3rd ed., 1324–9. Waltham, MA: Academic Press. doi: 10.1016/B978-0-12-382219-2.00297-0.
  • Bader, R., S. Becila, P. Ruiz, F. Djeghim, I. Sanah, A. Boudjellal, P. Gatellier, S. Portanguen, R. Talon, and S. Leroy. 2021. Physicochemical and microbiological characteristics of El-Guedid from meat of different animal species. Meat Science 171:108277. doi: 10.1016/j.meatsci.2020.108277.
  • Barrett, A. J., and J.-M. Chen. 2013. Chapter 288 – Dipeptidyl-Peptidase III. Handbook of Proteolytic Enzymes 3rd ed., 1285–9. Waltham, MA: Academic Press. doi: 10.1016/B978-0-12-382219-2.00289-1.
  • Bhat, Z. F., J. D. Morton, S. L. Mason, and A. E.-D A. Bekhit. 2018. Role of calpain system in meat tenderness: A review. Food Science and Human Wellness 7 (3):196–204. doi: 10.1016/j.fshw.2018.08.002.
  • Buckow, R., A. Sikes, and R. Tume. 2013. Effect of high pressure on physicochemical properties of meat. Critical Reviews in Food Science and Nutrition 53 (7):770–86. doi: 10.1080/10408398.2011.560296.
  • Cadel, S., C. Piesse, V.-L. Pham, J. Pernier, C. Hanquez, C. Gouzy-Darmon, and T. Foulon. 2013. Chapter 97 – Aminopeptidase B. Handbook of Proteolytic Enzymes. 3rd ed., 473–9. Waltham, MA: Academic Press. doi: 10.1016/B978-0-12-382219-2.00097-1.
  • Campus, M., M. Flores, A. Martinez, and F. Toldra. 2008. Effect of high pressure treatment on colour, microbial and chemical characteristics of dry cured loin. Meat Science 80 (4):1174–81. doi: 10.1016/j.meatsci.2008.05.011.
  • Chaosap, C., R. Sitthigripong, P. Sivapirunthep, A. Pungsuk, K. D. Adeyemi, and A. Q. Sazili. 2020. Myosin heavy chain isoforms expression, calpain system and quality characteristics of different muscles in goats. Food Chemistry 321:126677. doi: 10.1016/j.foodchem.2020.126677.
  • Cittadini, A., R. Dominguez, B. Gomez, M. Pateiro, C. Perez-Santaescolastica, O. Lopez-Fernandez, M. V. Sarries, and J. M. Lorenzo. 2020. Effect of NaCl replacement by other chloride salts on physicochemical parameters, proteolysis and lipolysis of dry-cured foal "cecina. Journal of Food Science and Technology 57 (5):1628–35. doi: 10.1007/s13197-019-04195-6.
  • Coll-Brasas, E., J. Arnau, P. Gou, J. M. Lorenzo, J. V. Garcia-Perez, and E. Fulladosa. 2019. Effect of high pressure processing temperature on dry-cured hams with different textural characteristics. Meat Science 152:127–33. doi: 10.1016/j.meatsci.2019.02.014.
  • Coll-Brasas, E., P. Gou, J. Arnau, A. Olmos, and E. Fulladosa. 2021. Processing parameters involved in the development of texture and tyrosine precipitates in dry-cured ham: Modelisation of texture development. Meat Science 172:108362. doi: 10.1016/j.meatsci.2020.108362.
  • Contreras, M., J. Benedito, A. Quiles, J. M. Lorenzo, E. Fulladosa, P. Gou, and J. V. Garcia-Perez. 2020. Assessing the textural defect of pastiness in dry-cured pork ham using chemical, microstructural, textural and ultrasonic analyses. Journal of Food Engineering 265:109690. doi: 10.1016/j.jfoodeng.2019.109690.
  • Cropotova, J., S. Tappi, J. Genovese, P. Rocculi, L. Laghi, M. Dalla Rosa, and T. Rustad. 2021. Study of the influence of pulsed electric field pre-treatment on quality parameters of sea bass during brine salting. Innovative Food Science & Emerging Technologies 70:102706. doi: 10.1016/j.ifset.2021.102706.
  • Deniz, E., L. Mora, M.-C. Aristoy, K. Candoğan, and F. Toldrá. 2016. Free amino acids and bioactive peptides profile of Pastirma during its processing. Food Research International (Ottawa, ON) 89 (Pt 1):194–201. doi: 10.1016/j.foodres.2016.07.025.
  • Dominguez-Hernandez, E., and P. Ertbjerg. 2021. Effect of LTLT heat treatment on cathepsin B and L activities and denaturation of myofibrillar proteins of pork. Meat Science 175:108454. doi: 10.1016/j.meatsci.2021.108454.
  • Fidel, T., R. Elías, and F. José. 2010. Cathepsin B, D, H and L activities in the processing of dry-cured ham. Journal of the Science of Food & Agriculture 62 (2):157–61. doi: 10.1002/jsfa.2740620208.
  • Flores, M., M.-C. Aristoy, and F. Toldrá. 1996. HPLC purification and characterization of soluble alanyl aminopeptidase from porcine skeletal muscle. Journal of Agricultural and Food Chemistry 44 (9):2578–83. doi: 10.1021/jf9504677.
  • Flores, M., M. C. Aristoy, T. Antequera, J. M. Barat, and F. Toldra. 2009. Effect of prefreezing hams on endogenous enzyme activity during the processing of Iberian dry-cured hams. Meat Science 82 (2):241–6. doi: 10.1016/j.meatsci.2009.01.017.
  • Flores, M., M. C. Aristoy, T. Antequera, J. M. Barat, and F. Toldrá. 2012. Effect of brine thawing/salting on endogenous enzyme activity and sensory quality of Iberian dry-cured ham. Food Microbiology 29 (2):247–54. doi: 10.1016/j.fm.2011.06.011.
  • Flores, M., M. Marina, and F. Toldrá. 2000. Purification and characterization of a soluble methionyl aminopeptidase from porcine skeletal muscle. Meat Science 56 (3):247–54. doi: 10.1016/S0309-1740(00)00049-8.
  • Fu, H., L. Pan, J. Wang, J. Zhao, X. Guo, J. Chen, S. Lu, J. Dong, and Q. Wang. 2022. Sensory properties and main differential metabolites influencing the taste quality of dry-cured beef during processing. Foods 11 (4):531. doi: 10.3390/foods11040531.
  • Fulladosa, E., X. Serra, P. Gou, and J. Arnau. 2009. Effects of potassium lactate and high pressure on transglutaminase restructured dry-cured hams with reduced salt content. Meat Science 82 (2):213–8. doi: 10.1016/j.meatsci.2009.01.013.
  • Gallego, M., L. Mora, and F. Toldrá. 2019. The relevance of dipeptides and tripeptides in the bioactivity and taste of dry-cured ham. Food Production, Processing and Nutrition 1 (1) doi: 10.1186/s43014-019-0002-7.
  • Garcia-Gil, N., E. Santos-Garces, E. Fulladosa, J. Laverse, M. A. Del Nobile, and P. Gou. 2014. High pressure induces changes in texture and microstructure of muscles in dry-cured hams. Innovative Food Science & Emerging Technologies 22:63–9. doi: 10.1016/j.ifset.2014.01.004.
  • Gomez, B., P. E. S. Munekata, M. Gavahian, F. J. Barba, F. J. Marti-Quijal, T. Bolumar, P. C. B. Campagnol, I. Tomasevic, and J. M. Lorenzo. 2019. Application of pulsed electric fields in meat and fish processing industries: An overview. Food Research International (Ottawa, Ont.) 123:95–105. doi: 10.1016/j.foodres.2019.04.047.
  • Gong, X.-H., W. Jing, Z. Ye-Ling, Z. Ying, Z. Qiu-Jin, L. Ling-Gao, C. Dan, H. Yan-Pei, G. Sha, and L. Ming-Ming. 2022. Mediated curing strategy: An overview of salt reduction for dry-cured meat products. Food Reviews International 1–16. doi: 10.1080/87559129.2022.2029478.
  • Got, F., J. Culioli, P. Berge, X. Vignon, T. Astruc, J. M. Quideau, and M. Lethiecq. 1999. Effects of high-intensity high-frequency ultrasound on ageing rate, ultrastructure and some physico-chemical properties of beef. Meat Science 51 (1):35–42. doi: 10.1016/S0309-1740(98)00094-1.
  • Gu, S., Q. Zhu, Y. Zhou, J. Wan, L. Liu, Y. Zhou, D. Chen, Y. Huang, L. Chen, and X. Zhong. 2022. Effect of ultrasound combined with glycerol-mediated low-sodium curing on the quality and protein structure of pork tenderloin. Foods 11 (23):3798. doi: 10.3390/foods11233798.
  • Harkouss, R., T. Astruc, A. Lebert, P. Gatellier, O. Loison, H. Safa, S. Portanguen, E. Parafita, and P. S. Mirade. 2015. Quantitative study of the relationships among proteolysis, lipid oxidation, structure and texture throughout the dry-cured ham process. Food Chemistry 166:522–30. doi: 10.1016/j.foodchem.2014.06.013.
  • Harkouss, R., P.-S. Mirade, and P. Gatellier. 2012. Development of a rapid, specific and efficient procedure for the determination of proteolytic activity in dry-cured ham: Definition of a new proteolysis index. Meat Science 92 (2):84–8. doi: 10.1016/j.meatsci.2012.04.017.
  • Hersleth, M., V. Lengard, W. Verbeke, L. Guerrero, and T. Næs. 2011. Consumers’ acceptance of innovations in dry-cured ham: Impact of reduced salt content, prolonged aging time and new origin. Food Quality and Preference 22 (1):31–41. doi: 10.1016/j.foodqual.2010.07.002.
  • Hu, S., G. Zhou, X. Xu, W. Zhang, and C. Li. 2022. Contribution of cathepsin B and L to endogenous proteolysis in the course of modern Jinhua ham processing. Food Control. 135:108584. doi: 10.1016/j.foodcont.2021.108584.
  • Kęska, P., and J. Stadnik. 2017. Taste-active peptides and amino acids of pork meat as components of dry-cured meat products: An in-silico study. Journal of Sensory Studies 32 (6):e12301. doi: 10.1111/joss.12301.
  • Krause, J., S. C. Tshidino, T. Ogawa, Y. Watanabe, V. Oosthuizen, B. Somai, K. Muramoto, and R. J. Naude. 2011. Purification and partial characterization of ostrich skeletal muscle cathepsin D and its activity during meat maturation. Meat Science 87 (3):196–201. doi: 10.1016/j.meatsci.2010.10.009.
  • Laureati, M., S. Buratti, G. Giovanelli, M. Corazzin, D. P. Lo Fiego, and E. Pagliarini. 2014. Characterization and differentiation of Italian Parma, San Daniele and Toscano dry-cured hams: A multi-disciplinary approach. Meat Science 96 (1):288–94. doi: 10.1016/j.meatsci.2013.07.014.
  • Li, H., J. Wu, J. Wan, Y. Zhou, and Q. Zhu. 2022. Extraction and identification of bioactive peptides from Panxian dry-cured ham with multifunctional activities. LWT 160:113326. doi: 10.1016/j.lwt.2022.113326.
  • Li, M., Q. Zhu, C. Qu, X. Gong, Y. Zhang, X. Zhang, and S. Wang. 2023. Elucidation of potential relationship between endogenous proteases and key flavor substances in dry-cured pork coppa. Food Science and Human Wellness. https://kns.cnki.net/kcms/detail/10.1750.TS.20230221.1614.002.html.
  • Liu, C., J. Wan, Y. Zhou, K. Hu, Q. Zhu, P. Tang, S. Xu, and L. Song. 2022. Proteome profile of glycrol-mediated salt-reduction cured meat reveals the formation mechanism of eating quality. Food Chemistry 382:132395. doi: 10.1016/j.foodchem.2022.132395.
  • Liu, L., Y. Zhou, J. Wan, Q. Zhu, S. Bi, Y. Zhou, S. Gu, D. Chen, Y. Huang, and B. Hu. 2022. Mechanism of polyhydroxy alcohol-mediated curing on moisture migration of minced pork tenderloin: On the basis of molecular docking. Food Chemistry: X 15:100401. doi: 10.1016/j.fochx.2022.100401.
  • Liu, S. X., Y. W. Zhang, G. H. Zhou, Y. J. Bao, X. P. Ren, Y. X. Zhu, and Z. Q. Peng. 2019. Protein degradation, color and textural properties of low sodium dry cured beef. International Journal of Food Properties 22 (1):487–98. doi: 10.1080/10942912.2019.1591444.
  • Lopez-Pedrouso, M., C. Perez-Santaescolastica, D. Franco, J. Carballo, C. Zapata, and J. M. Lorenzo. 2019. Molecular insight into taste and aroma of sliced dry-cured ham induced by protein degradation undergone high-pressure conditions. Food Research International (Ottawa, ON) 122:635–42. doi: 10.1016/j.foodres.2019.01.037.
  • López-Pedrouso, M., C. Pérez-Santaescolástica, D. Franco, E. Fulladosa, J. Carballo, C. Zapata, and J. M. Lorenzo. 2018. Comparative proteomic profiling of myofibrillar proteins in dry-cured ham with different proteolysis indices and adhesiveness. Food Chemistry 244:238–45. doi: 10.1016/j.foodchem.2017.10.068.
  • Lorenzo, J. M., R. Bermúdez, R. Domínguez, A. Guiotto, D. Franco, and L. Purriños. 2015. Physicochemical and microbial changes during the manufacturing process of dry-cured lacón salted with potassium, calcium and magnesium chloride as a partial replacement for sodium chloride. Food Control. 50:763–9. doi: 10.1016/j.foodcont.2014.10.019.
  • Lorenzo, J. M., S. Fonseca, M. Gómez, and R. Domínguez. 2015. Influence of the salting time on physico-chemical parameters, lipolysis and proteolysis of dry-cured foal “cecina. LWT – Food Science and Technology 60 (1):332–8. doi: 10.1016/j.lwt.2014.07.023.
  • Lorenzo, J. M., M. C. García Fontán, I. Franco, and J. Carballo. 2008. Biochemical characteristics of dry-cured lacón (a Spanish traditional meat product) throughout the manufacture, and sensorial properties of the final product. Effect of some additives. Food Control. 19 (12):1148–58. doi: 10.1016/j.foodcont.2007.12.005.
  • Lorido, L., M. Estevez, J. Ventanas, and S. Ventanas. 2015. Salt and intramuscular fat modulate dynamic perception of flavour and texture in dry-cured hams. Meat Science 107:39–48. doi: 10.1016/j.meatsci.2015.03.025.
  • Luo, J., M. M. Nasiru, H. Zhuang, G. Zhou, and J. Zhang. 2021. Effects of partial NaCl substitution with high-temperature ripening on proteolysis and volatile compounds during process of Chinese dry-cured lamb ham. Food Research International (Ottawa, ON) 140:110001. doi: 10.1016/j.foodres.2020.110001.
  • Marusic, N., S. Vidacek, T. Janci, T. Petrak, and H. Medic. 2014. Determination of volatile compounds and quality parameters of traditional Istrian dry-cured ham. Meat Science 96 (4):1409–16. doi: 10.1016/j.meatsci.2013.12.003.
  • Misumi, Y., and Y. Ikehara. 2013. Chapter 745 – Dipeptidyl-peptidase IV. Handbook of Proteolytic Enzymes. 3rd ed., 3374–9. Waltham, MA: Academic Press. doi: 10.1016/B978-0-12-382219-2.00745-6.
  • Mora, L., P. D. Fraser, and F. Toldrá. 2013. Proteolysis follow-up in dry-cured meat products through proteomic approaches. Food Research International 54 (1):1292–7. doi: 10.1016/j.foodres.2012.09.042.
  • Pateiro, M., P. E. S. Munekata, A. Cittadini, R. Domínguez, and J. M. Lorenzo. 2021. Metallic-based salt substitutes to reduce sodium content in meat products. Current Opinion in Food Science 38:21–31. doi: 10.1016/j.cofs.2020.10.029.
  • Pedro, D., J. M. Lorenzo, E. Saldana, R. T. Heck, B. A. Dos Santos, A. J. Cichoski, and P. C. B. Campagnol. 2021. Sodium reformulation and its impact on oxidative stability and sensory quality of dry-cured rabbit legs. Meat Science 177:108485. doi: 10.1016/j.meatsci.2021.108485.
  • Pedro, D., E. Saldana, J. M. Lorenzo, M. Pateiro, R. Dominguez, B. A. Dos Santos, A. J. Cichoski, and P. C. B. Campagnol. 2021. Low-sodium dry-cured rabbit leg: A novel meat product with healthier properties. Meat Science 173:108372. doi: 10.1016/j.meatsci.2020.108372.
  • Perez-Santaescolastica, C., J. Carballo, E. Fulladosa, J. V. Garcia-Perez, J. Benedito, and J. M. Lorenzo. 2018. Effect of proteolysis index level on instrumental adhesiveness, free amino acids content and volatile compounds profile of dry-cured ham. Food Research International (Ottawa, ON) 107:559–66. doi: 10.1016/j.foodres.2018.03.001.
  • Perez-Santaescolastica, C., J. Carballo, E. Fulladosa, P. E. S. Munekata, P. C. B. Campagnol, B. Gomez, and J. M. Lorenzo. 2019. Influence of high-pressure processing at different temperatures on free amino acid and volatile compound profiles of dry-cured ham. Food Research International (Ottawa, ON) 116:49–56. doi: 10.1016/j.foodres.2018.12.039.
  • Pérez-Santaescolástica, C., I. Fraeye, F. J. Barba, B. Gómez, I. Tomasevic, A. Romero, A. Moreno, F. Toldrá, and J. M. Lorenzo. 2019. Application of non-invasive technologies in dry-cured ham: An overview. Trends in Food Science & Technology 86:360–74. doi: 10.1016/j.tifs.2019.02.011.
  • Petrova, I., I. Tolstorebrov, L. Mora, F. Toldrá, and T. M. Eikevik. 2016. Evolution of proteolytic and physico-chemical characteristics of Norwegian dry-cured ham during its processing. Meat Science 121:243–9. doi: 10.1016/j.meatsci.2016.06.023.
  • Piasentier, E., N. Pizzutti, and G. Lippe. 2021. The influence of the type of dry-cured Italian PDO ham on cathepsin B activity trend during processing. Foods 10 (12):3123. doi: 10.3390/foods10123123.
  • Picon, A., and M. Nunez. 2022. Volatile compounds in high-pressure-treated dry-cured ham: A review. Meat Science 184:108673. doi: 10.1016/j.meatsci.2021.108673.
  • Picouet, P. A., X. Sala, N. Garcia-Gil, P. Nolis, M. Colleo, T. Parella, and J. Arnau. 2012. High pressure processing of dry-cured ham: Ultrastructural and molecular changes affecting sodium and water dynamics. Innovative Food Science & Emerging Technologies 16:335–40. doi: 10.1016/j.ifset.2012.07.008.
  • Pinton, M. B., B. A. dos Santos, J. M. Lorenzo, A. J. Cichoski, C. P. Boeira, and P. C. B. Campagnol. 2021. Green technologies as a strategy to reduce NaCl and phosphate in meat products: An overview. Current Opinion in Food Science 40:1–5. doi: 10.1016/j.cofs.2020.03.011.
  • Rivas-Cañedo, A., N. Martínez-Onandi, P. Gaya, M. Nuñez, and A. Picon. 2021. Effect of high-pressure processing and chemical composition on lipid oxidation, aminopeptidase activity and free amino acids of Serrano dry-cured ham. Meat Science 172:108349. doi: 10.1016/j.meatsci.2020.108349.
  • Ruiz-Ramirez, J., X. Serra, J. Arnau, and P. Gou. 2005. Profiles of water content, water activity and texture in crusted dry-cured loin and in non-crusted dry-cured loin. Meat Science 69 (3):519–25. doi: 10.1016/j.meatsci.2004.09.007.
  • Sante-Lhoutellier, V., N. Robert, J. F. Martin, P. Gou, M. Hortos, J. Arnau, A. Diestre, and M. Candek-Potokar. 2012. PRKAG3 and CAST genetic polymorphisms and quality traits of dry-cured hams–II. Associations in French dry-cured ham Jambon de Bayonne and their dependence on salt reduction. Meat Science 92 (4):354–9. doi: 10.1016/j.meatsci.2012.06.022.
  • Schivazappa, C., R. Virgili, N. Simoncini, S. Tiso, J. Álvarez, and J. M. Rodríguez. 2017. Application of the magnetic induction technique for the non-destructive assessment of salt gain after the salting process of Parma ham. Food Control. 80:92–8. doi: 10.1016/j.foodcont.2017.04.017.
  • Sentandreu, M. A., and F. Toldrá. 1998. Biochemical properties of dipeptidyl peptidase III purified from porcine skeletal muscle. Journal of Agricultural and Food Chemistry 46 (10):3977–84. doi: 10.1021/jf980356i.
  • Sentandreu, M. A., and F. Toldrá. 2000. Purification and biochemical properties of dipeptidyl peptidase I from porcine skeletal muscle. Journal of Agricultural and Food Chemistry 48 (10):5014–22. doi: 10.1021/jf990892q.
  • Sentandreu, M. A., and F. Toldrá. 2001a. Dipeptidyl peptidase IV from porcine skeletal muscle: Purification and biochemical properties. Food Chemistry 75 (2):159–68. doi: 10.1016/S0308-8146(01)00145-5.
  • Sentandreu, M. A., and F. Toldrá. 2001b. Partial purification and characterisation of dipeptidyl peptidase II from porcine skeletal muscle. Meat Science 57 (1):93–103. doi: 10.1016/S0309-1740(00)00082-6.
  • Sohar, I., D. E. Sleat, and P. Lobel. 2013. Chapter 740 – Tripeptidyl Peptidase I. Handbook of Proteolytic Enzymes. 3rd ed., 3350–6. Waltham, MA: Academic Press. doi: 10.1016/B978-0-12-382219-2.00740-7.
  • Stojković, S., V. Grabež, M. Bjelanović, S. Mandić, G. Vučić, A. Martinović, T. T. Håseth, A. Velemir, and B. Egelandsdal. 2015. Production process and quality of two different dry-cured sheep hams from Western Balkan countries. LWT – Food Science and Technology 64 (2):1217–24. doi: 10.1016/j.lwt.2015.07.022.
  • Sträter, N., and W. N. Lipscomb. 2013. Chapter 329 – Leucyl Aminopeptidase (Animal). Handbook of Proteolytic Enzymes. 3rd ed., 1465–70. Waltham, MA: Academic Press. doi: 10.1016/B978-0-12-382219-2.00330-6.
  • Toldrá, F. 2006. The role of muscle enzymes in dry-cured meat products with different drying conditions. Trends in Food Science & Technology 17 (4):164–8. doi: 10.1016/j.tifs.2005.08.007.
  • Toldrá, F. 2016. Dry-cured meats. Reference module in food science. Waltham, MA: Academic Press. doi: 10.1016/b978-0-08-100596-5.03014-6.
  • Tomkinson, B., and S. Eklund. 2013. Chapter 734 – Tripeptidyl-peptidase II. Handbook of Proteolytic Enzymes. 3rd ed., 3325–31. Waltham, MA: Academic Press. doi: 10.1016/B978-0-12-382219-2.00734-1.
  • Vargas-Ramella, M., J. M. Lorenzo, R. Dominguez, M. Pateiro, P. E. S. Munekata, P. C. B. Campagnol, and D. Franco. 2021. Effect of NaCl partial replacement by chloride salts on physicochemical characteristics, volatile compounds and sensorial properties of dry-cured deer cecina. Foods 10 (3):669. doi: 10.3390/foods10030669.
  • Wang, D. Y., M. H. Zhang, H. Bian, H. Dong, W. M. Xu, X. L. Xu, Y. Z. Zhu, F. Liu, Z. M. Geng, G. H. Zhou, et al. 2014. Proteolysis and cathepsin activities in the processing of dry-cured duck. Poultry Science 93 (3):687–94. doi: 10.3382/ps.2013-03335.
  • Wang, J., M. Guo, Q. Wang, J. Dong, S. Lu, B. Lyu, and X. Ma. 2021. Antioxidant activities of peptides derived from mutton ham, Xuanwei ham and Jinhua ham. Food Research International (Ottawa, ON) 142:110195. doi: 10.1016/j.foodres.2021.110195.
  • Wang, J., X. L. Yan, R. Liu, Q. Q. Fu, G. H. Zhou, and W. G. Zhang. 2016. Differences in calpain system, desmin degradation and water holding capacity between commercial Meishan and Duroc x Landrace x Yorkshire crossbred pork. Animal Science Journal = Nihon Chikusan Gakkaiho 87 (1):109–16. doi: 10.1111/asj.12394.
  • Wu, H., H. Zhuang, Y. Zhang, J. Tang, X. Yu, M. Long, J. Wang, and J. Zhang. 2015. Influence of partial replacement of NaCl with KCl on profiles of volatile compounds in dry-cured bacon during processing. Food Chemistry 172:391–9. doi: 10.1016/j.foodchem.2014.09.088.
  • Zhang, R., J. Zhang, L. Zhou, L. Wang, and W. Zhang. 2021. Influence of ultrasound-assisted tumbling on NaCl transport and the quality of pork. Ultrasonics Sonochemistry 79:105759. doi: 10.1016/j.ultsonch.2021.105759.
  • Zhang, X., J. Yang, H. Gao, Y. Zhao, J. Wang, and S. Wang. 2020. Substituting sodium by various metal ions affects the cathepsins activity and proteolysis in dry-cured pork butts. Meat Science 166:108132. doi: 10.1016/j.meatsci.2020.108132.
  • Zhang, Y., X. Guo, Z. Peng, and M. A. Jamali. 2022. A review of recent progress in reducing NaCl content in meat and fish products using basic amino acids. Trends in Food Science & Technology 119:215–26. doi: 10.1016/j.tifs.2021.12.009.
  • Zhang, Y., H. Wu, J. Tang, M. Huang, J. Zhao, and J. Zhang. 2016. Influence of partial replacement of NaCl with KCl on formation of volatile compounds in Jinhua ham during processing. Food Science and Biotechnology 25 (2):379–91. doi: 10.1007/s10068-016-0053-3.
  • Zhao, C. J., A. Schieber, and M. G. Gänzle. 2016. Formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations – A review. Food Research International (Ottawa, Ont.) 89 (Pt 1):39–47. doi: 10.1016/j.foodres.2016.08.042.
  • Zhao, G. 2004. Studies on the Effects of Muscle Proteolytic Enzymes in Processing of Jinhua Ham. Doctor. Nanjing, China: Nanjing Agricultural University.
  • Zhou, C.-Y., J.-Q. Wu, C.-B. Tang, G. Li, C. Dai, Y. Bai, C.-B. Li, X.-L. Xu, G.-H. Zhou, and J.-X. Cao. 2019. Comparing the proteomic profile of proteins and the sensory characteristics in Jinhua ham with different processing procedures. Food Control. 106:106694. doi: 10.1016/j.foodcont.2019.06.020.
  • Zhou, C.-Y., Y. Bai, C. Wang, C.-B. Li, X.-L. Xu, D.-D. Pan, J.-X. Cao, and G.-H. Zhou. 2021. 1H NMR-based metabolomics and sensory evaluation characterize taste substances of Jinhua ham with traditional and modern processing procedures. Food Control. 126:107873. doi: 10.1016/j.foodcont.2021.107873.
  • Zhou, C. 2020. Study on the mechanism of protein degradation and taste substance formation on Jinhua ham based on modern processing procedure (Vol. Doctor). Nanjing, China: Nanjing Agricultural University.
  • Zhou, C. Y., D. D. Pan, J. X. Cao, and G. H. Zhou. 2021. A comprehensive review on molecular mechanism of defective dry-cured ham with excessive pastiness, adhesiveness, and bitterness by proteomics insights. Comprehensive Reviews in Food Science and Food Safety 20 (4):3838–57. doi: 10.1111/1541-4337.12779.
  • Zhou, C. Y., C. B. Tang, C. Wang, C. Dai, Y. Bai, X. B. Yu, C. B. Li, X. L. Xu, G. H. Zhou, and J. X. Cao. 2020. Insights into the evolution of myosin light chain isoforms and its effect on sensory defects of dry-cured ham. Food Chemistry 315:126318. doi: 10.1016/j.foodchem.2020.126318.
  • Zhou, C. Y., C. Wang, C. B. Tang, C. Dai, Y. Bai, X. B. Yu, C. B. Li, X. L. Xu, G. H. Zhou, and J. X. Cao. 2019. Label-free proteomics reveals the mechanism of bitterness and adhesiveness in Jinhua ham. Food Chemistry 297:125012. doi: 10.1016/j.foodchem.2019.125012.
  • Zhou, C. Y., Y. Wang, J. X. Cao, Y. J. Chen, Y. Liu, Y. Y. Sun, D. D. Pan, and C. R. Ou. 2016. The effect of dry-cured salt contents on accumulation of non-volatile compounds during dry-cured goose processing. Poultry Science 95 (9):2160–6. doi: 10.3382/ps/pew128.
  • Zhou, C. Y., Y. Wang, D. D. Pan, J. X. Cao, Y. J. Chen, Y. Liu, Y. Y. Sun, and C. R. Ou. 2017. The changes in the proteolysis activity and the accumulation of free amino acids during chinese traditional dry-cured loins processing. Food Science and Biotechnology 26 (3):679–87. doi: 10.1007/s10068-017-0089-z.
  • Zhou, C. Y., Q. Xia, J. He, Y. Y. Sun, Y. L. Dang, G. H. Zhou, F. Geng, D. D. Pan, and J. X. Cao. 2022. Insights into ultrasonic treatment on the mechanism of proteolysis and taste improvement of defective dry-cured ham. Food Chemistry 388:133059. doi: 10.1016/j.foodchem.2022.133059.
  • Zhou, Y., Y. Wang, J. He, D. Pan, H. Wang, and J. Cao. 2021. Evaluating the profile of myofibrillar proteins and its relationship with tenderness among five styles of dry‐cured hams. International Journal of Food Science & Technology 56 (1):259–68. doi: 10.1111/ijfs.14627.
  • Zhu, C. Z., J. L. Zhao, W. Tian, Y. X. Liu, M. Y. Li, and G. M. Zhao. 2018. Contribution of Histidine and Lysine to the Generation of Volatile Compounds in Jinhua Ham Exposed to Ripening Conditions Via Maillard Reaction. Journal of Food Science 83 (1):46–52. doi: 10.1111/1750-3841.13996.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.