528
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Nutritional and medicinal plants as potential sources of enzyme inhibitors toward the bioactive functional foods: an updated review

, , , , , , , , & show all

References

  • Abdel-Mageed, W. M., L. H. Al-Wahaibi, E. Y. Backheet, A. A. El-Gamal, Y. G. Gouda, O. A. Basudan, M. S. Abdel-Kader, and A. A. Khalifa. 2017. New phenolic glycosides with cyclooxygenase inhibition from the roots of Tecoma mollis. Phytochemistry Letters 21:98–103. doi: 10.1016/j.phytol.2017.06.011.
  • Abu-Izneid, T., A. Rauf, M. Saleem, N. Mansour, M. I. S. Abdelhady, M. M. Ibrahim, and S. Patel. 2020. Urease inhibitory potential of extracts and active phytochemicals of Hypochaeris radicata (Asteraceae). Natural Product Research 34 (4):553–7. doi: 10.1080/14786419.2018.1489387.
  • Adjapmoh Essombo, M., D. Martial Takou, M. Lateef, M. Shaiq Ali, J. Duplex Wansi, L. Leonard Mbaze Meva’a, and A. Francois Kamdem Waffo. 2017. Antioxidant and enzyme inhibitory constituents from Dactyladenia floribunda and chemicals transformations of hennadiol. Natural Products Chemistry & Research 5 (280):2.
  • Agu, K. C., N. Eluehike, R. O. Ofeimun, D. Abile, G. Ideho, M. O. Ogedengbe, P. O. Onose, and O. O. Elekofehinti. 2019. Possible anti-diabetic potentials of Annona muricata (soursop): Inhibition of α-amylase and α-glucosidase activities. Clinical Phytoscience 5 (1):21. doi: 10.1186/s40816-019-0116-0.
  • Ahmad, I. 2019. A new angiotensin-converting enzyme inhibitor from Peperomia pellucida (L.) Kunth.
  • Ahmad, S., H. Ahmad, H. U. Khan, A. Shahzad, E. Khan, S. A. Ali Shah, M. Ali, A. Wadud, M. Ghufran, H. Naz, et al. 2016. Crystal structure, phytochemical study and enzyme inhibition activity of Ajaconine and Delectinine. Journal of Molecular Structure 1123:441–8. doi: 10.1016/j.molstruc.2016.06.051.
  • Ahmed, E., S. A. Nawaz, A. Malik, and M. I. Choudhary. 2006. Isolation and cholinesterase-inhibition studies of sterols from Haloxylon recurvum. Bioorganic & Medicinal Chemistry Letters 16 (3):573–80. doi: 10.1016/j.bmcl.2005.10.042.
  • Alam, F., Z. Shafique, S. T. Amjad, and M. H. H. Bin Asad. 2019. Enzymes inhibitors from natural sources with antidiabetic activity: A review. Phytotherapy Research : PTR 33 (1):41–54. doi: 10.1002/ptr.6211.
  • Alqahtani, A. S., S. Hidayathulla, M. T. Rehman, A. A. ElGamal, S. Al-Massarani, V. Razmovski-Naumovski, M. S. Alqahtani, R. A. El Dib, and M. F. AlAjmi. 2019. Alpha-amylase and alpha-glucosidase enzyme inhibition and antioxidant potential of 3-oxolupenal and katononic acid isolated from Nuxia oppositifolia. Biomolecules 10 (1):61. doi: 10.3390/biom10010061.
  • Asghari, B., G. Zengin, M. B. Bahadori, M. Abbas-Mohammadi, and L. Dinparast. 2018. Amylase, glucosidase, tyrosinase, and cholinesterases inhibitory, antioxidant effects, and GC-MS analysis of wild mint (Mentha longifolia var. calliantha) essential oil: A natural remedy. European Journal of Integrative Medicine 22:44–9. doi: 10.1016/j.eujim.2018.08.004.
  • Ata, A., S. Naz, and E. M. Elias. 2011. Naturally occurring enzyme inhibitors and their pharmaceutical applications. Pure and Applied Chemistry 83 (9):1741–9. doi: 10.1351/PAC-CON-10-11-16.
  • Augustin, N., V. K. Nuthakki, M. Abdullaha, Q. P. Hassan, S. G. Gandhi, and S. B. Bharate. 2020. Discovery of Helminthosporin, an anthraquinone isolated from Rumex abyssinicus Jacq as a dual cholinesterase inhibitor. ACS Omega 5 (3):1616–24. doi: 10.1021/acsomega.9b03693.
  • Aydin, T. 2020. Secondary metabolites of Helichrysum plicatum DC. subsp. plicatum flowers as strong carbonic anhydrase, cholinesterase and α-glycosidase inhibitors. Zeitschrift Für Naturforschung C 75 (5-6):153–9. doi: 10.1515/znc-2020-0026.
  • Azad, R., N. K. Babu, A. D. Gupta, and P. Reddanna. 2018. Evaluation of anti-inflammatory and immunomodulatory effects of Premna integrifolia extracts and assay-guided isolation of a COX-2/5-LOX dual inhibitor. Fitoterapia 131:189–99. doi: 10.1016/j.fitote.2018.10.016.
  • Baurin, N., E. Arnoult, T. Scior, Q. T. Do, and P. Bernard. 2002. Preliminary screening of some tropical plants for anti-tyrosinase activity. Journal of Ethnopharmacology 82 (2-3):155–8. doi: 10.1016/s0378-8741(02)00174-5.
  • Bhatia, A., B. Singh, R. Arora, and S. Arora. 2019. In vitro evaluation of the α-glucosidase inhibitory potential of methanolic extracts of traditionally used antidiabetic plants. BMC Complementary and Alternative Medicine 19 (1):74. doi: 10.1186/s12906-019-2482-z.
  • Bisht, R., S. Bhattacharya, and Y. A. Jaliwala. 2014. COX and LOX inhibitory potential of Abroma augusta and Desmodium gangeticum. The Journal of Phytopharmacology 3 (3):168–75. doi: 10.31254/phyto.2014.3303.
  • Cao, H., J. M. Pauff, and R. Hille. 2014. X-ray crystal structure of a xanthine oxidase complex with the flavonoid inhibitor quercetin. Journal of Natural Products 77 (7):1693–9. doi: 10.1021/np500320g.
  • Cardoso-Lopes, E. M., J. A. Maier, M. R. da Silva, L. O. Regasini, S. Y. Simote, N. P. Lopes, J. R. Pirani, V. d S. Bolzani, and M. C. M. Young. 2010. Alkaloids from stems of Esenbeckia leiocarpa Engl.(Rutaceae) as potential treatment for Alzheimer disease. Molecules (Basel, Switzerland) 15 (12):9205–13. doi: 10.3390/molecules15129205.
  • Chae, H. ‐S., E. ‐Y. Kim, L. Han, N. ‐R. Kim, B. Lam, J. H. Paik, K. D. Yoon, Y. H. Choi, and Y. ‐W. Chin. 2016. Xanthones with pancreatic lipase inhibitory activity from the pericarps of Garcinia mangostana L.(Guttiferae). European Journal of Lipid Science and Technology 118 (9):1416–21. doi: 10.1002/ejlt.201500516.
  • Chear, N. J.-Y., K.-Y. Khaw, V. Murugaiyah, and C.-S. Lai. 2016. Cholinesterase inhibitory activity and chemical constituents of Stenochlaena palustris fronds at two different stages of maturity. Journal of Food and Drug Analysis 24 (2):358–66. doi: 10.1016/j.jfda.2015.12.005.
  • Chen, W.-C., T.-S. Tseng, N.-W. Hsiao, Y.-L. Lin, Z.-H. Wen, C.-C. Tsai, Y.-C. Lee, H.-H. Lin, and K.-C. Tsai. 2015. Discovery of highly potent tyrosinase inhibitor, T1, with significant anti-melanogenesis ability by zebrafish in vivo assay and computational molecular modeling. Scientific Reports 5:7995. doi: 10.1038/srep07995.
  • Chen, J., X. Yu, and Y. Huang. 2016. Inhibitory mechanisms of glabridin on tyrosinase. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 168:111–7. doi: 10.1016/j.saa.2016.06.008.
  • Cho, K.-M., I.-D. Yoo, and W.-G. Kim. 2006. 8-hydroxydihydrochelerythrine and 8-hydroxydihydrosanguinarine with a potent acetylcholinesterase inhibitory activity from Chelidonium majus L. Biological & Pharmaceutical Bulletin 29 (11):2317–20. doi: 10.1248/bpb.29.2317.
  • Chougouo, R. D. K., Y. M. M. Nguekeu, J. P. Dzoyem, M. D. Awouafack, J. Kouamouo, P. Tane, L. J. McGaw, and J. N. Eloff. 2016. Anti-inflammatory and acetylcholinesterase activity of extract, fractions and five compounds isolated from the leaves and twigs of Artemisia annua growing in Cameroon. SpringerPlus 5 (1):1525. doi: 10.1186/s40064-016-3199-9.
  • Cvetanović, A., Z. Zeković, J. Švarc-Gajić, S. Razić, A. Damjanović, G. Zengin, C. Delerue-Matos, and M. Moreira. 2018. A new source for developing multi‐functional products: Biological and chemical perspectives on subcritical water extracts of Sambucus ebulus L. Journal of Chemical Technology & Biotechnology 93 (4):1097–104. doi: 10.1002/jctb.5468.
  • De Pradhan, I., M. Dutta, K. Choudhury, and B. De. 2017. Metabolic diversity and in vitro pancreatic lipase inhibition activity of some varieties of Mangifera indica L. fruits. International Journal of Food Properties 20 (sup3):S3212–S3223. doi: 10.1080/10942912.2017.1357041.
  • Ding, X., M.-A. Ouyang, and Y.-S. Shen. 2015. Evaluation of anti-MRSA and xanthine oxidase inhibition activities of phenolic constituents from Plumula nelumbinis. Journal of Chemistry 2015:1–6. doi: 10.1155/2015/825792.
  • Elufioye, T. O., E. M. Obuotor, J. M. Agbedahunsi, and S. A. Adesanya. 2017. Anticholinesterase constituents from the leaves of Spondias mombin L.(Anacardiaceae). Biologics : targets & Therapy 11:107–14. doi: 10.2147/BTT.S136011.
  • Elufioye, T. O., E. M. Obuotor, J. M. Agbedahunsi, and S. A. Adesanya. 2016. Cholinesterase inhibitory activity and structure elucidation of a new phytol derivative and a new cinnamic acid ester from Pycnanthus angolensis. Revista Brasileira de Farmacognosia 26 (4):433–7. doi: 10.1016/j.bjp.2016.01.010.
  • Endalifer, M. L., and G. Diress. 2020. Epidemiology, predisposing factors, biomarkers, and prevention mechanism of obesity. Journal of Obesity 2020:1–8. doi: 10.1155/2020/6134362.
  • Etsassala, N. G, et al. 2020. Alpha-glucosidase and alpha-amylase inhibitory activities, molecular docking and antioxidant capacities of Salvia aurita constituents.
  • Etsassala, N. G., J. A. Badmus, J. L. Marnewick, E. I. Iwuoha, F. Nchu, and A. A. Hussein. 2019. Alpha-glucosidase and alpha-amylase inhibitory activities of novel abietane diterpenes from Salvia africana-lutea. Antioxidants 8 (10):421., doi: 10.3390/antiox8100421.
  • Federation, I. D. 2019. IDF diabetes atlas Ninth. Dunia: IDF.
  • Fys, F., F. A. Awantu, A. Dawé, K. Bankeu, M. A. Shaiq, and M. Lateef. 2017. Butyrylcholinsterase inhibitors from two Ficus species (Moraceae). The Journal of Phytopharmacology.
  • Gendaram, O. 2019. Phytochemicals in leaves of Cotoneaster mongolica, their antioxidative, and acetylcholinesterase inhibitory activity. Mongolian Journal of Chemistry 20 (46):1–6. doi: 10.5564/mjc.v20i46.1235.
  • Guerrero, L., J. Castillo, M. Quiñones, S. Garcia-Vallvé, L. Arola, G. Pujadas, and B. Muguerza. 2012. Inhibition of angiotensin-converting enzyme activity by flavonoids: Structure-activity relationship studies. PloS One 7 (11):e49493. doi: 10.1371/journal.pone.0049493.
  • Hanáková, Z., J. Hošek, Z. Kutil, V. Temml, P. Landa, T. Vaněk, D. Schuster, S. Dall’Acqua, J. Cvačka, O. Polanský, et al. 2017. Anti-inflammatory activity of natural geranylated flavonoids: Cyclooxygenase and lipoxygenase inhibitory properties and proteomic analysis. Journal of Natural Products 80 (4):999–1006. doi: 10.1021/acs.jnatprod.6b01011.
  • He, J., X. Huang, Y. Wang, J. Liang, R. Liu, G. Zhong, and L. Yang. 2019. A new flavonol glycoside from the flowers of Hosta plantaginea with cyclooxygenases-1/2 inhibitory and antioxidant activities. Natural Product Research 33 (11):1599–604. doi: 10.1080/14786419.2018.1428591.
  • He, J.-W., L. Yang, Z.-Q. Mu, Y.-Y. Zhu, G.-Y. Zhong, Z.-Y. Liu, Q.-G. Zhou, and F. Cheng. 2018. Anti-inflammatory and antioxidant activities of flavonoids from the flowers of Hosta plantaginea. RSC Advances 8 (32):18175–9. doi: 10.1039/c8ra00443a.
  • Hu, X., M.-H. Yu, G.-R. Yan, H.-Y. Wang, A.-J. Hou, and C. Lei. 2018. Isoprenylated phenolic compounds with tyrosinase inhibition from Morus nigra. Journal of Asian Natural Products Research 20 (5):488–93. doi: 10.1080/10286020.2017.1350653.
  • Hung, T. M., M. Na, N. T. Dat, T. M. Ngoc, U. Youn, H. J. Kim, B.-S. Min, J. Lee, and K. Bae. 2008. Cholinesterase inhibitory and anti-amnesic activity of alkaloids from Corydalis turtschaninovii. Journal of Ethnopharmacology 119 (1):74–80. doi: 10.1016/j.jep.2008.05.041.
  • Ibrahim, M. A., J. D. Habila, N. A. Koorbanally, and M. S. Islam. 2017. α-Glucosidase and α-amylase inhibitory compounds from three African medicinal plants: An enzyme inhibition kinetics approach. Natural Product Communications 12 (7):1934578X1701200. doi: 10.1177/1934578X1701200731.
  • Ibrahim, S. R., G. A. Mohamed, K. Z. Alshali, R. A. A. Haidari, A. A. El-Kholy, and M. F. Zayed. 2018. Lipoxygenase inhibitors flavonoids from Cyperus rotundus aerial parts. Revista Brasileira de Farmacognosia 28 (3):320–4. doi: 10.1016/j.bjp.2018.04.002.
  • Islam, R., M. Adib, M. Ahsan, M. M. Rahman, and M. A. Mazid. 2019. Cholinesterase and glycation inhibition assay of several metabolites obtained from plant and fungi. Dhaka University Journal of Pharmaceutical Sciences 18 (1):31–8. doi: 10.3329/dujps.v18i1.41424.
  • Jeon, Y.-S., B.-S. Jo, H.-J. Park, S.-A. Kang, and Y.-J. Cho. 2012. Screening of biological activity of Caragana sinica extracts. Journal of the Korean Society of Food Science and Nutrition 41 (9):1211–9. doi: 10.3746/jkfn.2012.41.9.1211.
  • Jhong, C.-H., J. Riyaphan, S.-H. Lin, Y.-C. Chia, and C.-F. Weng. 2015. Screening alpha‐glucosidase and alpha‐amylase inhibitors from natural compounds by molecular docking in silico. BioFactors (Oxford, England) 41 (4):242–51. doi: 10.1002/biof.1219.
  • Kamarudin, M. N. A., M. M. R. Sarker, H. A. Kadir, and L. C. Ming. 2017. Ethnopharmacological uses, phytochemistry, biological activities, and therapeutic applications of Clinacanthus nutans (Burm. f.) Lindau: A comprehensive review. Journal of Ethnopharmacology 206:245–66. doi: 10.1016/j.jep.2017.05.007.
  • Karakaya, S., S. Gözcü, Z. Güvenalp, H. Özbek, H. Yuca, B. Dursunoğlu, C. Kazaz, and C. S. Kılıç. 2018. The α-amylase and α-glucosidase inhibitory activities of the dichloromethane extracts and constituents of Ferulago bracteata roots. Pharmaceutical Biology 56 (1):18–24. doi: 10.1080/13880209.2017.1414857.
  • Kashif Bashir, B. A., B. Ahmad, A. Rauf, S. Bawazeer, K. Rahman, T. Rehman, M. Saleem, R. Ahmed, H. Linfang, et al. 2017. Urease inhibition potential and molecular docking of dihydroquercetin and dihydromyricetin isolated from Picea smithiana (wall). Boiss 28 (22):10026–10032.
  • Khaliq, H. A. 2017. A review of pharmacognostic, physicochemical, phytochemical and pharmacological studies on Ficus bengalensis L. Journal of Scientific and Innovative Research 6 (4):151–63. doi: 10.31254/jsir.2017.6407.
  • Khathi, A., M. R. Serumula, R. B. Myburg, F. R. Van Heerden, and C. T. Musabayane. 2013. Effects of Syzygium aromaticum-derived triterpenes on postprandial blood glucose in streptozotocin-induced diabetic rats following carbohydrate challenge. PloS One 8 (11):e81632. doi: 10.1371/journal.pone.0081632.
  • Kim, J. H., I. S. Cho, Y. K. So, H.-H. Kim, and Y. H. Kim. 2018. Kushenol A and 8-prenylkaempferol, tyrosinase inhibitors, derived from Sophora flavescens. Journal of Enzyme Inhibition and Medicinal Chemistry 33 (1):1048–54. doi: 10.1080/14756366.2018.1477776.
  • Kim, J., H. Kim, S. Kang, J.-B. Kim, Y. Kim, and C. Jin. 2018. Chemical constituents from Apios americana and their inhibitory activity on tyrosinase. Molecules 23 (1):232. doi: 10.3390/molecules23010232.
  • Koeberle, A., H. Northoff, and O. Werz. 2009. Curcumin blocks prostaglandin E2 biosynthesis through direct inhibition of the microsomal prostaglandin E2 synthase-1. Molecular Cancer Therapeutics 8 (8):2348–55. doi: 10.1158/1535-7163.MCT-09-0290.
  • Kostelnik, A., and M. Pohanka. 2018. Inhibition of acetylcholinesterase and butyrylcholinesterase by a plant secondary metabolite boldine. BioMed Research International 2018:1–5. doi: 10.1155/2018/9634349.
  • Kumar, H. P, et al. 2019. Potential cyclooxygenase (COX-2) enzyme inhibitors from Myrica nagi-from in-silico to in-vitro investigation. Pharmacognosy Magazine 15 (64):280.
  • Kumaresan, P., K. Jeyanthi, and R. Kalaivani. 2014. Biochemical evaluation of anti diabetic activity of aqueous extract of Gmelina arborea in Alloxan induced albino rats. International Journal of Herbal Medicine 2 (2):90–4.
  • Kumar, D., V. Shah, R. Ghosh, and B. C. Pal. 2013. A new triterpenoid saponin from Glinus oppositifolius with α-glucosidase inhibitory activity. Natural Product Research 27 (7):624–9. doi: 10.1080/14786419.2012.686907.
  • Landberg, R., K. Sunnerheim, and L. H. Dimberg. 2020. Avenanthramides as lipoxygenase inhibitors. Heliyon 6 (6):e04304. doi: 10.1016/j.heliyon.2020.e04304.
  • Lin, W-q., J-x Xie, X-m Wu, L. Yang, and H-d Wang. 2014. Inhibition of xanthine oxidase activity by gnaphalium affine extract. Chinese Medical Sciences Journal = Chung-Kuo i Hsueh K'o Hsueh Tsa Chih 29 (4):225–30. doi: 10.1016/s1001-9294(14)60075-4.
  • Lin, K.-W., S.-C. Yang, and C.-N. Lin. 2011. Antioxidant constituents from the stems and fruits of Momordica charantia. Food Chemistry 127 (2):609–14. doi: 10.1016/j.foodchem.2011.01.051.
  • Lin, S., G. Zhang, Y. Liao, and J. Pan. 2015. Inhibition of chrysin on xanthine oxidase activity and its inhibition mechanism. International Journal of Biological Macromolecules 81:274–82. doi: 10.1016/j.ijbiomac.2015.08.017.
  • Lin, S., G. Zhang, J. Pan, and D. Gong. 2015. Deciphering the inhibitory mechanism of genistein on xanthine oxidase in vitro. Journal of Photochemistry and Photobiology. B, Biology 153:463–72. doi: 10.1016/j.jphotobiol.2015.10.022.
  • Lu, Q., W.-Y. Zhang, D.-B. Pan, D.-F. Shi, Q.-Q. Pang, H.-B. Li, X.-J. Yao, Z.-H. Yao, Y. Yu, X.-S. Yao, et al. 2019. Phenolic acids and their glycosides from the rhizomes of Cimicifuga dahurica. Fitoterapia 134:485–92. doi: 10.1016/j.fitote.2019.03.023.
  • Luo, C.-T., H-H. Zheng, S.-S. Mao, M-X. Yang, C. Luo, and H. Chen. 2014. Xanthones from Swertia mussotii and their α-glycosidase inhibitory activities. Planta Medica 80 (2-3):201–8. doi: 10.1055/s-0033-1360173.
  • Luyen, B. T. T., N. P. Thao, W. Widowati, N. Fauziah, M. Maesaroh, T. Herlina, and Y. H. Kim. 2017. Chemical constituents of Piper aduncum and their inhibitory effects on soluble epoxide hydrolase and tyrosinase. Medicinal Chemistry Research 26 (1):220–6. doi: 10.1007/s00044-016-1735-3.
  • Mahernia, S., K. Bagherzadeh, F. Mojab, and M. Amanlou. 2015. Urease inhibitory activities of some commonly consumed herbal medicines. Iranian Journal of Pharmaceutical Research: IJPR 14 (3):943.
  • Mandal, R., B. Siva, V. S. Phani Babu, K. Suresh Babu, B. Jagadeesh, R. Ranjit, K. Shrestha, and M. B. Gewali. 2015. Novel cycloartane triterpenoids from the Nepal native plant Caragana sukiensis. Bioorganic & Medicinal Chemistry Letters 25 (22):5168–71. doi: 10.1016/j.bmcl.2015.09.073.
  • Mansoor, F., I. Anis, A. Khan, B. P. Marasini, M. I. Choudhary, and M. R. Shah. 2014. Urease inhibitory constituents from Daphne retusa. Journal of Asian Natural Products Research 16 (2):210–5. doi: 10.1080/10286020.2013.837457.
  • Mapunya, M. B., A. A. Hussein, B. Rodriguez, and N. Lall. 2011. Tyrosinase activity of Greyia flanaganii (Bolus) constituents. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology 18 (11):1006–12. doi: 10.1016/j.phymed.2011.03.013.
  • Martinez-Gonzalez, A. I., E. Alvarez-Parrilla, Á. G. Díaz-Sánchez, L. A. de la Rosa, J. A. Núñez-Gastélum, A. A. Vazquez-Flores, and G. A. Gonzalez-Aguilar. 2017. In vitro inhibition of pancreatic lipase by polyphenols: A kinetic, fluorescence spectroscopy and molecular docking study. Food Technology and Biotechnology 55 (4):519–30. doi: 10.17113/ftb.55.04.17.5138.
  • Mbaze, L. M., H. M. P. Poumale, J. D. Wansi, J. A. Lado, S. N. Khan, M. C. Iqbal, B. T. Ngadjui, and H. Laatsch. 2007. α-Glucosidase inhibitory pentacyclic triterpenes from the stem bark of Fagara tessmannii (Rutaceae). Phytochemistry 68 (5):591–5. doi: 10.1016/j.phytochem.2006.12.015.
  • Mehmood, A., M. Ishaq, L. Zhao, S. Yaqoob, B. Safdar, M. Nadeem, M. Munir, and C. Wang. 2019. Impact of ultrasound and conventional extraction techniques on bioactive compounds and biological activities of blue butterfly pea flower (Clitoria ternatea L.). Ultrasonics Sonochemistry 51:12–9. doi: 10.1016/j.ultsonch.2018.10.013.
  • Meng, Q., Y. Niu, X. Niu, R. H. Roubin, and J. R. Hanrahan. 2009. Ethnobotany, phytochemistry and pharmacology of the genus Caragana used in traditional Chinese medicine. Journal of Ethnopharmacology 124 (3):350–68. doi: 10.1016/j.jep.2009.04.048.
  • Meng, Y., A. Su, S. Yuan, H. Zhao, S. Tan, C. Hu, H. Deng, and Y. Guo. 2016. Evaluation of total flavonoids, myricetin, and quercetin from Hovenia dulcis Thunb. as inhibitors of α-amylase and α-glucosidase. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 71 (4):444–9. doi: 10.1007/s11130-016-0581-2.
  • Menichini, F., R. Tundis, M. R. Loizzo, M. Bonesi, M. Marrelli, G. A. Statti, F. Menichini, and F. Conforti. 2009. Acetylcholinesterase and butyrylcholinesterase inhibition of ethanolic extract and monoterpenes from Pimpinella anisoides V Brig. (Apiaceae). Fitoterapia 80 (5):297–300. doi: 10.1016/j.fitote.2009.03.008.
  • Mocan, A., G. Zengin, G. Crişan, and A. Mollica. 2016. Enzymatic assays and molecular modeling studies of Schisandra chinensis lignans and phenolics from fruit and leaf extracts. Journal of Enzyme Inhibition and Medicinal Chemistry 31 (sup4):200–10. doi: 10.1080/14756366.2016.1222585.
  • Mohan, R., S. Jose, J. Mulakkal, D. Karpinsky-Semper, A. G. Swick, and I. M. Krishnakumar. 2019. Water-soluble polyphenol-rich clove extract lowers pre-and post-prandial blood glucose levels in healthy and prediabetic volunteers: An open label pilot study. BMC Complementary and Alternative Medicine 19 (1):99. doi: 10.1186/s12906-019-2507-7.
  • Mohos, V., E. Fliszár-Nyúl, and M. Poór. 2020. Inhibition of xanthine oxidase-catalyzed xanthine and 6-mercaptopurine oxidation by flavonoid aglycones and some of their conjugates. International Journal of Molecular Sciences 21 (9):3256. doi: 10.3390/ijms21093256.
  • Mondal, A., T. K. Maity, and A. Bishayee. 2019. Analgesic and anti-inflammatory activities of quercetin-3-methoxy-4′-glucosyl-7-glucoside isolated from indian medicinal plant Melothria heterophylla. Medicines 6 (2):59. doi: 10.3390/medicines6020059.
  • Moore, R. N., G. Bigam, J. K. Chan, A. M. Hogg, T. T. Nakashima, and J. C. Vederas. 1985. Biosynthesis of the hypocholesterolemic agent mevinolin by Aspergillus terreus. Determination of the origin of carbon, hydrogen, and oxygen atoms by carbon-13 NMR and mass spectrometry. Journal of the American Chemical Society 107 (12):3694–701. doi: 10.1021/ja00298a046.
  • Nakao, Y., and N. Fusetani. 2007. Enzyme inhibitors from marine invertebrates. Journal of Natural Products 70 (4):689–710. doi: 10.1021/np060600x.
  • Newman, D. J., and G. M. Cragg. 2016. Natural products as sources of new drugs from 1981 to 2014. Journal of Natural Products 79 (3):629–61. doi: 10.1021/acs.jnatprod.5b01055.
  • Nguyen, M. T., S. Awale, Y. Tezuka, J-y Ueda, Q. l Tran, and S. Kadota. 2006. Xanthine oxidase inhibitors from the flowers of Chrysanthemum sinense. Planta Medica 72 (1):46–51. doi: 10.1055/s-2005-873181.
  • Nguyen, M. T. T., and N. T. Nguyen. 2012. Xanthine oxidase inhibitors from Vietnamese Blumea balsamifera L. Phytotherapy Research : PTR 26 (8):1178–81. doi: 10.1002/ptr.3710.
  • Öztürk, M., U. Kolak, G. Topçu, S. Öksüz, and M. I. Choudhary. 2011. Antioxidant and anticholinesterase active constituents from Micromeria cilicica by radical-scavenging activity-guided fractionation. Food Chemistry 126 (1):31–8. doi: 10.1016/j.foodchem.2010.10.050.
  • Pai, S. A., E. A. F. Martis, S. G. Joshi, R. P. Munshi, and A. R. Juvekar. 2018. Plumbagin exerts antiobesity effects through inhibition of pancreatic lipase and adipocyte differentiation. Phytotherapy Research: PTR 32 (8):1631–5. doi: 10.1002/ptr.6085.
  • Parihar, M., and T. Hemnani. 2004. Alzheimer’s disease pathogenesis and therapeutic interventions. Journal of Clinical Neuroscience: Official Journal of the Neurosurgical Society of Australasia 11 (5):456–67. doi: 10.1016/j.jocn.2003.12.007.
  • Park, M.-S., Y. X. Zhu, H.-O. Pae, and S. H. Park. 2016. In vitro and in vivo α‐glucosidase and α‐amylase inhibitory effects of the water extract of leaves of pepper (Capcicum Annuum L. Cultivar Dangjo) and the active constituent luteolin 7‐O‐glucoside. Journal of Food Biochemistry 40 (5):696–703. doi: 10.1111/jfbc.12252.
  • Parvez, S., M. Kang, H.-S. Chung, C. Cho, M.-C. Hong, M.-K. Shin, and H. Bae. 2006. Survey and mechanism of skin depigmenting and lightening agents. Phytotherapy Research: PTR 20 (11):921–34. doi: 10.1002/ptr.1954.
  • Pastene, E., V. Parada, M. Avello, A. Ruiz, and A. García. 2014. Catechin‐based procyanidins from Peumus boldus Mol. aqueous extract inhibit Helicobacter pylori urease and adherence to adenocarcinoma gastric cells. Phytotherapy Research: PTR 28 (11):1637–45. doi: 10.1002/ptr.5176.
  • Pereira, M. N., A. B. Justino, M. M. Martins, L. G. Peixoto, D. D. Vilela, P. S. Santos, T. L. Teixeira, C. V. da Silva, L. R. Goulart, M. Pivatto, et al. 2017. Stephalagine, an alkaloid with pancreatic lipase inhibitory activity isolated from the fruit peel of Annona crassiflora Mart. Industrial Crops and Products 97:324–9. doi: 10.1016/j.indcrop.2016.12.038.
  • Perera, H. D. S. M., J. K. R. R. Samarasekera, S. M. Handunnetti, O. V. D. S. J. Weerasena, H. D. Weeratunga, A. Jabeen, and M. I. Choudhary. 2018. In vitro pro-inflammatory enzyme inhibition and anti-oxidant potential of selected Sri Lankan medicinal plants. BMC Complementary and Alternative Medicine 18 (1):271. doi: 10.1186/s12906-018-2335-1.
  • Pettersen, E. F., T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, and T. E. Ferrin. 2004. UCSF Chimera—A visualization system for exploratory research and analysis. Journal of Computational Chemistry 25 (13):1605–12. doi: 10.1002/jcc.20084.
  • Prince, M. J. 2015. World Alzheimer Report 2015: The global impact of dementia: An analysis of prevalence, incidence, cost and trends. Alzheimer’s Disease International.
  • Qu, L., J.-Y. Ruan, L.-J. Jin, W.-Z. Shi, X.-X. Li, L.-F. Han, Y. Zhang, and T. Wang. 2017. Xanthine oxidase inhibitory effects of the constituents of Chrysanthemum morifolium stems. Phytochemistry Letters 19:39–45. doi: 10.1016/j.phytol.2016.11.007.
  • Querfurth, H. W., and F. M. LaFerla. 2010. Mechanisms of disease. The New England Journal of Medicine 362 (4):329–44. doi: 10.1056/NEJMra0909142.
  • Quispe, Y., S. Hwang, Z. Wang, and S. Lim. 2017. Screening of Peruvian medicinal plants for tyrosinase inhibitory properties: identification of tyrosinase inhibitors in Hypericum laricifolium Juss. Molecules 22 (3):402. doi: 10.3390/molecules22030402.
  • Rahman, A-u., A. Khalid, N. Sultana, M. Nabeel Ghayur, M. Ahmed Mesaik, M. Riaz Khan, A. H. Gilani, and M. Iqbal Choudhary. 2006. New natural cholinesterase inhibiting and calcium channel blocking quinoline alkaloids. Journal of Enzyme Inhibition and Medicinal Chemistry 21 (6):703–10. doi: 10.1080/14756360600889708.
  • Ramakrishna, A., and V. V. Roshchina. 2018. Neurotransmitters in plants: Perspectives and applications.
  • Ritter, J. M. 2012. Drugs for Alzheimer’s disease. British Journal of Clinical Pharmacology 73 (4):501–3. doi: 10.1111/j.1365-2125.2012.04217.x.
  • Rollinger, J. M., D. Schuster, E. Baier, E. P. Ellmerer, T. Langer, and H. Stuppner. 2006. Taspine: bioactivity-guided isolation and molecular ligand-target insight of a potent acetylcholinesterase inhibitor from Magnolia x soulangiana. Journal of Natural Products 69 (9):1341–6. doi: 10.1021/np060268p.
  • Saleem, M., S. Hareem, A. Khan, S. Naheed, M. Raza, R. Hussain, M. Imran, and M. I. Choudhary. 2019. Dual inhibitors of urease and carbonic anhydrase-II from Iris species. Pure and Applied Chemistry 91 (10):1695–707. doi: 10.1515/pac-2019-0407.
  • Saleem, H., T. T. Htar, R. Naidu, I. Ahmad, G. Zengin, M. Ahmad, and N. Ahemad. 2019. Investigations into the therapeutic effects of aerial and stem parts of Buxus papillosa CK Schneid.: In vitro chemical, biological and toxicological perspectives. Journal of Pharmaceutical and Biomedical Analysis 166:128–38. doi: 10.1016/j.jpba.2019.01.007.
  • Saleem, H., G. Zengin, M. Locatelli, I. Ahmad, S. Khaliq, M. F. Mahomoodally, R. Hussain, K. R. R. Rengasamy, A. Mollica, S. A. Zainal Abidin, et al. 2019. Pharmacological, phytochemical and in-vivo toxicological perspectives of a xero-halophyte medicinal plant: Zaleya pentandra (L.) Jeffrey. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 131:110535. doi: 10.1016/j.fct.2019.05.043.
  • Salem, J. H., I. Chevalot, C. Harscoat-Schiavo, C. Paris, M. Fick, and C. Humeau. 2011. Biological activities of flavonoids from Nitraria retusa (Forssk.) Asch. and their acylated derivatives. Food Chemistry 124 (2):486–94.
  • Sancheti, S., S. Sancheti, B.-H. Um, and S.-Y. Seo. 2010. 1, 2, 3, 4, 6-penta-O-galloyl-β-D-glucose: A cholinesterase inhibitor from Terminalia chebula. South African Journal of Botany 76 (2):285–8. doi: 10.1016/j.sajb.2009.11.006.
  • Sang, M., G. Du, J. Hao, L. Wang, E. Liu, Y. Zhang, T. Wang, X. Gao, and L. Han. 2017. Modeling and optimizing inhibitory activities of Nelumbinis folium extract on xanthine oxidase using response surface methodology. Journal of Pharmaceutical and Biomedical Analysis 139:37–43. doi: 10.1016/j.jpba.2017.02.048.
  • Sarawek, S., B. Feistel, I. Pischel, and V. Butterweck. 2008. Flavonoids of Cynara scolymus possess potent xanthinoxidase inhibitory activity in vitro but are devoid of hypouricemic effects in rats after oral application. Planta Medica 74 (3):221–7. doi: 10.1055/s-2008-1034316.
  • Sazali, S. N. M., J. Jalil, N. M. Arriffin, S. A. Abdullah, and S. Jamil. 2017. In vitro inhibitory effects of flavonoids from the extracts of Artocarpus species on prostaglandin E2 (PGE2) production in human plasma. Journal of Innovations in Pharmaceutical and Biological Sciences 4 (4):106–111.
  • Schneider, I., and F. Bucar. 2005. Lipoxygenase inhibitors from natural plant sources. Part 1: Medicinal plants with inhibitory activity on arachidonate 5‐lipoxygenase and 5‐lipoxygenase [sol] cyclooxygenase. Phytotherapy Research 19 (2):81–102. doi: 10.1002/ptr.1603.
  • Sehgal, P. P., and A. W. Naylor. 1966. Purification and properties of urease derived from hydrated seeds of jack bean, Canavalia ensiformis (L) DC. Plant Physiology 41 (4):567–72. doi: 10.1104/pp.41.4.567.
  • Sekar, V., S. Chakraborty, S. Mani, V. K. Sali, and H. R. Vasanthi. 2019. Mangiferin from Mangifera indica fruits reduces post-prandial glucose level by inhibiting α-glucosidase and α-amylase activity. South African Journal of Botany 120:129–34. doi: 10.1016/j.sajb.2018.02.001.
  • Sharanya, C. S., K. G. Arun, A. Sabu, and M. Haridas. 2020. Aloe emodin shows high affinity to active site and low affinity to two other sites to result consummately reduced inhibition of lipoxygenase. Prostaglandins & Other Lipid Mediators 150:106453. doi: 10.1016/j.prostaglandins.2020.106453.
  • Shendge, P. N., and S. Belemkar. 2018. Therapeutic potential of Luffa acutangula: A review on its traditional uses, phytochemistry, pharmacology and toxicological aspects. Frontiers in Pharmacology 9:1177. doi: 10.3389/fphar.2018.01177.
  • Shimakage, R., and K-i Nihei. 2022. Synthesis, structural revision, and tyrosinase inhibitory activity of proposed phloretin-4-O-β-D-glucopyranoside from Homalium stenophyllum. Natural Product Research 36 (7):1803–11. doi: 10.1080/14786419.2020.1817922.
  • Sun, L., Y. Guo, Y. Zhang, and Y. Zhuang. 2017. Antioxidant and anti-tyrosinase activities of phenolic extracts from rape bee pollen and inhibitory melanogenesis by cAMP/MITF/TYR pathway in B16 mouse melanoma cells. Frontiers in Pharmacology 8:104. doi: 10.3389/fphar.2017.00104.
  • Sutherland, A., K. Auclair, and J. Vederas. 2001. Recent advances in the biosynthetic studies of lovastatin. Current Opinion in Drug Discovery & Development 4 (2):229–36.
  • Svane, S., J. J. Sigurdarson, F. Finkenwirth, T. Eitinger, and H. Karring. 2020. Inhibition of urease activity by different compounds provides insight into the modulation and association of bacterial nickel import and ureolysis. Scientific Reports 10 (1):1–14. doi: 10.1038/s41598-020-65107-9.
  • Tan, L., J. Su, D. Wu, X. Yu, Z. Su, J. He, X. Wu, S. Kong, X. Lai, J. Lin, et al. 2013. Kinetics and mechanism study of competitive inhibition of jack-bean urease by baicalin. The Scientific World Journal 2013:1–9. doi: 10.1155/2013/879501.
  • Tang, B., T. Yang, W. Q. Yang, W. J. Wang, X. Q. Zhang, and Y. C. Ye. 2013. Chemical constituents in leaves of Morus atropurpurea and their α-glucosidase activity. Chinese Traditional and Herbal Drugs 44:3109–13.
  • Taşkın, T., E. M. Güler, Ş. Şentürk, D. D. Çelik, T. Arabacı, and Ü. S. Gürer. 2020. Cytotoxic activity-guided isolation from Achillea monocephala, and biological activities of its different extracts. The Open Bioactive Compounds Journal 8 (1):7–14. doi: 10.2174/1874847302008010007.
  • Thao, N. P., P. T. Binh, N. T. Luyen, T. M. Hung, N. H. Dang, and N. T. Dat. 2018. α-Amylase and α-glucosidase inhibitory activities of chemical constituents from Wedelia chinensis (Osbeck.) Merr. leaves. Journal of Analytical Methods in Chemistry 2018:1–8. doi: 10.1155/2018/2794904.
  • Tung, Y.-T., and S.-T. Chang. 2010. Inhibition of xanthine oxidase by Acacia confusa extracts and their phytochemicals. Journal of Agricultural and Food Chemistry 58 (2):781–6. doi: 10.1021/jf901498q.
  • Uddin., G., A. Rauf, M. Raza, H. Khan, M. Khan, U. Farooq, A. Khan, Ismail, and Nasruddin, Arifullah. 2016. Urease inhibitory profile of extracts and chemical constituents of Pistacia atlantica ssp. cabulica Stocks. Natural Product Research 30 (12):1411–6., doi: 10.1080/14786419.2015.1062378.
  • Unno, T., A. Sugimoto, and T. Kakuda. 2004. Xanthine oxidase inhibitors from the leaves of Lagerstroemia speciosa (L.) Pers. Journal of Ethnopharmacology 93 (2-3):391–5. doi: 10.1016/j.jep.2004.04.012.
  • Uysal, S., A. Ugurlu, G. Zengin, M. C. Baloglu, Y. C. Altunoglu, A. Mollica, L. Custodio, N. R. Neng, J. M. F. Nogueira, M. F. Mahomoodally, et al. 2018. Novel in vitro and in silico insights of the multi-biological activities and chemical composition of Bidens tripartita L. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 111:525–36. doi: 10.1016/j.fct.2017.11.058.
  • Wansi, J. D., J. Wandji, L. Mbaze Meva’a, A. F. Kamdem Waffo, R. Ranjit, S. N. Khan, A. Asma, C. M. Iqbal, M.-C. Lallemand, F. Tillequin, et al. 2006. Glucosidase inhibitory and antioxidant acridone alkaloids from the stem bark of Oriciopsis glaberrima E NGL (Rutaceae). Chemical & Pharmaceutical Bulletin 54 (3):292–6., α doi: 10.1248/cpb.54.292.
  • Werz, O. 2007. Inhibition of 5-lipoxygenase product synthesis by natural compounds of plant origin. Planta Medica 73 (13):1331–57. doi: 10.1055/s-2007-990242.
  • Wu, X.-H., C.-Z. Wang, J. Zhang, S.-Q. Wang, L. Han, Y.-W. Zhang, and C.-S. Yuan. 2014. Effects of smilaxchinoside A and smilaxchinoside C, two steroidal glycosides from Smilax riparia, on hyperuricemia in a mouse model. Phytotherapy Research: PTR 28 (12):1822–8. doi: 10.1002/ptr.5207.
  • Xu, L., W. Li, Z. Chen, Q. Guo, C. Wang, R. K. Santhanam, and H. Chen. 2019. Inhibitory effect of epigallocatechin-3-O-gallate on α-glucosidase and its hypoglycemic effect via targeting PI3K/AKT signaling pathway in L6 skeletal muscle cells. International Journal of Biological Macromolecules 125:605–11. doi: 10.1016/j.ijbiomac.2018.12.064.
  • Yang, L., Y-m Lin, Z-w He, T-f Zhang, Y. Li, X-t Xie, Y-f Wu, and J-w He. 2020. Hostaflavanol A, a new anti-inflammatory and antioxidant activities flavanol from the flowers of Hosta plantaginea. Medicinal Chemistry Research 29 (3):426–30. doi: 10.1007/s00044-019-02491-6.
  • Yang, L., Y.-L. Yang, W.-H. Dong, W. Li, P. Wang, X. Cao, J.-Z. Yuan, H.-Q. Chen, W.-L. Mei, H.-F. Dai, et al. 2019. Sesquiterpenoids and 2-(2-phenylethyl) chromones respectively acting as α-glucosidase and tyrosinase inhibitors from agarwood of an Aquilaria plant. Journal of Enzyme Inhibition and Medicinal Chemistry 34 (1):853–62. doi: 10.1080/14756366.2019.1576657.
  • Yoon, I.-S., D.-H. Park, S.-H. Ki, and S.-S. Cho. 2016. Effects of extracts from Corylopsis coreana Uyeki (Hamamelidaceae) flos on xanthine oxidase activity and hyperuricemia. The Journal of Pharmacy and Pharmacology 68 (12):1597–603. doi: 10.1111/jphp.12626.
  • Yu, L., R. Cao, W. Yi, Q. Yan, Z. Chen, L. Ma, and H. Song. 2010. Design, synthesis and evaluation of difunctionalized 4-hydroxybenzaldehyde derivatives as novel cholinesterase inhibitors. Chemical & Pharmaceutical Bulletin 58 (9):1216–20. doi: 10.1248/cpb.58.1216.
  • Zafar, R., H. Ullah, M. Zahoor, and A. Sadiq. 2019. Isolation of bioactive compounds from Bergenia ciliata (haw.) Sternb rhizome and their antioxidant and anticholinesterase activities. BMC Complementary and Alternative Medicine 19 (1):296. doi: 10.1186/s12906-019-2679-1.
  • Zengin, G., N. S. Degirmenci, L. Alpsoy, and A. Aktumsek. 2016. Evaluation of antioxidant, enzyme inhibition, and cytotoxic activity of three anthraquinones (alizarin, purpurin, and quinizarin). Human & Experimental Toxicology 35 (5):544–53. doi: 10.1177/0960327115595687.
  • Zengin, G., M. Locatelli, S. Carradori, A. M. Mocan, and A. Aktumsek. 2016. Total phenolics, flavonoids, condensed tannins content of eight Centaurea species and their broad inhibitory activities against cholinesterase, tyrosinase, α-amylase and α-glucosidase. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 44 (1):195–200. doi: 10.15835/nbha44110259.
  • Zengin, G., A. Uysal, A. Aktumsek, A. Mocan, A. Mollica, M. Locatelli, L. Custodio, N. R. Neng, J. M. F. Nogueira, Z. Aumeeruddy-Elalfi, et al. 2017. Euphorbia denticulata Lam.: A promising source of phyto-pharmaceuticals for the development of novel functional formulations. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 87:27–36. doi: 10.1016/j.biopha.2016.12.063.
  • Zengin, G., S. Uysal, R. Ceylan, and A. Aktumsek. 2015. Phenolic constituent, antioxidative and tyrosinase inhibitory activity of Ornithogalum narbonense L. from Turkey: A phytochemical study. Industrial Crops and Products 70:1–6. doi: 10.1016/j.indcrop.2015.03.012.
  • Zhang, L., G. Tao, J. Chen, and Z.-P. Zheng. 2016. Characterization of a new flavone and tyrosinase inhibition constituents from the twigs of Morus alba L. Molecules 21 (9):1130. doi: 10.3390/molecules21091130.
  • Zhang, C., R. Wang, G. Zhang, and D. Gong. 2018. Mechanistic insights into the inhibition of quercetin on xanthine oxidase. International Journal of Biological Macromolecules 112:405–12. doi: 10.1016/j.ijbiomac.2018.01.190.
  • Zhang, C., G. Zhang, J. Pan, and D. Gong. 2016. Galangin competitively inhibits xanthine oxidase by a ping-pong mechanism. Food Research International (Ottawa, Ont.) 89 (Pt 1):152–60. doi: 10.1016/j.foodres.2016.07.021.
  • Zulcafli, A. S., C. Lim, A. P. Ling, S. Chye, and R. Koh. 2020. Focus: plant-based medicine and pharmacology: Antidiabetic potential of Syzygium sp.: An overview. The Yale Journal of Biology and Medicine 93 (2):307.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.