446
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Recent developments and emerging trends in dietary vitamin D sources and biological conversion

, &

References

  • Aburjai, T., S. Al-Khalil, and M. Abuirjeie. 1998. Vitamin D3 and its metabolites in tomato, potato, eggplant and zucchini leaves. Phytochemistry 49 (8):2497–9. doi: 10.1016/S0031-9422(98)00246-5.
  • Aranow, C. 2011. Vitamin D and the immune system. Journal of Investigative Medicine: The Official Publication of the American Federation for Clinical Research 59 (6):881–6. doi: 10.2310/JIM.0b013e31821b8755.
  • Ballester, A. R., J. Molthoff, R. de Vos, B. T. L. Hekkert, D. Orzaez, J. P. Fernández-Moreno, P. Tripodi, S. Grandillo, C. Martin, J. Heldens, et al. 2010. Biochemical and molecular analysis of pink tomatoes: Deregulated expression of the gene encoding transcription factor SlMYB12 leads to pink tomato fruit color. Plant Physiology 152 (1):71–84. doi: 10.1104/pp.109.147322.
  • Barnkob, L. L., A. Argyraki, and J. Jakobsen. 2020. Naturally enhanced eggs as a source of vitamin D: A review. Trends in Food Science & Technology 102:62–70. doi: 10.1016/j.tifs.2020.05.018.
  • Barnkob, L. L., A. Argyraki, P. M. Petersen, and J. Jakobsen. 2016. Investigation of the effect of UV-LED exposure conditions on the production of vitamin D in pig skin. Food Chemistry 212:386–91. doi: 10.1016/j.foodchem.2016.05.155.
  • Barnkob, L. L., P. M. Petersen, J. P. Nielsen, and J. Jakobsen. 2019. Vitamin D enhanced pork from pigs exposed to artificial UVB light in indoor facilities. European Food Research and Technology 245 (2):411–8. doi: 10.1007/s00217-018-3173-6.
  • Bhardwaj, S., K. K. Kesari, M. Rachamalla, S. Mani, G. M. Ashraf, S. K. Jha, P. Kumar, R. K. Ambasta, H. Dureja, H. P. Devkota, et al. 2022. CRISPR/Cas9 gene editing: New hope for Alzheimer’s disease therapeutics. Journal of Advanced Research 40:207–21. doi: 10.1016/j.jare.2021.07.001.
  • Biancuzzo, R. M., A. Young, D. Bibuld, M. H. Cai, M. R. Winter, E. K. Klein, A. Ameri, R. Reitz, W. Salameh, T. C. Chen, et al. 2010. Fortification of orange juice with vitamin D2 or vitamin D3 is as effective as an oral supplement in maintaining vitamin D status in adults. The American Journal of Clinical Nutrition 91 (6):1621–6. doi: 10.3945/ajcn.2009.27972.
  • Bikle, D. 2009. Nonclassic actions of vitamin D. The Journal of Clinical Endocrinology and Metabolism 94 (1):26–34. doi: 10.1210/jc.2008-1454.
  • Bikle, D. 2014. Vitamin D metabolism, mechanism of action, and clinical applications. Chemistry & Biology 21 (3):319–29. doi: 10.1016/j.chembiol.2013.12.016.
  • Bikle, D. 2017. Vitamin D: Production, metabolism, and mechanisms of action. In Endotext, ed. K. R. Feingold. MDText.com, Inc.
  • Black, L. J., R. M. Lucas, J. L. Sherriff, L. O. Björn, and J. F. Bornman. 2017. In pursuit of vitamin D in plants. Nutrients 9 (2):136. doi: 10.3390/nu9020136.
  • Burild, A., H. L. Frandsen, and J. Jakobsen. 2014b. Simultaneous quantification of vitamin D3, 25-hydroxyvitamin D3 and 24, 25-dihydroxyvitamin D3 in human serum by LC-MS/MS. Scandinavian Journal of Clinical and Laboratory Investigation 74 (5):418–23. doi: 10.3109/00365513.2014.900694.
  • Burild, A., H. L. Frandsen, M. Poulsen, and J. Jakobsen. 2014a. Quantification of physiological levels of vitamin D3 and 25‐hydroxyvitamin D3 in porcine fat and liver in subgram sample sizes. Journal of Separation Science 37 (19):2659–63. doi: 10.1002/jssc.201400548.
  • Calvo, M. S., and S. J. Whiting. 2013. Survey of current vitamin D food fortification practices in the United States and Canada. The Journal of Steroid Biochemistry and Molecular Biology 136:211–3. doi: 10.1016/j.jsbmb.2012.09.034.
  • Cárdenas, P. D., P. D. Sonawane, J. Pollier, R. Vanden Bossche, V. Dewangan, E. Weithorn, L. Tal, S. Meir, I. Rogachev, S. Malitsky, et al. 2016. GAME9 regulates the biosynthesis of steroidal alkaloids and upstream isoprenoids in the plant mevalonate pathway. Nature Communications 7 (1):1–16. doi: 10.1038/ncomms10654.
  • Castagna, A., C. Dall’Asta, E. Chiavaro, G. Galaverna, and A. Ranieri. 2014. Effect of post-harvest UV-B irradiation on polyphenol profile and antioxidant activity in flesh and peel of tomato fruits. Food and Bioprocess Technology 7 (8):2241–50. doi: 10.1007/s11947-013-1214-5.
  • Castagna, A., E. Chiavaro, C. Dall’asta, M. Rinaldi, G. Galaverna, and A. Ranieri. 2013. Effect of postharvest UV-B irradiation on nutraceutical quality and physical properties of tomato fruits. Food Chemistry 137 (1–4):151–8. doi: 10.1016/j.foodchem.2012.09.095.
  • Chang, A. C. 2003. The effects of gamma irradiation on rice wine maturation. Food Chemistry 83 (3):323–7.
  • Charles, M. T., A. Goulet, and J. Arul. 2008. Physiological basis of UV-C induced resistance to Botrytis cinerea in tomato fruit: IV. Biochemical modification of structural barriers. Postharvest Biology and Technology 47 (1):41–53. doi: 10.1016/j.postharvbio.2007.05.019.
  • Charles, M. T., J. Makhlouf, and J. Arul. 2008. Physiological basis of UV-C induced resistance to Botrytis cinerea in tomato fruit: II. Modification of fruit surface and changes in fungal colonization. Postharvest Biology and Technology 47 (1):21–6. doi: 10.1016/j.postharvbio.2007.05.014.
  • Charles, M. T., N. Benhamou, and J. Arul. 2008. Physiological basis of UV-C induced resistance to Botrytis cinerea in tomato fruit: III. Ultrastructural modifications and their impact on fungal colonization. Postharvest Biology and Technology 47 (1):27–40. doi: 10.1016/j.postharvbio.2007.05.015.
  • Chen, J., M. Zhang, A. S. Mujumdar, and P. Phuhongsunge. 2022. 4D printing induced by microwave and ultrasound for mushroom mixtures: Efficient conversion of ergosterol into vitamin D2. Food Chemistry 387:132840. doi: 10.1016/j.foodchem.2022.132840.
  • Clemens, T. L., S. L. Henderson, J. S. Adams, and M. F. Holick. 1982. Increased skin pigment reduces the capacity of skin to synthesise vitamin D3. The Lancet 319 (8263):74–6. doi: 10.1016/s0140-6736(82)90214-8.
  • Curino, A., L. Milanesi, S. Benassati, M. Skliar, and R. Boland. 2001. Effect of culture conditions on the synthesis of vitamin D3 metabolites in Solanum glaucophyllum grown in vitro. Phytochemistry 58 (1):81–9. doi: 10.1016/s0031-9422(01)00090-5.
  • Curino, A., M. Skliar, and R. Boland. 1998. Identification of 7-dehydrocholesterol, vitamin D3, 25 (OH)-vitamin D3 and 1, 25 (OH) 2-vitamin D3 in Solanum glaucophyllum cultures grown in absence of light. Biochimica et Biophysica Acta (BBA)-General Subjects 1425 (3):485–92. doi: 10.1016/s0304-4165(98)00103-2.
  • Datta, P., P. A. Philipsen, P. Olsen, M. K. Bogh, P. Johansen, A. V. Schmedes, N. Morling, and H. C. Wulf. 2017. The half-life of 25 (OH) D after UVB exposure depends on gender and vitamin D receptor polymorphism but mainly on the start level. Photochemical & Photobiological Sciences: Official Journal of the European Photochemistry Association and the European Society for Photobiology 16 (6):985–95. doi: 10.1039/c6pp00258g.
  • Dominguez, L. J., M. Farruggia, N. Veronese, and M. Barbagallo. 2021. Vitamin D sources, metabolism, and deficiency: Available compounds and guidelines for its treatment. Metabolites 11 (4):255. doi: 10.3390/metabo11040255.
  • Duffy, S. K., A. K. Kelly, G. Rajauria, J. Jakobsen, L. C. Clarke, F. J. Monahan, K. G. Dowling, G. Hull, K. Galvin, K. D. Cashman, et al. 2018. The use of synthetic and natural vitamin D sources in pig diets to improve meat quality and vitamin D content. Meat Science 143:60–8. doi: 10.1016/j.meatsci.2018.04.014.
  • EFSA NDA Panel on Dietetic Products, Nutrition and Allergies. 2014. Scientific opinion on the safety of vitamin D‐enriched UV‐treated baker’s yeast. EFSA Journal 12 (1):3520.
  • EFSA NDA Panel on Nutrition, Novel Foods and Food Allergens, Turck, D., J. Castenmiller, S. De Henauw, K. I. Hirsch‐Ernst, J. Kearney, A. Maciuk, I. Magelsdorf, H. J. McArdle, A. Naska, et al. 2021. Safety of vitamin D2 mushroom powder (Agaricus bisporus) as a novel food pursuant to regulation (EU) 2015/2283. EFSA Journal 19 (4):e06516.
  • Exler, J., K. M. Phillips, K. Y. Patterson, and J. M. Holden. 2013. Cholesterol and vitamin D content of eggs in the US retail market. Journal of Food Composition and Analysis 29 (2):110–6. doi: 10.1016/j.jfca.2012.11.001.
  • Feldman, D., P. J. Malloy, and C. Gross. 2001. Vitamin D: Biology, action, and clinical implications. In Osteoporosis, ed. Marcus, R., Feldman, D., Kelsey, J., 2nd ed, 257–303. doi: 10.1016/B978-012470862-4/50010-6.
  • Feng, L., L. Wu, Y. Guo, N. Hamada, Y. Hashi, X. Li, and L. Cao. 2020. Determination of vitamin D3 in daily oily supplements by a two-dimensional supercritical fluid chromatography-liquid chromatography-mass spectrometry system. Journal of Chromatography A 1629:461510. doi: 10.1016/j.chroma.2020.461510.
  • Fraser, D. R. 2021. Vitamin D toxicity related to its physiological and unphysiological supply. Trends in Endocrinology & Metabolism 32 (11):929–40. doi: 10.1016/j.tem.2021.08.006.
  • Ganesan, B., C. Brothersen, and D. J. McMahon. 2011. Fortification of Cheddar cheese with vitamin D does not alter cheese flavor perception. Journal of Dairy Science 94 (7):3708–14. doi: 10.3168/jds.2010-4020.
  • Göring, H. 2018. Vitamin D in nature: A product of synthesis and/or degradation of cell membrane components. Biochemistry 83 (11):1350–7. doi: 10.1134/S0006297918110056.
  • Guo, X. J., M. D. Yao, W. H. Xiao, Y. Wang, G. R. Zhao, and Y. J. Yuan. 2021. Compartmentalized reconstitution of post-squalene pathway for 7-dehydrocholesterol overproduction in Saccharomyces cerevisiae. Frontiers in Microbiology 12:663973. doi: 10.3389/fmicb.2021.663973.
  • Guo, X. J., W. H. Xiao, Y. Wang, M. D. Yao, B. X. Zeng, H. Liu, G. R. Zhao, and Y. J. Yuan. 2018. Metabolic engineering of Saccharomyces cerevisiae for 7-dehydrocholesterol overproduction. Biotechnology for Biofuels 11 (1):1–14. doi: 10.1186/s13068-018-1194-9.
  • Gupta, R., C. Behera, G. Paudwal, N. Rawat, A. Baldi, and P. N. Gupta. 2019. Recent advances in formulation strategies for efficient delivery of vitamin D. AAPS PharmSciTech 20 (1):1–12. doi: 10.1208/s12249-018-1231-9.
  • Haham, M., S. Ish-Shalom, M. Nodelman, I. Duek, E. Segal, M. Kustanovich, and Y. D. Livney. 2012. Stability and bioavailability of vitamin D nanoencapsulated in casein micelles. Food & Function 3 (7):737–44. doi: 10.1039/c2fo10249h.
  • Handu, S., S. Jan, K. Chauhan, and D. C. Saxena. 2021. Vitamin D fortification: A perspective to improve immunity for COVID-19 infection. Functional Food Science 1 (10):50–66. doi: 10.31989/ffs.v1i10.843.
  • Hengist, A., O. Perkin, J. T. Gonzalez, J. A. Betts, M. Hewison, K. N. Manolopoulos, K. S. Jones, A. Koulman, and D. Thompson. 2019. Mobilising vitamin D from adipose tissue: The potential impact of exercise. Nutrition Bulletin 44 (1):25–35. doi: 10.1111/nbu.12369.
  • Holick, M. F. 1995. Environmental factors that influence the cutaneous production of vitamin D. The American Journal of Clinical Nutrition 61 (3 Suppl):638S–45S. doi: 10.1093/ajcn/61.3.638S.
  • Holick, M. F., and M. B. Clark. 1978. The photobiogenesis and metabolism of vitamin D. Federation Proceedings 37 (12):2567–74.
  • Holick, M. F., J. E. Frommer, S. C. McNeill, N. M. Richtand, J. W. Henley, and J. T. Potts, Jr. 1977. Photometabolism of 7-dehydrocholesterol to previtamin D3 in skin. Biochemical and Biophysical Research Communications 76 (1):107–14. doi: 10.1016/0006-291x(77)91674-6.
  • Hu, D., H. Gao, and X. S. Yao. 2020. Biosynthesis of triterpenoid natural products. In Comprehensive Natural Products III Chemistry and Biology, ed. Liu, H. W., Begley, T. P., 3rd ed., 577–612. doi: 10.1016/B978-0-12-409547-2.14678-5.
  • Hu, Z., B. He, L. Ma, Y. Sun, Y. Niu, and B. Zeng. 2017. Recent advances in ergosterol biosynthesis and regulation mechanisms in Saccharomyces cerevisiae. Indian Journal of Microbiology 57 (3):270–7. doi: 10.1007/s12088-017-0657-1.
  • Huang, G., W. Cai, and B. Xu. 2016. Vitamin D2, ergosterol, and vitamin B2 content in commercially dried mushrooms marketed in China and increased vitamin D2 content following UV-C irradiation. International Journal for Vitamin and Nutrition Research 87:1–10. doi: 10.1024/0300-9831/a000294.
  • Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. 1997. Dietary reference intakes for calcium, phosphorus, magnesium, vitamin D, and fluoride. Washington (DC): National Academies Press (US).
  • Institute of Medicine. 2011. Dietary reference Intakes for calcium and vitamin D. National Academy of Science (NAS), Institute of Medicine (IOM), Food and Nutrition Board, Washington, DC.
  • Jakobsen, J., and E. Saxholt. 2009. Vitamin D metabolites in bovine milk and butter. Journal of Food Composition and Analysis 22 (5):472–8. doi: 10.1016/j.jfca.2009.01.010.
  • James, P. K., Darryl, W. E. Thomas, H. J. B. John, and J. M. 2011. The effects of vitamin D on brain development and adult brain function. Molecular and Cellular Endocrinology 347:121–7.
  • Jan, Y., L. A. Al-Keridis, M. Malik, A. Haq, S. Ahmad, J. Kaur, M. Adnan, N. Alshammari, S. A. Ashraf, and B. P. Panda. 2022. Preparation, modelling, characterization and release profile of vitamin D3 nanoemulsion. LWT 169:113980. doi: 10.1016/j.lwt.2022.113980.
  • Jäpelt, R. B., D. Silvestro, J. Smedsgaard, P. E. Jensen, and J. Jakobsen. 2011b. LC–MS/MS with atmospheric pressure chemical ionisation to study the effect of UV treatment on the formation of vitamin D3 and sterols in plants. Food Chemistry 129 (1):217–25. doi: 10.1016/j.foodchem.2011.04.029.
  • Jäpelt, R. B., D. Silvestro, J. Smedsgaard, P. E. Jensen, and J. Jakobsen. 2013. Quantification of vitamin D3 and its hydroxylated metabolites in waxy leaf nightshade (Solanum glaucophyllum Desf.), tomato (Solanum lycopersicum L.) and bell pepper (Capsicum annuum L.). Food Chemistry 138 (2–3):1206–11. doi: 10.1016/j.foodchem.2012.11.064.
  • Jäpelt, R. B., T. Didion, J. Smedsgaard, and J. Jakobsen. 2011a. Seasonal variation of provitamin D2 and vitamin D2 in perennial ryegrass (Lolium perenne L.). Journal of Agricultural and Food Chemistry 59 (20):10907–12. doi: 10.1021/jf202503c.
  • Jasinghe, V. J., and C. O. Perera. 2005. Distribution of ergosterol in different tissues of mushrooms and its effect on the conversion of ergosterol to vitamin D2 by UV irradiation. Food Chemistry 92 (3):541–6. doi: 10.1016/j.foodchem.2004.08.022.
  • Jasinghe, V. J., and C. O. Perera. 2006. Ultraviolet irradiation: The generator of vitamin D2 in edible mushrooms. Food Chemistry 95 (4):638–43. doi: 10.1016/j.foodchem.2005.01.046.
  • Jiang, Q., M. Zhang, and A. S. Mujumdar. 2020. UV induced conversion during drying of ergosterol to vitamin D in various mushrooms: Effect of different drying conditions. Trends in Food Science & Technology 105:200–10. doi: 10.1016/j.tifs.2020.09.011.
  • Jordá, T., and S. Puig. 2020. Regulation of ergosterol biosynthesis in Saccharomyces cerevisiae. Genes 11 (7):795. doi: 10.3390/genes11070795.
  • Kalaras, M. D., R. B. Beelman, M. F. Holick, and R. J. Elias. 2012. Generation of potentially bioactive ergosterol-derived products following pulsed ultraviolet light exposure of mushrooms (Agaricus bisporus). Food Chemistry 135 (2):396–401. doi: 10.1016/j.foodchem.2012.04.132.
  • Kaushik, R., B. Sachdeva, S. Arora, and B. K. Wadhwa. 2014. Development of an analytical protocol for the estimation of vitamin D2 in fortified toned milk. Food Chemistry 151:225–30. doi: 10.1016/j.foodchem.2013.11.085.
  • Khan, W. A., M. S. Butt, I. Pasha, and A. Jamil. 2020. Microencapsulation of vitamin D in protein matrices: In vitro release and storage stability. Journal of Food Measurement and Characterization 14 (3):1172–82. doi: 10.1007/s11694-019-00366-3.
  • Koutchma, T. 2008. UV light for processing foods. Ozone: Science & Engineering 30 (1):93–8. doi: 10.1080/01919510701816346.
  • Koyyalamudi, S. R., S. C. Jeong, C. H. Song, K. Y. Cho, and G. Pang. 2009. Vitamin D2 formation and bioavailability from Agaricus bisporus button mushrooms treated with ultraviolet irradiation. Journal of Agricultural and Food Chemistry 57 (8):3351–5. doi: 10.1021/jf803908q.
  • Koyyalamudi, S. R., S. C. Jeong, G. Pang, A. Teal, and T. Biggs. 2011. Concentration of vitamin D2 in white button mushrooms (Agaricus bisporus) exposed to pulsed UV light. Journal of Food Composition and Analysis 24 (7):976–9. doi: 10.1016/j.jfca.2011.02.007.
  • Kristensen, H., E. Rosenqvist, and J. Jakobsen. 2012. Increase of vitamin D2 by UV-B exposure during the growth phase of white button mushroom (Agaricus bisporus). Food & Nutrition Research 56 (1):7114. doi: 10.3402/fnr.v56i0.7114.
  • Ladizesky, M., Z. Lu, B. Oliveri, N. S. Roman, S. Diaz, M. F. Holick, and C. Mautalen. 1995. Solar ultraviolet B radiation and photoproduction of vitamin D3 in central and southern areas of Argentina. Journal of Bone and Mineral Research: The Official Journal of the American Society for Bone and Mineral Research 10 (4):545–9. doi: 10.1002/jbmr.5650100406.
  • Laird, E., M. Ward, E. McSorley, J. J. Strain, and J. Wallace. 2010. Vitamin D and bone health: Potential mechanisms. Nutrients 2 (7):693–724. doi: 10.3390/nu2070693.
  • Lehmann, B., and M. Meurer. 2010. Vitamin D metabolism. Dermatologic Therapy 23 (1):2–12. doi: 10.1111/j.1529-8019.2009.01286.x.
  • Lehner, A., M. Johnson, A. Zimmerman, J. Zyskowski, and J. Buchweitz. 2021. Vitamin D analyses in veterinary feeds by gas chromatography-tandem mass spectrometry. European Journal of Mass Spectrometry (Chichester, England) 27 (1):48–62. doi: 10.1177/14690667211000244.
  • Li, J., A. Scarano, N. M. Gonzalez, F. D’Orso, Y. Yue, K. Nemeth, G. Saalbach, L. Hill, C. de Oliveira Martins, R. Moran, et al. 2022. Biofortified tomatoes provide a new route to vitamin D sufficiency. Nature Plants 8 (6):611–6. doi: 10.1038/s41477-022-01154-6.
  • Liu, L. H., D. Zabaras, L. E. Bennett, P. Aguas, and B. W. Woonton. 2009. Effects of UV-C, red light and sun light on the carotenoid content and physical qualities of tomatoes during post-harvest storage. Food Chemistry 115 (2):495–500. doi: 10.1016/j.foodchem.2008.12.042.
  • Loewen, A., B. Chan, and E. C. Li-Chan. 2018. Optimization of vitamins A and D3 loading in re-assembled casein micelles and effect of loading on stability of vitamin D3 during storage. Food Chemistry 240:472–81. doi: 10.1016/j.foodchem.2017.07.126.
  • Luthria, D. L., S. Mukhopadhyay, and D. T. Krizek. 2006. Content of total phenolics and phenolic acids in tomato (Lycopersicon esculentum Mill.) fruits as influenced by cultivar and solar UV radiation. Journal of Food Composition and Analysis 19 (8):771–7. doi: 10.1016/j.jfca.2006.04.005.
  • Ma, B. X., X. Ke, X. L. Tang, R. C. Zheng, and Y. G. Zheng. 2018. Rate-limiting steps in the Saccharomyces cerevisiae ergosterol pathway: Towards improved ergosta-5, 7-dien-3β-ol accumulation by metabolic engineering. World Journal of Microbiology and Biotechnology 34 (4):1–12. doi: 10.1007/s11274-018-2440-9.
  • Matsuoka, L. Y., L. Ide, J. Wortsman, J. A. Maclaughlin, and M. F. Holick. 1987. Sunscreens suppress cutaneous vitamin D3 synthesis. The Journal of Clinical Endocrinology and Metabolism 64 (6):1165–8. doi: 10.1210/jcem-64-6-1165.
  • Maurya, V. K., K. Bashir, and M. Aggarwal. 2020. Vitamin D microencapsulation and fortification: Trends and technologies. The Journal of Steroid Biochemistry and Molecular Biology 196:105489. doi: 10.1016/j.jsbmb.2019.105489.
  • Melamed, M. L., E. D. Michos, W. Post, and B. Astor. 2008. 25-hydroxyvitamin D levels and the risk of mortality in the general population. Archives of Internal Medicine 168 (15):1629–37. doi: 10.1001/archinte.168.15.1629.
  • Nadar, R., and S. Uday. 2021. A clinician’s guide to vitamin D and bone health in children. Paediatrics and Child Health 31 (9):364–70. doi: 10.1016/j.paed.2021.06.006.
  • Náhlík, J., P. Hrnčiřík, J. Mareš, M. Rychtera, and C. A. Kent. 2017. Towards the design of an optimal strategy for the production of ergosterol from Saccharomyces cerevisiae yeasts. Biotechnology Progress 33 (3):838–48. doi: 10.1002/btpr.2436.
  • Nair, R., and A. Maseeh. 2012. Vitamin D: The “sunshine” vitamin. Journal of Pharmacology and Pharmacotherapeutics 3 (2):118–126. doi: 10.4103/0976-500X.95506.
  • Novak, N., and D. Y. Leung. 2010. Role of barrier dysfunction and immune response in atopic dermatitis. In Pediatric allergy: Principles and practice, ed. Leung, Y. M., Sampson, H. A., Geha, R., Szefler, S. J., 2nd ed., 552–563. doi: 10.1016/B978-1-4377-0271-2.00053-5.
  • Pandohee, J., P. G. Stevenson, X. A. Conlan, X. R. Zhou, and O. A. Jones. 2015. Off-line two-dimensional liquid chromatography for metabolomics: An example using Agaricus bisporus mushrooms exposed to UV irradiation. Metabolomics 11 (4):939–51. doi: 10.1007/s11306-014-0749-4.
  • Park, H., M. R. Wood, O. V. Malysheva, S. Jones, S. Mehta, P. M. Brannon, and M. A. Caudill. 2017. Placental vitamin D metabolism and its associations with circulating vitamin D metabolites in pregnant women. The American Journal of Clinical Nutrition 106 (6):1439–48. doi: 10.3945/ajcn.117.153429.
  • Patil, J., S. Ghodke, R. Jain, and P. Dandekar. 2018. Extraction of vitamin D from button mushroom (Agaricus bisporus) using deep eutectic solvent and ultrasonication. ACS Sustainable Chemistry & Engineering 6 (8):10578–86. doi: 10.1021/acssuschemeng.8b01915.
  • Ploier, B., M. Korber, C. Schmidt, B. Koch, E. Leitner, and G. Daum. 2015. Regulatory link between steryl ester formation and hydrolysis in the yeast Saccharomyces cerevisiae. Biochimica et Biophysica Acta 1851 (7):977–86. doi: 10.1016/j.bbalip.2015.02.011.
  • Prema, T. P., and N. Raghuramulu. 1996. Vitamin D3 and its metabolites in the tomato plant. Phytochemistry 42 (3):617–20. doi: 10.1016/0031-9422(95)00883-7.
  • Samuel, S., and M. D. Sitrin. 2008. Vitamin D’s role in cell proliferation and differentiation. Nutrition Reviews 66 (10 Suppl 2):S116–S124. doi: 10.1111/j.1753-4887.2008.00094.x.
  • Saponaro, F., A. Saba, and R. Zucchi. 2020. An update on vitamin D metabolism. International Journal of Molecular Sciences 21 (18):6573. doi: 10.3390/ijms21186573.
  • Schümmer, T., G. I. Stangl, and W. Wätjen. 2021. Safety assessment of vitamin D and its photo-isomers in UV-irradiated baker’s yeast. Foods 10 (12):3142. doi: 10.3390/foods10123142.
  • Sereshti, H., A. Toloutehrani, and H. R. Nodeh. 2020. Determination of cholecalciferol (vitamin D3) in bovine milk by dispersive micro-solid phase extraction based on the magnetic three-dimensional graphene-sporopollenin sorbent. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 1136:121907. doi: 10.1016/j.jchromb.2019.121907.
  • Shama, G. 2014. Ultraviolet light. In Encyclopedia of Food Microbiology,. ed. Batt, C. A., Tortorello, M. L., 2nd ed., 665–671. doi: 10.1016/B978-0-12-384730-0.00341-4.
  • Simon, R. R., J. F. Borzelleca, H. F. DeLuca, and C. M. Weaver. 2013. Safety assessment of the post-harvest treatment of button mushrooms (Agaricus bisporus) using ultraviolet light. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 56:278–89. doi: 10.1016/j.fct.2013.02.009.
  • Slominski, A., J. Zjawiony, J. Wortsman, I. Semak, J. Stewart, A. Pisarchik, T. Sweatman, J. Marcos, C. Dunbar, and R. C. Tuckey. 2004. A novel pathway for sequential transformation of 7‐dehydrocholesterol and expression of the P450scc system in mammalian skin. European Journal of Biochemistry 271 (21):4178–88. doi: 10.1111/j.1432-1033.2004.04356.x.
  • Sonawane, P. D., J. Pollier, S. Panda, J. Szymanski, H. Massalha, M. Yona, T. Unger, S. Malitsky, P. Arendt, L. Pauwels, et al. 2016. Plant cholesterol biosynthetic pathway overlaps with phytosterol metabolism. Nature Plants 3 (1):1–13. doi: 10.1038/nplants.2016.205.
  • Speeckaert, M., G. Huang, J. R. Delanghe, and Y. E. Taes. 2006. Biological and clinical aspects of the vitamin D binding protein (Gc-globulin) and its polymorphism. Clinica Chimica Acta; International Journal of Clinical Chemistry 372 (1-2):33–42. doi: 10.1016/j.cca.2006.03.011.
  • Staffas, A., A. Nyman, K. Ask, E. Hermansson, J. S. Jacobsen, J. Jakobsen, P. Mattila, G. Smidt Olsen, and W. Schüep. 2003. Determination of cholecalciferol (vitamin D3) in selected foods by liquid chromatography: NMKL collaborative study. Journal of AOAC International 86 (2):400–6. doi: 10.1093/jaoac/86.2.400.
  • Steichen, S. D., M. Caldorera-Moore, and N. A. Peppas. 2013. A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences 48 (3):416–27. doi: 10.1016/j.ejps.2012.12.006.
  • Stevens, J., and D. Dowell. 2012. Determination of vitamins D2 and D3 in infant formula and adult nutritionals by ultra-pressure liquid chromatography with tandem mass spectrometry detection (UPLC-MS/MS): First Action 2011.12. Journal of AOAC International 95 (3):577–82. doi: 10.5740/jaoacint.cs2011_12.
  • Švarc, P. L., L. L. Barnkob, and J. Jakobsen. 2021. Quantification of vitamin D3 and 25-hydroxyvitamin D3 in food–The impact of eluent additives and labelled internal standards on matrix effects in LC-MS/MS analysis. Food Chemistry 357:129588. doi: 10.1016/j.foodchem.2021.129588.
  • Szymczak-Pajor, I., K. Miazek, A. Selmi, A. Balcerczyk, and A. Śliwińska. 2022. The action of vitamin D in adipose tissue: Is there the link between vitamin D deficiency and adipose tissue-related metabolic disorders? International Journal of Molecular Sciences 23 (2):956. doi: 10.3390/ijms23020956.
  • Taofiq, O., Â. Fernandes, L. Barros, M. F. Barreiro, and I. C. Ferreira. 2017. UV-irradiated mushrooms as a source of vitamin D2: A review. Trends in Food Science & Technology 70:82–94. doi: 10.1016/j.tifs.2017.10.008.
  • Teichmann, A., P. C. Dutta, A. Staffas, and M. Jägerstad. 2007. Sterol and vitamin D2 concentrations in cultivated and wild grown mushrooms: Effects of UV irradiation. LWT - Food Science and Technology 40 (5):815–22. doi: 10.1016/j.lwt.2006.04.003.
  • Wang, H., M. La Russa, and L. S. Qi. 2016. CRISPR/Cas9 in genome editing and beyond. Annual Review of Biochemistry 85:227–64. doi: 10.1146/annurev-biochem-060815-014607.
  • Wang, S. Q., T. Wang, J. F. Liu, L. Deng, and F. Wang. 2018. Overexpression of Ecm22 improves ergosterol biosynthesis in Saccharomyces cerevisiae. Letters in Applied Microbiology 67 (5):484–90. doi: 10.1111/lam.13061.
  • Wang, Z., Y. Zeng, H. Jia, N. Yang, M. Liu, M. Jiang, and Y. Zheng. 2022. Bioconversion of vitamin D3 to bioactive calcifediol and calcitriol as high-value compounds. Biotechnology for Biofuels and Bioproducts 15 (1):1–12. doi: 10.1186/s13068-022-02209-8.
  • Webb, A. R., and M. F. Holick. 1988. The role of sunlight in the cutaneous production of vitamin D3. Annual Review of Nutrition 8 (1):375–99. doi: 10.1146/annurev.nu.08.070188.002111.
  • Xu, Z., M. Meenu, and B. Xu. 2020. Effects of UV-C treatment and ultrafine-grinding on the biotransformation of ergosterol to vitamin D2, physiochemical properties, and antioxidant properties of shiitake and Jew’s ear. Food Chemistry 309:125738. doi: 10.1016/j.foodchem.2019.125738.
  • Yao, L., T. Wang, M. Persia, R. L. Horst, and M. Higgins. 2013. Effects of vitamin D3‐enriched diet on egg yolk vitamin D3 content and yolk quality. Journal of Food Science 78 (2):C178–C183. doi: 10.1111/1750-3841.12032.
  • Zavrel, M., S. J. Hoot, and T. C. White. 2013. Comparison of sterol import under aerobic and anaerobic conditions in three fungal species, Candida albicans, Candida glabrata, and Saccharomyces cerevisiae. Eukaryotic Cell 12 (5):725–38. doi: 10.1128/EC.00345-12.
  • Zhao, D. K., Y. Zhao, S. Y. Chen, and E. J. Kennelly. 2021. Solanum steroidal glycoalkaloids: Structural diversity, biological activities, and biosynthesis. Natural Product Reports 38 (8):1423–44. doi: 10.1039/d1np00001b.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.