495
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Recent progress in fucosylated derivatives of lacto-N-tetraose and lacto-N-neotetraose

, , , &

References

  • Albrecht, S., J. A. Lane, K. Mariño, K. A. Al Busadah, S. D. Carrington, R. M. Hickey, and P. M. Rudd. 2014. A comparative study of free oligosaccharides in the milk of domestic animals. The British Journal of Nutrition 111 (7):1313–28. doi: 10.1017/S0007114513003772.
  • Atochina, O., and D. Harn. 2005. LNFP III/LeX-stimulated macrophages activate natural killer cells via CD40-CD40L interaction. Clinical and Diagnostic Laboratory Immunology 12 (9):1041–9.
  • Ayechu-Muruzabal, V., A. H. van Stigt, M. Mank, L. E. M. Willemsen, B. Stahl, J. Garssen, and B. Van’t Land. 2018. Diversity of human milk oligosaccharides and effects on early life immune development. Frontiers in Pediatrics 6:239. doi: 10.3389/fped.2018.00239.
  • Bai, J., Z. Wu, G. Sugiarto, M. R. Gadi, H. Yu, Y. Li, C. Xiao, A. Ngo, B. Zhao, X. Chen, et al. 2019. Biochemical characterization of Helicobacter pylori α1-3-fucosyltransferase and its application in the synthesis of fucosylated human milk oligosaccharides. Carbohydrate Research 480:1–6. doi: 10.1016/j.carres.2019.05.007.
  • Baumgärtner, F., L. Jurzitza, J. Conrad, U. Beifuss, G. A. Sprenger, and C. Albermann. 2015. Synthesis of fucosylated lacto-N-tetraose using whole-cell biotransformation. Bioorganic & Medicinal Chemistry 23 (21):6799–806. doi: 10.1016/j.bmc.2015.10.005.
  • Borewicz, K., F. Gu, E. Saccenti, C. Hechler, R. Beijers, C. de Weerth, S. S. van Leeuwen, H. A. Schols, and H. Smidt. 2020. The association between breastmilk oligosaccharides and faecal microbiota in healthy breastfed infants at two, six, and twelve weeks of age. Scientific Reports 10 (1):4270. doi: 10.1038/s41598-020-61024-z.
  • Bych, K., M. H. Mikš, T. Johanson, M. J. Hederos, L. K. Vigsnæs, and P. Becker. 2019. Production of HMOs using microbial hosts – From cell engineering to large scale production. Current Opinion in Biotechnology 56:130–7. doi: 10.1016/j.copbio.2018.11.003.
  • Castro, I., C. García-Carral, A. Furst, S. Khwajazada, J. García, R. Arroyo, L. Ruiz, J. M. Rodríguez, L. Bode, and L. Fernández. 2022. Interactions between human milk oligosaccharides, microbiota and immune factors in milk of women with and without mastitis. Scientific Reports 12 (1):1367. doi: 10.1038/s41598-022-05250-7.
  • Chen, C., Y. Zhang, M. Xue, X.-W. Liu, Y. Li, X. Chen, P. G. Wang, F. Wang, and H. Cao. 2015. Sequential one-pot multienzyme (OPME) synthesis of lacto-N-neotetraose and its sialyl and fucosyl derivatives. Chemical Communications (Cambridge, England) 51 (36):7689–92. doi: 10.1039/c5cc01330e.
  • Chen, X. 2015. Human milk oligosaccharides (HMOS): Structure, function, and enzyme-catalyzed synthesis. Advances in Carbohydrate Chemistry and Biochemistry 72:113–90. doi: 10.1016/bs.accb.2015.08.002.
  • Cheng, Y.-J., and C.-Y. Yeung. 2021. Recent advance in infant nutrition: Human milk oligosaccharides. Pediatrics and Neonatology 62 (4):347–53. doi: 10.1016/j.pedneo.2020.12.013.
  • Choi, Y. H., J. H. Kim, B. S. Park, and B.-G. Kim. 2016. Solubilization and iterative saturation mutagenesis of α1,3-fucosyltransferase from Helicobacter pylori to enhance its catalytic efficiency. Biotechnology and Bioengineering 113 (8):1666–75. doi: 10.1002/bit.25944.
  • Choi, Y. H., B. S. Park, J.-H. Seo, and B.-G. Kim. 2019. Biosynthesis of the human milk oligosaccharide 3-fucosyllactose in metabolically engineered Escherichia coli via the salvage pathway through increasing GTP synthesis and β-galactosidase modification. Biotechnology and Bioengineering 116 (12):3324–32. doi: 10.1002/bit.27160.
  • Coppa, G. V., L. Zampini, T. Galeazzi, B. Facinelli, L. Ferrante, R. Capretti, and G. Orazio. 2006. Human milk oligosaccharides inhibit the adhesion to caco-2 cells of diarrheal pathogens: Escherichia coli, Vibrio cholerae, and Salmonella fyris. Pediatric Research 59 (3):377–82. doi: 10.1203/01.pdr.0000200805.45593.17.
  • Corona, L., A. Lussu, A. Bosco, R. Pintus, F. C. Marincola, V. Fanos, and A. Dessi. 2021. Human milk oligosaccharides: A comprehensive review towards metabolomics. Children 8 (9):804. doi: 10.3390/children8090804.
  • Derya, S. M., H. Spiegel, F.-G. Hanisch, V. Morozov, H. Schroten, S. Jennewein, and K. Parschat. 2020. Biotechnologically produced fucosylated oligosaccharides inhibit the binding of human noroviruses to their natural receptors. Journal of Biotechnology 318:31–8. doi: 10.1016/j.jbiotec.2020.05.001.
  • Drouillard, S., H. Driguez, and E. Samain. 2006. Large-scale synthesis of H-antigen oligosaccharides by expressing Helicobacter pylori α1,2-fucosyltransferase in metabolically engineered Escherichia coli cells. Angewandte Chemie (International ed. in English) 45 (11):1778–80. doi: 10.1002/anie.200503427.
  • Dumon, C., B. Priem, S. L. Martin, A. Heyraud, C. Bosso, and E. Samain. 2001. In vivo fucosylation of Lacto-N-neotetraose and Lacto-N-neohexaose by heterologous expression of Helicobacter pylori α-1,3 fucosyltransferase in engineered Escherichia coli. Glycoconjugate Journal 18 (6):465–74. doi: 10.1023/a:1016086118274.
  • Dumon, C., E. Samain, and B. Priem. 2004. Assessment of the two Helicobacter pylori α-1,3-fucosyltransferase ortholog genes for the large-scale synthesis of LewisX human milk oligosaccharides by metabolically engineered Escherichia coli. Biotechnology Progress 20 (2):412–9. doi: 10.1021/bp0342194.
  • El-Hawiet, A., E. N. Kitova, and J. S. Klassen. 2015. Recognition of human milk oligosaccharides by bacterial exotoxins. Glycobiology 25 (8):845–54. doi: 10.1093/glycob/cwv025.
  • Engels, L., and L. Elling. 2014. WbgL: A novel bacterial α1,2-fucosyltransferase for the synthesis of 2’-fucosyllactose. Glycobiology 24 (2):170–8. doi: 10.1093/glycob/cwt096.
  • Faijes, M., M. Castejón-Vilatersana, C. Val-Cid, and A. Planas. 2019. Enzymatic and cell factory approaches to the production of human milk oligosaccharides. Biotechnology Advances 37 (5):667–97. doi: 10.1016/j.biotechadv.2019.03.014.
  • Gao, X., Y. Qiu, L. Gao, L. Zhang, X. Li, Y. Liu, and C. Zhao. 2022. Fucosylated oligosaccharide lacto-N-fucopentaose I ameliorates enterovirus 71 infection by inhibiting apoptosis. Food Chemistry: X 13:100244. doi: 10.1016/j.fochx.2022.100244.
  • Garrido, D., S. Ruiz-Moyano, N. Kirmiz, J. C. Davis, S. M. Totten, D. G. Lemay, J. A. Ugalde, J. B. German, C. B. Lebrilla, and D. A. Mills. 2016. A novel gene cluster allows preferential utilization of fucosylated milk oligosaccharides in Bifidobacterium longum subsp longum SC596. Scientific Reports 6:35045. doi: 10.1038/srep35045.
  • Ge, Z. M., N. W. C. Chan, M. M. Palcic, and D. E. Taylor. 1997. Cloning and heterologous expression of an α1,3-fucosyltransferase gene from the gastric pathogen Helicobacter pylori. The Journal of Biological Chemistry 272 (34):21357–63. doi: 10.1074/jbc.272.34.21357.
  • Gu, F., S. Wang, R. Beijers, C. de Weerth, H, and A. Schols. 2021. Structure-specific and individual-dependent metabolization of human milk oligosaccharides in infants: A longitudinal birth cohort study. Journal of Agricultural and Food Chemistry 69 (22):6186–99. doi: 10.1021/acs.jafc.0c07484.
  • Harmsen, H. J. M., A. C. M. Wildeboer-Veloo, G. C. Raangs, A. A. Wagendorp, N. Klijn, J. G. Bindels, and G. W. Welling. 2000. Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. Journal of Pediatric Gastroenterology and Nutrition 30 (1):61–7. doi: 10.1097/00005176-200001000-00019.
  • Hu, M., M. Li, C. Li, and T. Zhang. 2022a. Biosynthesis of lacto-N-fucopentaose I in Escherichia coli by metabolic pathway rational ­design. Carbohydrate Polymers 297:120017. doi: 10.1016/j.carbpol.2022.120017.
  • Hu, M., M. Li, C. Li, and T. Zhang. 2022b. Engineering Escherichia coli for high-titer biosynthesis of lacto-N-difucohexaose II. Biochemical Engineering Journal 186:108567. doi: 10.1016/j.bej.2022.108567.
  • Huang, H.-H., J.-L. Fang, H.-K. Wang, C.-Y. Sun, T.-W. Tsai, Y.-T. Huang, C.-Y. Kuo, Y.-J. Wang, C.-C. Liao, and C.-C. Yu. 2019. Substrate characterization of Bacteroides fragilis α1,3/4-fucosyltransferase enabling access to programmable one-pot enzymatic synthesis of KH-1 antigen. ACS Catalysis 9 (12):11794–800. doi: 10.1021/acscatal.9b04182.
  • Imberty, A., and A. Varrot. 2008. Microbial recognition of human cell surface glycoconjugates. Current Opinion in Structural Biology 18 (5):567–76. doi: 10.1016/j.sbi.2008.08.001.
  • Jantscher-Krenn, E., T. Lauwaet, L. A. Bliss, S. L. Reed, F. D. Gillin, and L. Bode. 2012. Human milk oligosaccharides reduce Entamoeba histolytica attachment and cytotoxicity in vitro. The British Journal of Nutrition 108 (10):1839–46. doi: 10.1017/S0007114511007392.
  • Koizumi, S., T. Endo, K. Tabata, H. Nagano, J. Ohnishi, and A. Ozaki. 2000. Large-scale production of GDP-fucose and Lewis X by bacterial coupling. Journal of Industrial Microbiology and Biotechnology 25 (4):213–7. doi: 10.1038/sj.jim.7000055.
  • Lee, J.-H., R. P. Pandey, D. Kim, and J. K. Sohng. 2013. Cloning and functional characterization of an α-1,3-fucosyltransferase from Bacteroides fragilis. Biotechnology and Bioprocess Engineering 18 (5):843–9. doi: 10.1007/s12257-013-0041-x.
  • Lee, W.-H., Y.-W. Chin, N. S. Han, M.-D. Kim, and J.-H. Seo. 2011. Enhanced production of GDP-L-fucose by overexpression of NADPH regenerator in recombinant Escherichia coli. Applied Microbiology and Biotechnology 91 (4):967–76. doi: 10.1007/s00253-011-3271-x.
  • Lee, W.-H., S.-Y. Shin, M.-D. Kim, N. S. Han, and J.-H. Seo. 2012. Modulation of guanosine nucleotides biosynthetic pathways enhanced GDP-L-fucose production in recombinant Escherichia coli. Applied Microbiology and Biotechnology 93 (6):2327–34. doi: 10.1007/s00253-011-3776-3.
  • Li, M., X.-W. Liu, J. Shao, J. Shen, Q. Jia, W. Yi, J. K. Song, R. Woodward, C. S. Chow, and P. G. Wang. 2008a. Characterization of a novel α1,2-fucosyltransferase of Escherichia coli O128: B12 and functional investigation of its common motif. Biochemistry 47 (1):378–87. doi: 10.1021/bi701345v.
  • Li, M., J. Shen, X. Liu, J. Shao, W. Yi, C. S. Chow, and P. G. Wang. 2008b. Identification of a new α1,2-fucosyltransferase involved in O-antigen biosynthesis of Escherichia coli O86:B7 and formation of H-type 3 blood group antigen. Biochemistry 47 (44):11590–7. doi: 10.1021/bi801067s.
  • Lin, A. E., C. A. Autran, A. Szyszka, T. Escajadillo, M. Huang, K. Godula, A. R. Prudden, G.-J. Boons, A. L. Lewis, K. S. Doran, et al. 2017. Human milk oligosaccharides inhibit growth of group B Streptococcus. The Journal of Biological Chemistry 292 (27):11243–9. doi: 10.1074/jbc.M117.789974.
  • Lin, S.-W., T.-M. Yuan, J.-R. Li, and C.-H. Lin. 2006. Carboxyl terminus of Helicobacter pylori α1,3-fucosyltransferase determines the structure and stability. Biochemistry 45 (26):8108–16. doi: 10.1021/bi0601297.
  • Liu, F., J. Yan, X. Wang, C. Wang, L. Chen, Y. Li, J. Chen, and H. Guo. 2021. Maternal fucosyltransferase 2 status associates with the profiles of human milk oligosaccharides and the fecal microbiota composition of breastfed infants. Journal of Agricultural and Food Chemistry 69 (10):3032–43. doi: 10.1021/acs.jafc.0c04575.
  • Liu, Y., A. Tong, X. Gao, S. Yuan, R. Zhong, and C. Zhao. 2022. Treponema primitia α1-2-fucosyltransferase-catalyzed one-pot multienzyme synthesis of fucosylated oligosaccharide lacto-N-fucopentaose I with antiviral activity against enterovirus 71. Food Chemistry: X 14:100273. doi: 10.1016/j.fochx.2022.100273.
  • Liu, Y., Y. Zhu, H. Wang, L. Wan, W. Zhang, and W. Mu. 2022. Strategies for enhancing microbial production of 2’-fucosyllactose, the most abundant human milk oligosaccharide. Journal of Agricultural and Food Chemistry 70 (37):11481–99. doi: 10.1021/acs.jafc.2c04539.
  • Lombard, V., H. G. Ramulu, E. Drula, P. M. Coutinho, and B. Henrissat. 2014. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Research 42 (Database issue):D490–D495. doi: 10.1093/nar/gkt1178.
  • Lu, M., I. Mosleh, and A. Abbaspourrad. 2021. Engineered microbial routes for human milk oligosaccharides synthesis. ACS Synthetic Biology 10 (5):923–38. doi: 10.1021/acssynbio.1c00063.
  • Ma, B., G. F. Audette, S. Lin, M. M. Palcic, B. Hazes, and D. E. Taylor. 2006. Purification, kinetic characterization, and mapping of the minimal catalytic domain and the key polar groups of Helicobacter pylori α-(1,3/1,4)-fucosyltransferases. The Journal of Biological Chemistry 281 (10):6385–94. doi: 10.1074/jbc.M511320200.
  • Martin, S. L., M. R Edbrooke, T. C Hodgman, D. H van den Eijnden, and M. I. Bird. 1997. Lewis X biosynthesis in Helicobacter pylori: Molecular cloning of an α(1,3)-fucosyltransferase gene. The Journal of Biological Chemistry 272 (34):21349–56. doi: 10.1074/jbc.272.34.21349.
  • McArthur, J. B., H. Yu, and X. Chen. 2019. A bacterial β1-3-galactosyltransferase enables multigram-scale synthesis of human milk lacto-N-tetraose (LNT) and its fucosides. ACS Catalysis 9 (12):10721–6. doi: 10.1021/acscatal.9b03990.
  • Miyazaki, T., T. Sato, K. Furukawa, and K. Ajisaka. 2010. Enzymatic synthesis of lacto-N-difucohexaose I which binds to Helicobacter pylori. Methods in Enzymology 480:511–24.
  • Moore, R. E., L. L. Xu, S, and D. Townsend. 2021. Prospecting human milk oligosaccharides as a defense against viral infections. ACS Infectious Diseases 7 (2):254–63. doi: 10.1021/acsinfecdis.0c00807.
  • Ni, Z., J. Wu, Z. Li, L. Yuan, Y. Wang, X. Chen, and J. Yao. 2021. Enhanced bioproduction of fucosylated oligosaccharide 3-fucosyllactose in engineered Escherichia coli with an improved de novo pathway. Bioscience, Biotechnology, and Biochemistry 85 (7):1772–81. doi: 10.1093/bbb/zbab074.
  • Nielsen, J. 2019. Yeast systems biology: Model organism and cell factory. Biotechnology Journal 14 (9):1800421. doi: 10.1002/biot.201800421.
  • Ojima, M. N., Y. Asao, A. Nakajima, T. Katoh, M. Kitaoka, A. Gotoh, J. Hirose, T. Urashima, S. Fukiya, A. Yokota, et al. 2022. Diversification of a fucosyllactose transporter within the genus Bifidobacterium. Applied and Environmental Microbiology 88 (2):e0143721. doi: 10.1128/AEM.01437-21.
  • Osanjo, G., M. Dion, J. Drone, C. Solleux, V. Tran, C. Rabiller, and C. Tellier. 2007. Directed evolution of the α-L-fucosidase from Thermotoga maritima into an α-L-transfucosidase. Biochemistry 46 (4):1022–33. doi: 10.1021/bi061444w.
  • Paper, J. M., J. S. Scott-Craig, D. Cavalier, A. Faik, R. E. Wiemels, M. S. Borrusch, M. Bongers, and J. D. Walton. 2013. α-Fucosidases with different substrate specificities from two species of Fusarium. Applied Microbiology and Biotechnology 97 (12):5371–80. doi: 10.1007/s00253-012-4423-3.
  • Pérez-Escalante, E., S. Alatorre-Santamaría, A. Castañeda-Ovando, V. Salazar-Pereda, M. Bautista-Ávila, A. E. Cruz-Guerrero, J. F. Flores-Aguilar, and L. G. González-Olivares. 2022. Human milk oligosaccharides as bioactive compounds in infant formula: Recent advances and trends in synthetic methods. Critical Reviews in Food Science and Nutrition 62 (1):181–214. doi: 10.1080/10408398.2020.1813683.
  • Petschacher, B., and B. Nidetzky. 2016. Biotechnological production of fucosylated human milk oligosaccharides: Prokaryotic fucosyltransferases and their use in biocatalytic cascades or whole cell conversion systems. Journal of Biotechnology 235:61–83. doi: 10.1016/j.jbiotec.2016.03.052.
  • Pettit, N., T. Styslinger, Z. Mei, W. Han, G. Zhao, and P. G. Wang. 2010. Characterization of WbiQ: An α1,2-fucosyltransferase from Escherichia coli O127:K63(B8), and synthesis of H-type 3 blood group antigen. Biochemical and Biophysical Research Communications 402 (2):190–5. doi: 10.1016/j.bbrc.2010.08.087.
  • Rabbani, S., V. Miksa, B. Wipf, and B. Ernst. 2005. Molecular cloning and functional expression of a novel Helicobacter pylori α1,4 fucosyltransferase. Glycobiology 15 (11):1076–83. doi: 10.1093/glycob/cwj004.
  • Rasko, D. A., G. Wang, M. M. Palcic, and D. E. Taylor. 2000. Cloning and characterization of the α(1,3/4) fucosyltransferase of Helicobacter pylori. The Journal of Biological Chemistry 275 (7):4988–94. doi: 10.1074/jbc.275.7.4988.
  • Rodríguez-Díaz, J., V. Monedero, and M. J. Yebra. 2011. Utilization of natural fucosylated oligosaccharides by three novel α-L-fucosidases from a probiotic Lactobacillus casei strain. Applied and Environmental Microbiology 77 (2):703–5. doi: 10.1128/AEM.01906-10.
  • Rosa, F., A. K. Sharma, M. Gurung, D. Casero, K. Matazel, L. Bode, C. Simecka, A. A. Elolimy, P. Tripp, C. Randolph, et al. 2022. Human milk oligosaccharides impact cellular and inflammatory gene expression and immune response. Frontiers in Immunology 13:907529. doi: 10.3389/fimmu.2022.907529.
  • Sakurama, H., S. Fushinobu, M. Hidaka, E. Yoshida, Y. Honda, H. Ashida, M. Kitaoka, H. Kumagai, K. Yamamoto, and T. Katayama. 2012. 1,3-1,4-α-L-Fucosynthase that specifically introduces Lewis a/x antigens into type-1/2 chains. The Journal of Biological Chemistry 287 (20):16709–19. doi: 10.1074/jbc.M111.333781.
  • Saumonneau, A., E. Champion, P. Peltier-Pain, D. Molnar-Gabor, J. Hendrickx, V. Tran, M. Hederos, G. Dekany, and C. Tellier. 2016. Design of an α-L-transfucosidase for the synthesis of fucosylated HMOs. Glycobiology 26 (3):261–9.
  • Seppo, A. E., C. A. Autran, L. Bode, and K. M. Järvinen. 2017. Human milk oligosaccharides and development of cow’s milk allergy in infants. The Journal of Allergy and Clinical Immunology 139 (2):708–11. e5. doi: 10.1016/j.jaci.2016.08.031.
  • Shang, J., V. E. Piskarev, M. Xia, P. Huang, X. Jiang, L. M. Likhosherstov, O. S. Novikova, D. S. Newburg, and D. M. Ratner. 2013. Identifying human milk glycans that inhibit norovirus binding using surface plasmon resonance. Glycobiology 23 (12):1491–8. doi: 10.1093/glycob/cwt077.
  • Shani, G., J. L. Hoeflinger, B. E. Heiss, C. F. Masarweh, J. A. Larke, N. M. Jensen, S. Wickramasinghe, J. C. Davis, E. Goonatilleke, A. El-Hawiet, et al. 2022. Fucosylated human milk oligosaccharide foraging within the species Bifidobacterium pseudocatenulatum is driven by glycosyl hydrolase content and specificity. Applied and Environmental Microbiology 88 (2):e0170721. doi: 10.1128/AEM.01707-21.
  • Sotgiu, S., G. Arru, M. L. Fois, A. Sanna, M. Musumeci, G. Rosati, and S. Musumeci. 2006. Immunomodulation of fucosyl-lactose and lacto-N-fucopentaose on mononuclear cells from multiple sclerosis and healthy subjects. International Journal of Biomedical Science: IJBS 2 (2):114–20.
  • Soyyılmaz, B., M. H. Mikš, C. H. Röhrig, M. Matwiejuk, A. Meszaros-Matwiejuk, and L. K. Vigsnæs. 2021. The mean of milk: A review of human milk oligosaccharide concentrations throughout lactation. Nutrients 13 (8):2737. doi: 10.3390/nu13082737.
  • Spevacek, A. R., J. T. Smilowitz, E. L. Chin, M. A. Underwood, J. B. German, and C. M. Slupsky. 2015. Infant maturity at birth reveals minor differences in the maternal milk metabolome in the first month of lactation. The Journal of Nutrition 145 (8):1698–708. doi: 10.3945/jn.115.210252.
  • Sprenger, G. A., F. Baumgärtner, and C. Albermann. 2017. Production of human milk oligosaccharides by enzymatic and whole-cell microbial biotransformations. Journal of Biotechnology 258:79–91. doi: 10.1016/j.jbiotec.2017.07.030.
  • Sugita, T., S. Sampei, and K. Koketsu. 2023. Efficient production of lacto-N-fucopentaose III in engineered Escherichia coli using α1,3-fucosyltransferase from Parabacteroides goldsteinii. Journal of Biotechnology 361:110–8. doi: 10.1016/j.jbiotec.2022.12.002.
  • Sun, H.-Y., S.-W. Lin, T.-P. Ko, J.-F. Pan, C.-L. Liu, C.-N. Lin, A. H.-J. Wang, and C.-H. Lin. 2007. Structure and mechanism of Helicobacter pylori fucosyltransferase: A basis for lipopolysaccharide variation and inhibitor design. The Journal of Biological Chemistry 282 (13):9973–82. doi: 10.1074/jbc.M610285200.
  • Tan, Y., Y. Zhang, Y. Han, H. Liu, H. Chen, F. Ma, S. G. Withers, Y. Feng, and G. Yang. 2019. Directed evolution of an α1,3-fucosyltransferase using a single-cell ultrahigh-throughput screening method. Science Advances 5 (10):eaaw8451. doi: 10.1126/sciadv.aaw8451.
  • Thum, C., C. R. Wall, G. A. Weiss, W. Wang, I. M.-Y. Szeto, and L. Day. 2021. Changes in HMO concentrations throughout lactation: Influencing factors, health effects and opportunities. Nutrients 13 (7):2272. doi: 10.3390/nu13072272.
  • Thurl, S., M. Munzert, G. Boehm, C. Matthews, and B. Stahl. 2017. Systematic review of the concentrations of oligosaccharides in human milk. Nutrition Reviews 75 (11):920–33. doi: 10.1093/nutrit/nux044.
  • Totani, K., K. Shimizu, Y. Harada, T. Murata, and T. Usui. 2002. Enzymatic synthesis of oligosaccharide containing Lex unit by using partially purified chicken serum. Bioscience, Biotechnology, and Biochemistry 66 (3):636–40. doi: 10.1271/bbb.66.636.
  • Tsai, T.-W., J.-L. Fang, C.-Y. Liang, C.-J. Wang, Y.-T. Huang, Y.-J. Wang, J.-Y. Li, and C.-C. Yu. 2019. Exploring the synthetic application of Helicobacter pylori α1,3/4-fucosyltransferase FucTIII toward the syntheses of fucosylated human milk glycans and Lewis antigens. ACS Catalysis 9 (12):10712–20. doi: 10.1021/acscatal.9b03752.
  • Tsukuda, N., K. Yahagi, T. Hara, Y. Watanabe, H. Matsumoto, H. Mori, K. Higashi, H. Tsuji, S. Matsumoto, K. Kurokawa, et al. 2021. Key bacterial taxa and metabolic pathways affecting gut short-chain fatty acid profiles in early life. The ISME Journal 15 (9):2574–90. doi: 10.1038/s41396-021-00937-7.
  • Tu, Z., Y.-N. Lin, and C.-H. Lin. 2013. Development of fucosyltransferase and fucosidase inhibitors. Chemical Society Reviews 42 (10):4459–75. doi: 10.1039/c3cs60056d.
  • Wan, L., Y. Zhu, W. Li, W. Zhang, and W. Mu. 2020a. Combinatorial modular pathway engineering for guanosine 5’-diphosphate-L-fucose production in recombinant Escherichia coli. Journal of Agricultural and Food Chemistry 68 (20):5668–75. doi: 10.1021/acs.jafc.0c01064.
  • Wan, L., Y. Zhu, W. Zhang, and W. Mu. 2020b. α-L-Fucosidases and their applications for the production of fucosylated human milk oligosaccharides. Applied Microbiology and Biotechnology 104 (13):5619–31. doi: 10.1007/s00253-020-10635-7.
  • Wang, G., P. G. Boulton, N. W. C. Chan, M. M. Palcic, and D. E. Taylor. 1999. Novel Helicobacter pylori α1,2-fucosyltransferase, a key enzyme in the synthesis of Lewis antigens. Microbiology 145 (11):3245–53. doi: 10.1099/00221287-145-11-3245.
  • Wang, Y., X. Zhou, P. Gong, Y. Chen, Z. Feng, P. Liu, P. Zhang, X. Wang, L. Zhang, and L. Song. 2020. Comparative major oligosaccharides and lactose between Chinese human and animal milk. International Dairy Journal 108:104727. doi: 10.1016/j.idairyj.2020.104727.
  • Yu, H., and X. Chen. 2016. One-pot multienzyme (OPME) systems for chemoenzymatic synthesis of carbohydrates. Organic & Biomolecular Chemistry 14 (10):2809–18. doi: 10.1039/c6ob00058d.
  • Yu, H., Y. Li, Z. Wu, L. Li, J. Zeng, C. Zhao, Y. Wu, N. Tasnima, J. Wang, H. Liu, et al. 2017. H. pylori α1-3/4-fucosyltransferase (Hp3/4FT)-catalyzed one-pot multienzyme (OPME) synthesis of Lewis antigens and human milk fucosides. Chemical Communications (Cambridge, England) 53 (80):11012–5. doi: 10.1039/c7cc05403c.
  • Yu, J., J. Shin, M. Park, E. Seydametova, S.-M. Jung, J.-H. Seo, and D.-H. Kweon. 2018. Engineering of α-1,3-fucosyltransferases for production of 3-fucosyllactose in Escherichia coli. Metabolic Engineering 48:269–78. doi: 10.1016/j.ymben.2018.05.021.
  • Yu, Z.-T., C. Chen, and D. S. Newburg. 2013. Utilization of major fucosylated and sialylated human milk oligosaccharides by isolated human gut microbes. Glycobiology 23 (11):1281–92. doi: 10.1093/glycob/cwt065.
  • Zeuner, B., J. Muschiol, J. Holck, M. Lezyk, M. R. Gedde, C. Jers, J. D. Mikkelsen, and A. S. Meyer. 2018a. Substrate specificity and transfucosylation activity of GH29 α-L-fucosidases for enzymatic production of human milk oligosaccharides. New Biotechnology 41:34–45. doi: 10.1016/j.nbt.2017.12.002.
  • Zeuner, B., M. Vuillemin, J. Holck, J. Muschiol, and A. S. Meyer. 2018b. Loop engineering of an α-1,3/4-L-fucosidase for improved synthesis of human milk oligosaccharides. Enzyme and Microbial Technology 115:37–44. doi: 10.1016/j.enzmictec.2018.04.008.
  • Zhai, Y., D. Han, Y. Pan, S. Wang, J. Fang, P. Wang, and X-w Liu. 2015. Enhancing GDP-fucose production in recombinant Escherichia coli by metabolic pathway engineering. Enzyme and Microbial Technology 69:38–45. doi: 10.1016/j.enzmictec.2014.12.001.
  • Zhang, L., K. Lau, J. Cheng, H. Yu, Y. Li, G. Sugiarto, S. Huang, L. Ding, V. Thon, P. G. Wang, et al. 2010. Helicobacter hepaticus Hh0072 gene encodes a novel α1-3-fucosyltransferase belonging to CAZy GT11 family. Glycobiology 20 (9):1077–88. doi: 10.1093/glycob/cwq068.
  • Zhang, P., Y. Zhu, Z. Li, W. Zhang, and W. Mu. 2022. Recent advances on lacto-N-neotetraose, a commercially added human milk oligosaccharide in infant formula. Journal of Agricultural and Food Chemistry 70 (15):4534–47. doi: 10.1021/acs.jafc.2c01101.
  • Zhang, S., T. Li, J. Xie, D. Zhang, C. Pi, L. Zhou, and W. Yang. 2021. Gold standard for nutrition: A review of human milk oligosaccharide and its effects on infant gut microbiota. Microbial Cell Factories 20 (1):108. doi: 10.1186/s12934-021-01599-y.
  • Zhao, C., Y. Wu, H. Yu, I. M. Shah, Y. Li, J. Zeng, B. Liu, D. A. Mills, and X. Chen. 2016. The one-pot multienzyme (OPME) synthesis of human blood group H antigens and a human milk oligosaccharide (HMOS) with highly active Thermosynechococcus elongatus α1-2-fucosyltransferase. Chemical Communications (Cambridge, England) 52 (20):3899–902. doi: 10.1039/c5cc10646j.
  • Zhong, R., L. Gao, Z. Chen, S. Yuan, X. Chen, and C. Zhao. 2021. Chemoenzymatic synthesis of fucosylated oligosaccharides using Thermosynechococcus α1-2-fucosyltransferase and their application in the regulation of intestinal microbiota. Food Chemistry: X 12:100152. doi: 10.1016/j.fochx.2021.100152.
  • Zhou, W., H. Jiang, L. Wang, X. Liang, and X. Mao. 2021. Biotechnological production of 2’-fucosyllactose: A prevalent fucosylated human milk oligosaccharide. ACS Synthetic Biology 10 (3):447–58. doi: 10.1021/acssynbio.0c00645.
  • Zhu, Y., G. Luo, L. Wan, J. Meng, S. Y. Lee, and W. Mu. 2022. Physiological effects, biosynthesis, and derivatization of key human milk tetrasaccharides, lacto-N-tetraose, and lacto-N-neotetraose. Critical Reviews in Biotechnology 42 (4):578–96.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.