220
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Recent advances in the combinations of plant-sourced natural products for the prevention of mycotoxin contamination in food

, , , , , , , , & show all

References

  • Abdelghany, T. M., M. M. Hassan, M. A. El-Naggar, and M. Abd El-Mongy. 2020. GC/MS analysis of Juniperus procera extract and its activity with silver nanoparticles against Aspergillus flavus growth and aflatoxins production. Biotechnology Reports (Amsterdam, Netherlands) 27:e00496. doi: 10.1016/j.btre.2020.e00496.
  • Afsah‐Hejri, L., P. Hajeb, and R. J. Ehsani. 2020. Application of ozone for degradation of mycotoxins in food: A review. Comprehensive Reviews in Food Science and Food Safety 19 (4):1777–808. doi: 10.1111/1541-4337.12594.
  • Ahmed, O. S., C. Tardif, C. Rouger, V. Atanasova, F. Richard-Forget, and P. Waffo-Téguo. 2022. Naturally occurring phenolic compounds as promising antimycotoxin agents: Where are we now? Comprehensive Reviews in Food Science and Food Safety 21 (2):1161–97. doi: 10.1111/1541-4337.12891.
  • Álvarez, M., A. Rodríguez, F. Núñez, A. Silva, and M. J. Andrade. 2020. In vitro antifungal effects of spices on ochratoxin A production and related gene expression in Penicillium nordicum on a dry-cured fermented sausage medium. Food Control 114:107222. doi: 10.1016/j.foodcont.2020.107222.
  • Añibarro-Ortega, M., J. Pinela, L. Barros, A. Ćirić, S. P. Silva, E. Coelho, A. Mocan, R. C. Calhelha, M. Soković, M. A. Coimbra, and I. Ferreira. 2019. Compositional features and bioactive properties of Aloe vera leaf (fillet, mucilage, and rind) and flower. Antioxidants 8 (10):444. doi: 10.3390/antiox8100444.
  • Badawy, M., G. Marei, E. I. Rabea, and N. Taktak. 2019. Antimicrobial and antioxidant activities of hydrocarbon and oxygenated monoterpenes against some foodborne pathogens through in vitro and in silico studies. Pesticide Biochemistry and Physiology 158:185–200. doi: 10.1016/j.pestbp.2019.05.008.
  • Bakri, M. M., M. A. El-Naggar, E. Helmy, M. S. Ashoor, and A. Ghany. 2020. Efficacy of Juniperus procera constituents with silver nanoparticles against Aspergillus fumigatus and Fusarium chlamydosporum. BioNanoScience 10 (1):62–72. doi: 10.1007/s12668-019-00716-x.
  • Brito, V. D., F. Achimón, J. S. Dambolena, R. P. Pizzolitto, and J. A. Zygadlo. 2019. Trans-2-hexen-1-ol as a tool for the control of Fusarium verticillioides in stored maize grains. Journal of Stored Products Research 82:123–30. doi: 10.1016/j.jspr.2019.05.002.
  • Buitimea-Cantúa, G. V., N. E. Buitimea-Cantúa, M. Del Refugio Rocha-Pizaña, E. C. Rosas-Burgos, A. Hernández-Morales, and J. Molina-Torres. 2020. Antifungal and anti-aflatoxigenic activity of Heliopsis longipes roots and affinin/spilanthol against Aspergillus parasiticus by downregulating the expression of alfD and aflR genes of the aflatoxins biosynthetic pathway. Journal of Environmental Science and Health. Part. B, Pesticides, Food Contaminants, and Agricultural Wastes 55 (3):210–9. doi: 10.1080/03601234.2019.1681818.
  • Cai, J., R. Yan, J. Shi, J. Chen, M. Long, W. Wu, and K. Kuca. 2022. Antifungal and mycotoxin detoxification ability of essential oils: A review. Phytotherapy Research: PTR 36 (1):62–72. doi: 10.1002/ptr.7281.
  • Chakravartula, S. S. N., R. V. Lourenço, F. Balestra, A. M. Q. B. Bittante, P. J. do Amaral Sobral, and M. Dalla Rosa. 2020. Influence of pitanga (Eugenia uniflora L.) leaf extract and/or natamycin on properties of cassava starch/chitosan active films. Food Packaging and Shelf Life 24:100498. doi: 10.1016/j.fpsl.2020.100498.
  • Chakroun, Y., Y. Snoussi, M. M. Chehimi, M. Abderrabba, J. M. Savoie, and S. Oueslati. 2023. Encapsulation of Ammoides pusila essential oil into mesoporous silica particles for the enhancement of their activity against Fusarium avenaceum and its Enniatins production. Molecules 28 (7):3194. doi: 10.3390/molecules28073194.
  • Chang, H., J. Xu, L. A. Macqueen, Z. Aytac, M. M. Peters, J. F. Zimmerman, T. Xu, P. Demokritou, and K. K. Parker. 2022. High-throughput coating with biodegradable antimicrobial pullulan fibres extends shelf life and reduces weight loss in an avocado model. Nature Food 3 (6):428–36. doi: 10.1038/s43016-022-00523-w.
  • Chaudhari, A. K., V. K. Singh, S. Das, Deepika, J. Prasad, A. K. Dwivedy, and N. K. Dubey. 2020b. Improvement of in vitro and in situ antifungal, AFB1 inhibitory and antioxidant activity of Origanum majorana L. essential oil through nanoemulsion and recommending as novel food preservative. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 143: 111536. doi: 10.1016/j.fct.2020.111536.
  • Chaudhari, A. K., V. K. Singh, S. Das, and N. K. Dubey. 2021. Nanoencapsulation of essential oils and their bioactive constituents: A novel strategy to control mycotoxin contamination in food system. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 149:112019. doi: 10.1016/j.fct.2021.112019.
  • Chaudhari, A. K., A. Singh, V. Kumar Singh, A. Kumar Dwivedy, S. Das, M. Grace Ramsdam, M. S. Dkhar, H. Kayang, and N. Kishore Dubey. 2020a. Assessment of chitosan biopolymer encapsulated α-Terpineol against fungal, aflatoxin B1 (AFB1) and free radicals mediated deterioration of stored maize and possible mode of action. Food Chemistry 311:126010. doi: 10.1016/j.foodchem.2019.126010.
  • Chein, S. H., M. B. Sadiq, and A. K. Anal. 2019. Antifungal effects of chitosan films incorporated with essential oils and control of fungal contamination in peanut kernels. Journal of Food Processing and Preservation 43 (12):e14235. doi: 10.1111/jfpp.14235.
  • Chen, Y. H., M. H. Lu, D. S. Guo, Y. Y. Zhai, D. Miao, J. Y. Yue, C. H. Yuan, M. M. Zhao, and D. R. An. 2019. Antifungal effect of magnolol and honokiol from Magnolia officinalis on Alternaria alternata causing tobacco brown spot. Molecules 24 (11):2140. doi: 10.3390/molecules24112140.
  • Chen, Y., M. Xing, T. Chen, S. Tian, and B. Li. 2023. Effects and mechanisms of plant bioactive compounds in preventing fungal spoilage and mycotoxin contamination in postharvest fruits: A review. Food Chemistry 415:135787. doi: 10.1016/j.foodchem.2023.135787.
  • Chtioui, W., V. Balmas, G. Delogu, Q. Migheli, and S. Oufensou. 2022. Bioprospecting phenols as inhibitors of trichothecene-producing Fusarium: Sustainable approaches to the management of wheat pathogens. Toxins 14 (2):72. doi: 10.3390/toxins14020072.
  • Cibanal, I. L., L. A. Fernandez, A. P. Murray, C. N. Pellegrini, and L. M. Gallez. 2021. Propolis extract and oregano essential oil as biofungicides for garlic seed cloves: In vitro assays and synergistic interaction against Penicillium allii. Journal of Applied Microbiology 131 (4):1909–18. doi: 10.1111/jam.15081.
  • Clemente, I., M. Aznar, and C. Nerin. 2019. Synergistic properties of mustard and cinnamon essential oils for the inactivation of foodborne moulds in vitro and on Spanish bread. International Journal of Food Microbiology 298:44–50. doi: 10.1016/j.ijfoodmicro.2019.03.012.
  • Das, S., A. Ghosh, and A. Mukherjee. 2021. Nanoencapsulation-based edible coating of essential oils as a novel green strategy against fungal spoilage, mycotoxin contamination, and quality deterioration of stored fruits: An overview. Frontiers in Microbiology 12:768414. doi: 10.3389/fmicb.2021.768414.
  • Das, S., V. K. Singh, A. K. Dwivedy, A. K. Chaudhari, Deepika, and N. K. Dubey. 2021a. Eugenol loaded chitosan nanoemulsion for food protection and inhibition of Aflatoxin B1 synthesizing genes based on molecular docking. Carbohydrate Polymers 255: 117339. doi: 10.1016/j.carbpol.2020.117339.
  • Das, S., V. K. Singh, A. K. Dwivedy, A. K. Chaudhari, and N. K. Dubey. 2021b. Exploration of some potential bioactive essential oil components as green food preservative. LWT 137:110498. doi: 10.1016/j.lwt.2020.110498.
  • Das, S., V. K. Singh, A. K. Dwivedy, A. K. Chaudhari, and N. K. Dubey. 2020. Myristica fragrans essential oil nanoemulsion as novel green preservative against fungal and aflatoxin contamination of food commodities with emphasis on biochemical mode of action and molecular docking of major components. LWT 130:109495. doi: 10.1016/j.lwt.2020.109495.
  • Das, S., V. K. Singh, A. K. Dwivedy, A. K. Chaudhari, N. Upadhyay, A. Singh, Deepika, and N. K. Dubey. 2019. Antimicrobial activity, antiaflatoxigenic potential and in situ efficacy of novel formulation comprising of Apium graveolens essential oil and its major component. Pesticide Biochemistry and Physiology 160: 102–111. doi: 10.1016/j.pestbp.2019.07.013.
  • de Castro e Silva, P., L. A. S. Pereira, A. M. T. Lago, M. Valquíria, É. M. de Rezende, G. R. Carvalho, J. E. Oliveira, and J. M. Marconcini. 2019. Physical-mechanical and antifungal properties of pectin nanocomposites/neem oil nanoemulsion for seed coating. Food Biophysics 14 (4):456–66. doi: 10.1007/s11483-019-09592-0.
  • Deepika, A., Singh, A. K., Chaudhari, S. Das, and N. K. Dubey. 2021. Zingiber zerumbet L. essential oil‐based chitosan nanoemulsion as an efficient green preservative against fungi and aflatoxin B1 contamination. Journal of Food Science 86 (1):149–160. doi: 10.1111/1750-3841.15545.
  • Ferreira, F. M. D., E. Y. Hirooka, F. D. Ferreira, M. V. Silva, S. A. G. Mossini, and M. Machinski. 2018. Effect of Zingiber officinale Roscoe essential oil in fungus control and deoxynivalenol production of Fusarium graminearum Schwabe in vitro. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 35 (11):2168–74. doi: 10.1080/19440049.2018.1520397.
  • Frezza, C., A. Venditti, E. Marcucci, A. Parroni, M. Reverberi, M. Serafini, and A. Bianco. 2019. Phytochemical analysis of Linaria purpurea (L.) Mill. and inhibitory activity on the production of aflatoxin B1 (AFB1) in Aspergillus flavus Link. of one of its metabolites, antirrhinoside. Industrial Crops and Products 139:111554. doi: 10.1016/j.indcrop.2019.111554.
  • Garcia, D., A. J. Ramos, V. Sanchis, and S. Marín. 2012. Effect of Equisetum arvense and Stevia rebaudiana extracts on growth and mycotoxin production by Aspergillus flavus and Fusarium verticillioides in maize seeds as affected by water activity. International Journal of Food Microbiology 153 (1–2):21–7. doi: 10.1016/j.ijfoodmicro.2011.10.010.
  • García-Díaz, M., J. Gil-Serna, B. Patiño, E. García-Cela, N. Magan, and Á. Medina. 2020. Assessment of the effect of Satureja montana and Origanum virens essential oils on Aspergillus flavus growth and aflatoxin production at different water activities. Toxins 12 (3):142. doi: 10.3390/toxins12030142.
  • Giamperi, L., A. E. A. Bucchini, D. Ricci, B. Tirillini, M. Nicoletti, R. Rakotosaona, and F. Maggi. 2020. Vepris macrophylla (Baker) I. Verd essential oil: An antifungal agent against phytopathogenic fungi. International Journal of Molecular Sciences 21 (8):2776. doi: 10.3390/ijms21082776.
  • Gomez, A. A., Z. P. Terán Baptista, T. Mandova, A. Barouti, M. Kritsanida, R. Grougnet, M. A. Vattuone, and D. A. Sampietro. 2020. Antifungal and antimycotoxigenic metabolites from native plants of northwest Argentina: Isolation, identification and potential for control of Aspergillus species. Natural Product Research 34 (22):3299–302. doi: 10.1080/14786419.2018.1560286.
  • Grintzalis, K., S. I. Vernardis, M. I. Klapa, and C. D. Georgiou. 2014. Role of oxidative stress in Sclerotial differentiation and aflatoxin B1 biosynthesis in Aspergillus flavus. Applied and Environmental Microbiology 80 (18):5561–71. doi: 10.1128/AEM.01282-14.
  • Hamad, G. M., T. Mehany, J. Simal-Gandara, S. Abou-Alella, O. J. Esua, M. A. Abdel-Wahhab, and E. E. Hafez. 2023. A review of recent innovative strategies for controlling mycotoxins in foods. Food Control 144:109350. doi: 10.1016/j.foodcont.2022.109350.
  • Han, B., G. W. Fu, and J. Q. Wang. 2022. Inhibition of essential oils on growth of Aspergillus flavus and aflatoxin B1 production in broth and poultry feed. Toxins 14 (10):655. doi: 10.3390/toxins14100655.
  • Heidtmann-Bemvenuti, R., Tralamazza, S. M. Jorge Ferreira, C. F. Corrêa, B, and Badiale-Furlong, E. 2016. Effect of natural compounds on Fusarium graminearum complex. Journal of the Science of Food and Agriculture 96 (12):3998–4008. doi: 10.1002/jsfa.7591.
  • Hernandez, C., L. Cadenillas, A. E. Maghubi, I. Caceres, V. Durrieu, C. Mathieu, and J. D. Bailly. 2021. Mimosa tenuiflora aqueous extract: Role of condensed tannins in anti-aflatoxin B1 activity in Aspergillus flavus. Toxins 13 (6):391. doi: 10.3390/toxins13060391.
  • Hossain, F., P. Follett, K. Dang Vu, M. Harich, S. Salmieri, and M. Lacroix. 2016. Evidence for synergistic activity of plant-derived essential oils against fungal pathogens of food. Food Microbiology 53 (Pt B):24–30. doi: 10.1016/j.fm.2015.08.006.
  • Hossain, F., P. Follett, S. Salmieri, K. D. Vu, C. Fraschini, and M. Lacroix. 2019. Antifungal activities of combined treatments of irradiation and essential oils (EOs) encapsulated chitosan nanocomposite films in in vitro and in situ conditions. International Journal of Food Microbiology 295:33–40. doi: 10.1016/j.ijfoodmicro.2019.02.009.
  • Hu, Z., K. Yuan, Q. Zhou, C. Lu, L. Du, and F. Liu. 2021. Mechanism of antifungal activity of Perilla frutescens essential oil against Aspergillus flavus by transcriptomic analysis. Food Control 123:107703. doi: 10.1016/j.foodcont.2020.107703.
  • Ji, H., H. Kim, L. R. Beuchat, and J. H. Ryu. 2019. Synergistic antimicrobial activities of essential oil vapours against Penicillium corylophilum on a laboratory medium and beef jerky. International Journal of Food Microbiology 291:104–10. doi: 10.1016/j.ijfoodmicro.2018.11.023.
  • Jiménez, C. M., H. L. Álvarez, M. S. Ballari, G. R. Labadié, C. Catalán, R. E. Toso, and D. A. Sampietro. 2021. Antifungal activity of Euphorbia species against moulds responsible of cereal ear rots. Journal of Applied Microbiology 130 (4):1285–93. doi: 10.1111/jam.14860.
  • Ju, J., Y. Xie, H. Yu, Y. Guo, Y. Cheng, Y. Chen, L. Ji, and W. Yao. 2020a. Synergistic properties of citral and eugenol for the inactivation of foodborne molds in vitro and on bread. LWT 122:109063. doi: 10.1016/j.lwt.2020.109063.
  • Ju, J., Y. Xie, H. Yu, Y. Guo, Y. Cheng, R. Zhang, and W. Yao. 2020b. Synergistic inhibition effect of citral and eugenol against Aspergillus niger and their application in bread preservation. Food Chemistry 310:125974. doi: 10.1016/j.foodchem.2019.125974.
  • Kapetanakou, A. E., S. Nestora, V. Evageliou, and P. N. Skandamis. 2019. Sodium alginate-cinnamon essential oil coated apples and pears: Variability of Aspergillus carbonarius growth and ochratoxin A production. Food Research International (Ottawa, ON) 119:876–85. doi: 10.1016/j.foodres.2018.10.072.
  • Karioti, A., M. Sokovic, A. Ciric, C. Koukoulitsa, A. R. Bilia, and H. Skaltsa. 2011. Antimicrobial properties of Quercus ilex L. proanthocyanidin dimers and simple phenolics: Evaluation of their synergistic activity with conventional antimicrobials and prediction of their pharmacokinetic profile. Journal of Agricultural and Food Chemistry 59 (12):6412–22. doi: 10.1021/jf2011535.
  • Karlovsky, P., M. Suman, F. Berthiller, J. De Meester, G. Eisenbrand, I. Perrin, I. P. Oswald, G. Speijers, A. Chiodini, T. Recker, et al. 2016. Impact of food processing and detoxification treatments on mycotoxin contamination. Mycotoxin Research 32 (4):179–205. doi: 10.1007/s12550-016-0257-7.
  • Khodaei, D., F. Javanmardi, and A. M. Khaneghah. 2021. The global overview of the occurrence of mycotoxins in cereals: A three-year survey. Current Opinion in Food Science 39:36–42. doi: 10.1016/j.cofs.2020.12.012.
  • Khumpirapang, N., S. Klayraung, S. Tima, and S. Okonogi. 2021. Development of microemulsion containing Alpinia galanga oil and its major compounds: Enhancement of antimicrobial activities. Pharmaceutics 13 (2):265. doi: 10.3390/pharmaceutics13020265.
  • Kim, J., B. Campbell, N. Mahoney, K. Chan, R. Molyneux, and G. May. 2008. Chemosensitization prevents tolerance of Aspergillus fumigatus to antimycotic drugs. Biochemical and Biophysical Research Communications 372 (1):266–71. doi: 10.1016/j.bbrc.2008.05.030.
  • Kim, J. H., B. C. Campbell, N. Mahoney, K. L. Chan, R. J. Molyneux, and C. L. Xiao. 2010. Use of chemosensitization to overcome fludioxonil resistance in Penicillium expansum. Letters in Applied Microbiology 51 (2):177–83. doi: 10.1111/j.1472-765X.2010.02875.x.
  • Kong, Q., L. Zhang, P. An, J. Qi, X. Yu, J. Lu, and X. Ren. 2019. Antifungal mechanisms of alpha-terpineol and terpene-4-alcohol as the critical components of Melaleuca alternifolia oil in the inhibition of rot disease caused by Aspergillus ochraceus in postharvest grapes. Journal of Applied Microbiology 126 (4):1161–74. doi: 10.1111/jam.14193.
  • Kringel, D. H., G. H. Lang, Á. R. G. Dias, E. A. Gandra, T. K. Valente Gandra, and E. da Rosa Zavareze. 2021. Impact of encapsulated orange essential oil with beta-cyclodextrin on technological, digestibility, sensory properties of wheat cakes as well as Aspergillus flavus spoilage. Journal of the Science of Food and Agriculture 101 (13):5599–607. doi: 10.1002/jsfa.11211.
  • Kujur, A., A. Kumar, and B. Prakash. 2021a. Elucidation of antifungal and aflatoxin B1 inhibitory mode of action of Eugenia caryophyllata L. essential oil loaded chitosan nanomatrix against Aspergillus flavus. Pesticide Biochemistry and Physiology 172:104755. doi: 10.1016/j.pestbp.2020.104755.
  • Kujur, A., A. Kumar, P. P. Singh, and B. Prakash. 2021b. Fabrication, characterization, and antifungal assessment of jasmine essential oil-loaded chitosan nanomatrix against Aspergillus flavus in food system. Food and Bioprocess Technology 14 (3):554–71. doi: 10.1007/s11947-021-02592-4.
  • Kujur, A., A. Yadav, A. Kumar, P. P. Singh, and B. Prakash. 2019. Nanoencapsulated methyl salicylate as a biorational alternative of synthetic antifungal and aflatoxin B1 suppressive agents. Environmental Science and Pollution Research International 26 (18):18440–50. doi: 10.1007/s11356-019-05171-5.
  • Kumar, A., V. Gupta, P. P. Singh, A. Kujur, and B. Prakash. 2020. Fabrication of volatile compounds loaded-chitosan biopolymer nanoparticles: Optimization, characterization and assessment against Aspergillus flavus and aflatoxin B1 contamination. International Journal of Biological Macromolecules 165 (Pt A):1507–18. doi: 10.1016/j.ijbiomac.2020.09.257.
  • Kumar, A., A. Kujur, P. P. Singh, and B. Prakash. 2019. Nanoencapsulated plant-based bioactive formulation against food-borne molds and aflatoxin B1 contamination: Preparation, characterization and stability evaluation in the food system. Food Chemistry 287:139–50. doi: 10.1016/j.foodchem.2019.02.045.
  • Lasram, S., H. Zemni, Z. Hamdi, S. Chenenaoui, H. Houissa, M. S. Tounsi, and A. Ghorbel. 2019. Antifungal and antiaflatoxinogenic activities of Carum carvi L., Coriandrum sativum L. seed essential oils and their major terpene component against Aspergillus flavus. Industrial Crops and Products 134:11–8. doi: 10.1016/j.indcrop.2019.03.037.
  • Li, Z., S. Lin, S. An, L. Liu, Y. Hu, and L. Wan. 2019. Preparation, characterization and anti-aflatoxigenic activity of chitosan packaging films incorporated with turmeric essential oil. International Journal of Biological Macromolecules 131:420–34. doi: 10.1016/j.ijbiomac.2019.02.169.
  • Lin, X., W. Yu, X. Tong, C. Li, N. Duan, Z. Wang, and S. Wu. 2022. Application of nanomaterials for coping with mycotoxin contamination in food safety: From detection to control. Critical Reviews in Analytical Chemistry. Advance online publication. doi: 10.1080/10408347.2022.2076063.
  • Li, X., Y. Ren, J. Jing, Y. Jiang, Q. Yang, S. Luo, and F. Xing. 2021. The inhibitory mechanism of methyl jasmonate on Aspergillus flavus growth and aflatoxin biosynthesis and two novel transcription factors are involved in this action. Food Research International (Ottawa, ON) 140:110051. doi: 10.1016/j.foodres.2020.110051.
  • Liu, Y., J. H. Galani Yamdeu, Y. Y. Gong, and C. Orfila. 2020. A review of postharvest approaches to reduce fungal and mycotoxin contamination of foods. Comprehensive Reviews in Food Science and Food Safety 19 (4):1521–60. doi: 10.1111/1541-4337.12562.
  • Loi, M., C. Paciolla, A. F. Logrieco, and G. Mulè. 2020. Plant bioactive compounds in pre- and postharvest management for aflatoxins reduction. Frontiers in Microbiology 11:243. doi: 10.3389/fmicb.2020.00243.
  • Makhuvele, R., K. Naidu, S. Gbashi, V. C. Thipe, O. A. Adebo, and P. B. Njobeh. 2020. The use of plant extracts and their phytochemicals for control of toxigenic fungi and mycotoxins. Heliyon 6 (10):e05291. doi: 10.1016/j.heliyon.2020.e05291.
  • Marin, S., A. J. Ramos, G. Cano-Sancho, and V. Sanchis. 2013. Mycotoxins: Occurrence, toxicology, and exposure assessment. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 60:218–37. doi: 10.1016/j.fct.2013.07.047.
  • Mirza Alizadeh, A., S. A. Golzan, A. Mahdavi, S. Dakhili, Z. Torki, and H. Hosseini. 2022. Recent advances on the efficacy of essential oils on mycotoxin secretion and their mode of action. Critical Reviews in Food Science and Nutrition 62 (17):4726–51. doi: 10.1080/10408398.2021.1878102.
  • Mohammadiani, E., J. Aliakbarlu, A. Ownagh, and A. Kaboudari. 2021. Antifungal interactions of Persian shallot (Allium hirtifolium) extracts and potassium sorbate against Aspergillus flavus and Penicillium citrinum. Flavour and Fragrance Journal 36 (3):332–8. doi: 10.1002/ffj.3645.
  • Mylona, K., E. Garcia-Cela, M. Sulyok, A. Medina, and N. Magan. 2019. Influence of two garlic-derived compounds, propyl propane thiosulfonate (PTS) and propyl propane thiosulfinate (PTSO), on growth and mycotoxin production by Fusarium species in Vitro and in stored cereals. Toxins 11 (9):495. doi: 10.3390/toxins11090495.
  • Ndiaye, S., M. Zhang, M. Fall, N. M. Ayessou, Q. Zhang, and P. Li. 2022. Current review of mycotoxin biodegradation and bioadsorption: Microorganisms, mechanisms, and main important applications. Toxins 14 (11):729. doi: 10.3390/toxins14110729.
  • Nešić, K., K. Habschied, and K. Mastanjević. 2021. Possibilities for the biological control of mycotoxins in food and feed. Toxins 13 (3):198. doi: 10.3390/toxins13030198.
  • Nguefack, J., O. Tamgue, J. B. L. Dongmo, C. D. Dakole, V. Leth, H. F. Vismer, P. H. Amvam Zollo, and A. E. Nkengfack. 2012. Synergistic action between fractions of essential oils from Cymbopogon citratus, Ocimum gratissimum and Thymus vulgaris against Penicillium expansum. Food Control 23 (2):377–83. doi: 10.1016/j.foodcont.2011.08.002.
  • Ogidi, C. O., Ojo, A. E., Ajayi-Moses O. B., Aladejana O. M., Thonda O. A. and Akinyele B. J. 2021. Synergistic antifungal evaluation of over-the-counter antifungal creams with turmeric essential oil or Aloe vera gel against pathogenic fungi. BMC Complement Medicine and Therapies 21 (1):1–12.
  • Oufensou, S., V. Balmas, E. Azara, D. Fabbri, M. A. Dettori, C. Schüller, F. Zehetbauer, J. Strauss, G. Delogu, and Q. Migheli. 2020. Naturally occurring phenols modulate vegetative growth and deoxynivalenol biosynthesis in Fusarium graminearum. ACS Omega 5 (45):29407–15. doi: 10.1021/acsomega.0c04260.
  • Park, J. Y., S. H. Kim, N. H. Kim, S. W. Lee, Y. C. Jeun, and J. K. Hong. 2017. Differential inhibitory activities of four plant essential oils on in vitro growth of Fusarium oxysporum f. sp. fragariae causing fusarium wilt in strawberry plants. The Plant Pathology Journal 33 (6):582–8. doi: 10.5423/PPJ.OA.06.2017.0133.
  • Peivasteh-Roudsari, L., M. Pirhadi, R. Shahbazi, H. Eghbaljoo-Gharehgheshlaghi, M. Sepahi, A. Mirza Alizadeh, B. Tajdar-Oranj, and S. Jazaeri. 2022. Mycotoxins: Impact on health and strategies for prevention and detoxification in the food chain. Food Reviews International 38 (sup1):193–224. doi: 10.1080/87559129.2020.1858858.
  • Perczak, A., D. Gwiazdowska, R. Gwiazdowski, K. Juś, K. Marchwińska, and A. Waśkiewicz. 2019. The inhibitory potential of selected essential oils on Fusarium spp. growth and mycotoxins biosynthesis in maize seeds. Pathogens 9 (1):23. doi: 10.3390/pathogens9010023.
  • Perincherry, L., C. Ajmi, S. Oueslati, A. Waśkiewicz, and Ł. Stępień. 2020. Induction of Fusarium lytic enzymes by extracts from resistant and susceptible cultivars of pea (Pisum sativum L.). Pathogens 9 (11):976. doi: 10.3390/pathogens9110976.
  • Pinto, E., M. J. Gonçalves, C. Cavaleiro, and L. Salgueiro. 2017. Antifungal activity of Thapsia villosa essential oil against Candida, Cryptococcus, Malassezia, Aspergillus and Dermatophyte Species. Molecules 22 (10):1595. doi: 10.3390/molecules22101595.
  • Revuelta, M. V., S. Bogdan, E. Gámez-Espinosa, M. C. Deyá, and R. Romagnoli. 2021. Green antifungal waterborne coating based on essential oil microcapsules. Progress in Organic Coatings 151:106101. doi: 10.1016/j.porgcoat.2020.106101.
  • Rodrigues, M. P., A. L. Astoreca, A. A. Oliveira, L. A. Salvato, G. L. Biscoto, L. A. M. Keller, C. Rosa, L. R. Cavaglieri, M. I. Azevedo, and K. M. Keller. 2019. In vitro activity of neem (Azadirachta indica) oil on growth and ochratoxin A production by Aspergillus carbonarius isolates. Toxins 11 (10):579. doi: 10.3390/toxins11100579.
  • Rodrigues, M. P., Á. A. de Oliveira, G. L. Biscoto, P. N. Pinto, R. R. S. Dias, L. A. Salvato, L. A. M. Keller, L. R. Cavaglieri, C. A. D. R. Rosa, and K. M. Keller. 2022. Inhibitory effect of GRAS essential oils and plant extracts on the growth of Aspergillus westerdijkiae and Aspergillus carbonarius strains. Molecules 27 (19):6422. doi: 10.3390/molecules27196422.
  • Sadhasivam, S., O. H. Shapiro, C. Ziv, O. Barda, V. Zakin, and E. Sionov. 2019. Synergistic inhibition of mycotoxigenic fungi and mycotoxin production by combination of pomegranate peel extract and azole fungicide. Frontiers in Microbiology 10:1919. doi: 10.3389/fmicb.2019.01919.
  • Safari, N., M. Mirabzadeh Ardakani, R. Hemmati, A. Parroni, M. Beccaccioli, and M. Reverberi. 2020. The potential of plant-based bioactive compounds on inhibition of aflatoxin B1 biosynthesis and down-regulation of aflR, aflM and aflP genes. Antibiotics 9 (11):728. doi: 10.3390/antibiotics9110728.
  • Sapper, M., P. Wilcaso, M. P. Santamarina, J. Roselló, and A. Chiralt. 2018. Antifungal and functional properties of starch-gellan films containing thyme (Thymus zygis) essential oil. Food Control 92:505–15. doi: 10.1016/j.foodcont.2018.05.004.
  • Sawadogo, I., A. Paré, D. Kaboré, D. Montet, N. Durand, J. Bouajila, E. P. Zida, H. Sawadogo-Lingani, P. A. Nikiéma, R. H. C. Nebié, et al. 2022. Antifungal and antiaflatoxinogenic effects of Cymbopogon citratus, Cymbopogon nardus, and Cymbopogon schoenanthus essential oils alone and in combination. Journal of Fungi 8 (2):117. doi: 10.3390/jof8020117.
  • Sedlaříková, J., M. Doležalová, P. Egner, J. Pavlačková, J. Krejčí, O. Rudolf, and P. Peer. 2017. Effect of oregano and marjoram essential oils on the physical and antimicrobial properties of chitosan based systems. International Journal of Polymer Science 2017:1–12. doi: 10.1155/2017/2593863.
  • Shao, X., B. Cao, F. Xu, S. Xie, D. Yu, and H. Wang. 2015. Effect of postharvest application of chitosan combined with clove oil against citrus green mold. Postharvest Biology and Technology 99:37–43. doi: 10.1016/j.postharvbio.2014.07.014.
  • Shcherbakova, L., O. Mikityuk, L. Arslanova, A. Stakheev, D. Erokhin, S. Zavriev, and V. Dzhavakhiya. 2021. Studying the ability of thymol to improve fungicidal effects of tebuconazole and difenoconazole against some plant pathogenic fungi in seed or foliar treatments. Frontiers in Microbiology 12:629429. doi: 10.3389/fmicb.2021.629429.
  • Singh, P. P., A. Kumar, and B. Prakash. 2020. Elucidation of antifungal toxicity of Callistemon lanceolatus essential oil encapsulated in chitosan nanogel against Aspergillus flavus using biochemical and in-silico approaches. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 37 (9):1520–30. doi: 10.1080/19440049.2020.1775310.
  • Singh, P., R. Shukla, B. Prakash, A. Kumar, S. Singh, P. K. Mishra, and N. K. Dubey. 2010. Chemical profile, antifungal, antiaflatoxigenic and antioxidant activity of Citrus maxima Burm. and Citrus sinensis (L.) Osbeck essential oils and their cyclic monoterpene, DL-limonene. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 48 (6):1734–40. doi: 10.1016/j.fct.2010.04.001.
  • Singh, B. K., S. Tiwari, and N. K. Dubey. 2021. Essential oils and their nanoformulations as green preservatives to boost food safety against mycotoxin contamination of food commodities: A review. Journal of the Science of Food and Agriculture 101 (12):4879–90. doi: 10.1002/jsfa.11255.
  • Stević, T., T. Berić, K. Šavikin, M. Soković, D. Gođevac, I. Dimkić, and S. Stanković. 2014. Antifungal activity of selected essential oils against fungi isolated from medicinal plant. Industrial Crops and Products 55:116–22. doi: 10.1016/j.indcrop.2014.02.011.
  • Tian, F., S. Y. Lee, S. Y. Woo, H. Y. Choi, S. B. Park, and H. S. Chun. 2021. Effect of plant-based compounds on the antifungal and antiaflatoxigenic efficiency of strobilurins against Aspergillus flavus. Journal of Hazardous Materials 415:125663. doi: 10.1016/j.jhazmat.2021.125663.
  • Uwineza, P. A., M. Urbaniak, M. Bryła, Ł. Stępień, M. Modrzewska, and A. Waśkiewicz. 2022. In vitro effects of Lemon Balm extracts in reducing the growth and mycotoxins biosynthesis of Fusarium culmorum and F. proliferatum. Toxins 14 (5):355. doi: 10.3390/toxins14050355.
  • Vamvakas, S. S., M. Chroni, F. Genneos, and S. Gizeli. 2021. Vaccinium myrtillus L. dry leaf aqueous extracts suppress aflatoxins biosynthesis by Aspergillus flavus. Food Bioscience 39:100790. doi: 10.1016/j.fbio.2020.100790.
  • Venturini, T. P., L. Rossato, F. Chassot, M. I. De Azevedo, A. M. Al-Hatmi, J. M. Santurio, and S. H. Alves. 2021. Activity of cinnamaldehyde, carvacrol and thymol combined with antifungal agents against Fusarium spp. Journal of Essential Oil Research 33 (5):502–8. doi: 10.1080/10412905.2021.1923580.
  • Wang, Y., K. Feng, H. Yang, Z. Zhang, Y. Yuan, and T. Yue. 2018. Effect of cinnamaldehyde and citral combination on transcriptional profile, growth, oxidative damage and patulin biosynthesis of Penicillium expansum. Frontiers in Microbiology 9:597. doi: 10.3389/fmicb.2018.00597.
  • Wang, L., F. Liu, Y. Jiang, Z. Chai, P. Li, Y. Cheng, H. Jing, and X. Leng. 2011. Synergistic antimicrobial activities of natural essential oils with chitosan films. Journal of Agricultural and Food Chemistry 59 (23):12411–9. doi: 10.1021/jf203165k.
  • Wang, Y., L. Yang, X. Fei, X. Yao, D. Gao, and S. Guo. 2019. Antifungal effect of camellia seed cake extract on Aspergillus flavus. Journal of Food Protection 82 (3):463–9. doi: 10.4315/0362-028X.JFP-18-285.
  • Wan, J., Z. Jin, S. Zhong, P. Schwarz, B. Chen, and J. Rao. 2020. Clove oil-in-water nanoemulsion: Mitigates growth of Fusarium graminearum and trichothecene mycotoxin production during the malting of Fusarium infected barley. Food Chemistry 312:126120. doi: 10.1016/j.foodchem.2019.126120.
  • Wan, J., S. Zhong, P. Schwarz, B. Chen, and J. Rao. 2019. Physical properties, antifungal and mycotoxin inhibitory activities of five essential oil nanoemulsions: Impact of oil compositions and processing parameters. Food Chemistry 291:199–206. doi: 10.1016/j.foodchem.2019.04.032.
  • Xiang, F., Q. Zhao, K. Zhao, H. Pei, and F. Tao. 2020. The efficacy of composite essential oils against aflatoxigenic fungus Aspergillus flavus in maize. Toxins 12 (9):562. doi: 10.3390/toxins12090562.
  • Yadav, A., A. Kujur, A. Kumar, P. P. Singh, B. Prakash, and N. K. Dubey. 2019. Assessing the preservative efficacy of nanoencapsulated mace essential oil against food borne molds, aflatoxin B1 contamination, and free radical generation. LWT 108:429–36. doi: 10.1016/j.lwt.2019.03.075.
  • Yao, Y., and M. Long. 2020. The biological detoxification of deoxynivalenol: A review. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 145:111649. doi: 10.1016/j.fct.2020.111649.
  • Yassein, A. S., A. H. El‐Said, and E. G. El‐Dawy. 2020. Biocontrol of toxigenic Aspergillus strains isolated from baby foods by essential oils. Flavour and Fragrance Journal 35 (2):182–9. doi: 10.1002/ffj.3551.
  • Zhang, C., J. Zhao, E. Famous, S. Pan, X. Peng, and J. Tian. 2021. Antioxidant, hepatoprotective and antifungal activities of black pepper (Piper nigrum L.) essential oil. Food Chemistry 346:128845. doi: 10.1016/j.foodchem.2020.128845.
  • Zimmermann, R. C., C. G. Poitevin, T. S. da Luz, E. J. Mazarotto, J. L. Furuie, C. E. N. Martins, W. do Amaral, R. R. Cipriano, J. M. da Rosa, I. C. Pimentel, et al. 2023. Antifungal activity of essential oils and their combinations against storage fungi. Environmental Science and Pollution Research International 30 (16):48559–70. doi: 10.1007/s11356-023-25772-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.