299
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Recent advances of ratiometric sensors in food matrices: mycotoxins detection

, &

Reference

  • Dai, H., Z. M. Huang, X. D. Liu, J. Bi, Z. X. Shu, A. H. Xiao, and J. H. Wang. 2022. Colorimetric ELISA based on urease catalysis curcumin as a ratiometric indicator for the sensitive determination of aflatoxin B-1 in grain products. Talanta 246:123495. doi: 10.1016/j.talanta.2022.123495.
  • Min, J. H., J. R. Sempionatto, H. Teymourian, J. Wang, and W. Gao. 2021. Wearable electrochemical biosensors in North America. Biosensors & Bioelectronics 172:112750. doi: 10.1016/j.bios.2020.112750.
  • Ahmadi, A., N. M. Danesh, M. Ramezani, M. Alibolandi, P. Lavaee, A. S. Emrani, K. Abnous, and S. M. Taghdisi. 2019. A rapid and simple ratiometric fluorescent sensor for patulin detection based on a stabilized DNA duplex probe containing less amount of aptamer-involved base pairs. Talanta 204:641–6. doi: 10.1016/j.talanta.2019.06.057.
  • Alassane-Kpembi, I., G. Schatzmayr, I. Taranu, D. Marin, O. Puel, and I. P. Oswald. 2017. Mycotoxins co-contamination: Methodological aspects and biological relevance of combined toxicity studies. Critical Reviews in Food Science and Nutrition 57 (16):3489–507. doi: 10.1080/10408398.2016.1140632.
  • Bigdeli, A., F. Ghasemi, S. Abbasi-Moayed, M. Shahrajabian, N. Fahimi-Kashani, S. Jafarinejad, M. A. F. Nejad, and M. R. Hormozi-Nezhad. 2019. Ratiometric fluorescent nanoprobes for visual detection: Design principles and recent advances - A review. Analytica Chimica Acta 1079:30–58. doi: 10.1016/j.aca.2019.06.035.
  • Bi, X. Y., L. B. Li, X. H. Liu, L. J. Luo, Z. L. Cheng, J. Y. Sun, Z. B. Cai, J. M. Liu, and T. Y. You. 2021. Inner filter effect-modulated ratiometric fluorescence aptasensor based on competition strategy for zearalenone detection in cereal crops: Using mitoxantrone as quencher of CdTe QDs@SiO2. Food Chemistry 349:129171. doi: 10.1016/j.foodchem.2021.129171.
  • Bi, X. Y., L. B. Li, L. J. Luo, X. H. Liu, J. M. Li, and T. Y. You. 2022. A ratiometric fluorescence aptasensor based on photoinduced electron transfer from CdTe QDs to WS2 NTs for the sensitive detection of zearalenone in cereal crops. Food Chemistry 385:132657. doi: 10.1016/j.foodchem.2022.132657.
  • Chen, M. T., X. M. Huang, Y. X. Chen, Y. R. Cao, S. S. Zhang, H. T. Lei, W. P. Liu, and Y. J. Liu. 2023. Shape-specific MOF-derived Cu@Fe-NC with morphology-driven catalytic activity: Mimicking peroxidase for the fluorescent- colorimetric immunosignage of ochratoxin. Journal of Hazardous Materials 443 (Pt A):130233. doi: 10.1016/j.jhazmat.2022.130233.
  • Chen, P. F., C. B. Li, X. Y. Ma, Z. P. Wang, and Y. Zhang. 2022. A surface-enhanced Raman scattering aptasensor for ratiometric detection of aflatoxin B1 based on graphene oxide-Au@Ag core-shell nanoparticles complex. Food Control. 134:108748. doi: 10.1016/j.foodcont.2021.108748.
  • Chen, T., Y. Y. Li, S. Y. Meng, C. Liu, D. Liu, D. M. Dong, and T. Y. You. 2022. Temperature and pH tolerance ratiometric aptasensor: Efficiently self-calibrating electrochemical detection of aflatoxin B1. Talanta 242:123280. doi: 10.1016/j.talanta.2022.123280.
  • Chen, L., D. H. Liu, J. Peng, Q. Z. Du, and H. He. 2020. Ratiometric fluorescence sensing of metal-organic frameworks: Tactics and perspectives. Coordination Chemistry Reviews 404:213113. doi: 10.1016/j.ccr.2019.213113.
  • Cimbalo, A., M. Alonso-Garrido, G. Font, and L. Manyes. 2020. Toxicity of mycotoxins in vivo on vertebrate organisms: A review. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association 137:111161. doi: 10.1016/j.fct.2020.111161.
  • Cui, H. N., K. Q. An, C. Q. Wang, Y. F. Chen, S. L. Jia, J. Qian, N. Hao, J. Wei, and K. Wang. 2022. A disposable ratiometric electrochemical aptasensor with exonuclease I-powered target recycling amplification for highly sensitive detection of aflatoxin B1. Sensors and Actuators B: Chemical 355:131238. doi: 10.1016/j.snb.2021.131238.
  • Da Rocha, M. E. B., F. D. O. Freire, F. B. F. Maia, M. I. F. Guedes, and D. Rondina. 2014. Mycotoxins and their effects on human and animal health. Food Control. 36 (1):159–65. doi: 10.1016/j.foodcont.2013.08.021.
  • Das, A., and P. T. Snee. 2016. Synthetic developments of nontoxic quantum dots. Chemphyschem: A European Journal of Chemical Physics and Physical Chemistry 17 (11):1707– doi: 10.1002/cphc.201500837.
  • Deng, J. K., J. Hu, J. J. Zhao, Z. Q. Zhang, Q. H. Wang, and R. R. Wu. 2022. A novel ratiometric fluorescent aptasensor accurately detects patulin contamination in fruits and fruits products. Arabian Journal of Chemistry 15 (2):103569. doi: 10.1016/j.arabjc.2021.103569.
  • Eskola, M., G. Kos, C. T. Elliott, J. Hajšlová, S. Mayar, and R. Krska. 2020. Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’ of 25. %Critical Reviews in Food Science and Nutrition 60 (16):2773–89. doi: 10.1080/10408398.2019.1658570.
  • Fang, D. D., B. S. Zeng, S. P. Zhang, H. Dai, and Y. Y. Lin. 2020. A self-enhanced electrochemiluminescent ratiometric zearalenone immunoassay based on the use of helical carbon nanotubes. Mikrochimica Acta 187 (5):303. doi: 10.1007/s00604-020-04278-8.
  • Fernandes, G. M., W. R. Silva, D. N. Barreto, R. S. Lamarca, P. C. F. L. Gomes, J. F. D. Petruci, and A. D. Batista. 2020. Novel approaches for colorimetric measurements in analytical chemistry - A review. Analytica Chimica Acta 1135:187–203. doi: 10.1016/j.aca.2020.07.030.
  • Gale, P. A., and C. Caltagirone. 2018. Fluorescent and colorimetric sensors for anionic species. Coordination Chemistry Reviews 354 (SI):2–27. doi: 10.1016/j.ccr.2017.05.003.
  • Garcia-Moraleja, A., G. Font, J. Manes, and E. Ferrer. 2015. Development of a new method for the simultaneous determination of 21 mycotoxins in coffee beverages by liquid chromatography tandem mass spectrometry. Food Research International 72:247–55. doi: 10.1016/j.foodres.2015.02.030.
  • Goncalves, R. A., D. Schatzmayr, A. Albalat, and S. Mackenzie. 2020. Mycotoxins in aquaculture: Feed and food. Reviews in Aquaculture 12 (1):145–75. doi: 10.1111/raq.12310.
  • Guan, Y., P. B. Si, T. Yang, Y. Wu, Y. H. Yang, and R. Hu. 2023. A novel method for detection of ochratoxin A in foods—Co-MOFs based dual signal ratiometric electrochemical aptamer sensor coupled with DNA walker. Food Chemistry 403:134316. doi: 10.1016/j.foodchem.2022.134316.
  • Gui, R. J., H. Jin, X. N. Bu, Y. X. Fu, Z. H. Wang, and Q. Y. Liu. 2019. Recent advances in dual-emission ratiometric fluorescence probes for chemo/biosensing and bioimaging of biomarkers. Coordination Chemistry Reviews 383:82–103. doi: 10.1016/j.ccr.2019.01.004.
  • Guo, H. L., P. F. Ma, K. Li, S. X. Zhang, Y. Zhang, H. Q. Guo, and Z. P. Wang. 2022. A novel ratiometric aptasensor based on dual-emission fluorescent signals and the conformation of G-quadruplex for OTA detection. Sensors and Actuators B: Chemical 358:131484. doi: 10.1016/j.snb.2022.131484.
  • Han, X. X., W. Ji, B. Zhao, and Y. Ozaki. 2017. Semiconductor-enhanced Raman scattering: Active nanomaterials and applications. Nanoscale 9 (15):4847–61. doi: 10.1039/c6nr08693d.
  • Han, Y., W. X. Yang, X. L. Luo, X. He, H. P. Zhao, W. Z. Tang, T. L. Yue, and Z. H. Li. 2022. Carbon dots based ratiometric fluorescent sensing platform for food safety. Critical Reviews in Food Science and Nutrition 62 (1):244–60. doi: 10.1080/10408398.2020.1814197.
  • Hao, N., Z. Dai, M. Xiong, R. Hua, J. W. Lu, and K. Wang. 2020. A portable solar-driven ratiometric photo-electrochromic visualization biosensor for detection of ochratoxin A. Sensors and Actuators B: Chemical 306:127594. doi: 10.1016/j.snb.2019.127594.
  • Hao, N., R. Hua, K. Zhang, J. W. Lu, and K. Wang. 2018. A sunlight powered portable photoelectrochemical biosensor based on a potentiometric resolve ratiometric principle. Analytical Chemistry 90 (22):13207–11. doi: 10.1021/acs.analchem.8b03218.
  • Hou, Y. J., B. Y. Jia, P. Sheng, X. F. Liao, L. C. Shi, L. Fang, L. D. Zhou, and W. J. Kong. 2022. Aptasensors for mycotoxins in foods: Recent advances and future trends. Comprehensive Reviews in Food Science and Food Safety 21 (2):2032–73. doi: 10.1111/1541-4337.12858.
  • Hou, S. L., J. J. Ma, Y. Q. Cheng, Z. F. Wang, and Y. X. Yan. 2022. Overview-gold nanoparticles-based sensitive nanosensors in mycotoxins detection. Critical Reviews in Food Science and Nutrition:1–16. doi: 10.1080/10408398.2022.2095973.
  • Hua, Z., T. Yu, D. H. Liu, and Y. L. Xianyu. 2021. Recent advances in gold nanoparticles-based biosensors for food safety detection. Biosensors and Bioelectronics 179:113076. doi: 10.1016/j.bios.2021.113076.
  • Hu, X. P., Y. W. Liu, Y. D. Xia, F. Q. Zhao, and B. Z. Zeng. 2021. A novel ratiometric electrochemical sensor for the selective detection of citrinin based on molecularly imprinted poly(thionine) on ionic liquid decorated boron and nitrogen co-doped hierarchical porous carbon. Food Chemistry 363:130385. doi: 10.1016/j.foodchem.2021.130385.
  • Hu, X. P., Y. Tang, Y. D. Xia, Y. W. Liu, F. Q. Zhao, and B. Z. Zeng. 2022. Antifouling ionic liquid doped molecularly imprinted polymer-based ratiometric electrochemical sensor for highly stable and selective detection of zearalenone. Analytica Chimica Acta 1210:339884. doi: 10.1016/j.aca.2022.339884.
  • Hu, X. P., Y. D. Xia, Y. W. Liu, Y. R. Chen, and B. Z. Zeng. 2022. An effective ratiometric electrochemical sensor for highly selective and reproducible detection of ochratoxin A: Use of magnetic field improved molecularly imprinted polymer. Sensors and Actuators B: Chemical 359:131582. doi: 10.1016/j.snb.2022.131582.
  • J. Y. Hu., Y. Q. Sun, A. A. Aryee, L. B. Qu, K. Zhang, and Z. H. Li. 2022. Mechanisms for carbon dots-based chemosensing, biosensing, and bioimaging: A review. Analytica Chimica Acta 1209:338885. doi: 10.1016/j.aca.2021.338885.
  • Jia, F., Y. Y. Li, Q. F. Gong, D. Liu, S. Y. Meng, C. X. Zhu, and T. Y. You. 2022. A simple ratiometric electrochemical aptasensor based on the thionine-graphene nanocomposite for ultrasensitive detection of aflatoxin B2 in peanut and peanut Oil. Chemosensors 10 (5):154. doi: 10.3390/chemosensors10050154.
  • Jia, F., D. Liu, N. Dong, Y. Y. Li, S. Y. Meng, and T. Y. You. 2021. Interaction between the functionalized probes: The depressed efficiency of dual-amplification strategy on ratiometric electrochemical aptasensor for aflatoxin B1. Biosensors & Bioelectronics 182:113169. doi: 10.1016/j.bios.2021.113169.
  • Jiang, Q., J. D. Wu, K. Yao, Y. L. Yin, M. M. Gong, C. B. Yang, and F. Lin. 2019. Paper-based microfluidic device (DON-Chip) for rapid and low-cost deoxynivalenol quantification in food, feed, and feed ingredients. ACS Sensors 4 (11):3072–9. doi: 10.1021/acssensors.9b01895.
  • Jin, H., R. J. Gui, J. B. Yu, W. Lv, and Z. H. Wang. 2017. Fabrication strategies, sensing modes and analytical applications of ratiometric electrochemical biosensors. Biosensors & Bioelectronics 91:523–37. doi: 10.1016/j.bios.2017.01.011.
  • Jin, H., X. W. Jiang, Z. J. Sun, and R. J. Gui. 2021. Phosphorescence-based ratiometric probes: Design, preparation and applications in sensing, imaging and biomedicine therapy. Coordination Chemistry Reviews 431:213694. doi: 10.1016/j.ccr.2020.213694.
  • Jing, X.,L. Chang,L. Shi,X. Liu,Y. Zhao, andW. Zhang. 2020. Au Film–Au@Ag Core–Shell Nanoparticle Structured Surface-Enhanced Raman Spectroscopy Aptasensor for Accurate Ochratoxin A Detection. ACS Applied Bio Materials 3 (4):2385–91. doi: 10.1021/acsabm.0c00120.
  • Le, V. T., Y. Vasseghian, E. N. Dragoi, M. Moradi, and A. M. Khaneghah. 2021. A review on graphene-based electrochemical sensor for mycotoxins detection. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 148:111931. doi: 10.1016/j.fct.2020.111931.
  • Liang, X. J., F. J. Zhao, C. G. Xiao, S. Yue, Y. W. Huang, and M. Wei. 2021. A ratiometric electrochemical aptasensor for ochratoxin A detection. Journal of the Chinese Chemical Society 68 (7):1271–8. doi: 10.1002/jccs.202000534.
  • Li, Y. Y., D. Liu, S. Y. Meng, T. Chen, C. Liu, and T. Y. You. 2022. Dual-ratiometric electrochemical aptasensor enabled by programmable dynamic range: Application for threshold-based detection of aflatoxin B1. Biosensors & Bioelectronics 195:113634. doi: 10.1016/j.bios.2021.113634.
  • Li, Y. Y., D. Liu, S. Y. Meng, N. Dong, C. Liu, Y. Wei, and T. Y. You. 2022. Signal-enhanced strategy for ratiometric aptasensing of aflatoxin B1: Plasmon-modulated competition between photoelectrochemistry-driven and electrochemistry-driven redox of methylene blue. Biosensors & Bioelectronics 218:114759. doi: 10.1016/j.bios.2022.114759.
  • Li, Y. Y., D. Liu, C. X. Zhu, X. L. Shen, Y. Liu, and T. Y. You. 2020. Sensitivity programmable ratiometric electrochemical aptasensor based on signal engineering for the detection of aflatoxin B1 in peanut. Journal of Hazardous Materials 387:122001. doi: 10.1016/j.jhazmat.2019.122001.
  • Li, Y. Y., D. Liu, C. X. Zhu, M. Wang, Y. Liu, and T. Y. You. 2021. A ratiometry-induced successive reusable electrochemical aptasensing platform: Efficient monitoring of aflatoxin B1 in peanut. Sensors and Actuators B: Chemical 336:129021. doi: 10.1016/j.snb.2020.129021.
  • Lin, H., X. He, Y. Chen, L. Y. Pang, L. Niu, and X. L. Fu. 2022. A rapid ratiometric fluorescence biosensor for detection of Ochratoxin A based on paper chip. Chinese Journal of Analytical Chemistry 50 (9):1336–44. doi: 10.19756/j.issn.0253-3820.221127.
  • Lin, Y., J. Wang, F. Luo, L. H. Guo, B. Qiu, and Z. Y. Lin. 2018. Highly reproducible ratiometric aptasensor based on the ratio of amplified electrochemiluminescence signal and stable internal reference electrochemical signal. Electrochimica Acta 283:798–805. doi: 10.1016/j.electacta.2018.07.015.
  • Li, M., Z. J. Qian, C. Peng, X. L. Wei, and Z. P. Wang. 2022. Ultrafast ratiometric detection of aflatoxin B1 based on fluorescent beta-CD@Cu nanoparticles and Pt2+ ions. ACS Applied Bio Materials 5 (1):285–94. doi: 10.1021/acsabm.1c01079.
  • Liu, M. X., R. R. Jiang, M. Zheng, M. J. Li, Q. J. Yu, H. D. Zhu, H. L. Guo, and H. M. Sun. 2022. A sensitive ratiometric biosensor for determination cardiac troponin I of myocardial infarction markers based on N, Zn-GQDs. Talanta 249:123577. doi: 10.1016/j.talanta.2022.123577.
  • Liu, D., Y. Jia, Y. Wei, Y. Y. Li, S. Y. Meng, and T. Y. You. 2022. Programmable analytical feature of ratiometric electrochemical biosensor by alternating the binding site of ferrocene to DNA duplex for the detection of Aflatoxin B1(dagger). Chinese Journal of Chemistry 40 (18):2232–8. doi: 10.1002/cjoc.202200155.
  • Liu, S. D., S. Y. Meng, M. Wang, W. J. Li, N. Dong, D. Liu, Y. Y. Li, and T. Y. You. 2023. In-depth interpretation of aptamer-based sensing on electrode: Dual-mode electrochemical-photoelectrochemical sensor for the ratiometric detection of patulin. Food Chemistry 410:135450. doi: 10.1016/j.foodchem.2023.135450.
  • Liu, C., T. Wu, W. Zeng, J. M. Liu, B. Hu, and L. Wu. 2022. Dual-signal electrochemical aptasensor involving hybridization chain reaction amplification for aflatoxin B1 detection. Sensors and Actuators B: Chemical 371:132494. doi: 10.1016/j.snb.2022.132494.
  • Li, Y. L., F. T. Xie, C. Yao, G. Q. Zhang, Y. Guan, Y. H. Yang, J. M. Yang, and R. Hu. 2022. DNA tetrahedral nanomaterial-based dual-signal ratiometric electrochemical aptasensor for the detection of ochratoxin A in corn kernel samples. The Analyst 147 (20):4578–86. doi: 10.1039/d2an00934j.
  • Lu, X. M., J. Y. Zhang, Y. N. Xie, X. F. Zhang, X. M. Jiang, X. D. Hou, and P. Wu. 2018. Ratiometric phosphorescent probe for thallium in serum, water, and soil samples based on long-lived, spectrally resolved, Mn-doped ZnSe quantum dots and carbon dots. Analytical Chemistry 90 (4):2939–45. doi: 10.1021/acs.analchem.7b05365.
  • Luo, L. J., X. H. Liu, X. Y. Bi, L. B. Li, and T. Y. You. 2023. Dual-quenching effects of methylene blue on the luminophore and co-reactant: Application for electrochemiluminescent-electrochemical ratiometric zearalenone detection. Biosensors & Bioelectronics 222:114991. doi: 10.1016/j.bios.2022.114991.
  • Lv, X.,X. Xu,T. Miao,X. Zang,C. Geng,Y. Li,B. Cui, andY. Fang. 2022. A ratiometric electrochemiluminescent/electrochemical strategy based on novel designed BPYHBF nanorod and Fc-MOF with tungsten for ultrasensitive AFB1 detection. Sensors and Actuators B: Chemical 352:131026. doi: 10.1016/j.snb.2021.131026.
  • Lv, L.,Q. Chen,C. Jing, andX. Wang. 2023. An ultrasensitive ratiometric aptasensor based on the dual-potential electrochemiluminescence of Ru(bpy)32+ in a novel ternary system for detection of Patulin in fruit products. Food Chemistry 415:135780. doi: 10.1016/j.foodchem.2023.135780.
  • Lv, M. K., F. Li, Y. Q. Du, X. Y. Guo, P. Y. Zhang, and Y. H. Liu. 2023. Ratiometric electrochemical aptasensor for AFB1 detection in peanut and peanut products. International Journal of Electrochemical Science 18 (2):9–15. doi: 10.1016/j.ijoes.2023.01.006.
  • Moretti, A., M. Pascale, and A. F. Logrieco. 2019. Mycotoxin risks under a climate change scenario in Europe. Trends in Food Science & Technology 84 (SI):38–40. doi: 10.1016/j.tifs.2018.03.008.
  • Mousavi Khaneghah, A., Y. Fakhri, H. H. Gahruie, M. Niakousari, and A. S. Sant’Ana. 2019. Mycotoxins in cereal-based products during 24 years (1983-2017): A global systematic review. Trends in Food Science & Technology 91:95–105. doi: 10.1016/j.tifs.2019.06.007.
  • Nguyen, P. Q., L. R. Soenksen, N. M. Donghia, N. M. Angenent-Mari, H. de Puig, A. Huang, R. Lee, S. Slomovic, T. Galbersanini, G. Lansberry, et al. 2021. Wearable materials with embedded synthetic biology sensors for biomolecule detection. Nature Biotechnology 39 (11):1366–74. +. doi: 10.1038/s41587-021-00950-3.
  • Ostry, V., F. Malir, J. Toman, and Y. Grosse. 2017. Mycotoxins as human carcinogens-the IARC Monographs classification. Mycotoxin Research 33 (1):65–73. doi: 10.1007/s12550-016-0265-7.
  • Pan, L. M., X. Zhao, X. Wei, L. J. Chen, C. Wang, and X. P. Yan. 2022. Ratiometric luminescence aptasensor based on dual-emissive persistent luminescent nanoparticles for autofluorescence- and exogenous interference-free determination of trace aflatoxin B1 in food samples. Analytical Chemistry 94 (16):6387–93. doi: 10.1021/acs.analchem.2c00861.
  • Pereira, C. S., S. C. Cunha, and J. O. Fernandes. 2019. Prevalent mycotoxins in animal feed: Occurrence and analytical methods. Toxins 11 (5):290. doi: 10.3390/toxins11050290.
  • Priyadarshini, E., and N. Pradhan. 2017. Gold nanoparticles as efficient sensors in colorimetric detection of toxic metal ions: A review. Sensors and Actuators B: Chemical 238:888–902. doi: 10.1016/j.snb.2016.06.081.
  • Qian, J., K. Wang, C. Q. Wang, M. J. Hua, Z. T. Yang, Q. Liu, H. P. Mao, and K. Wang. 2015. A FRET-based ratiometric fluorescent aptasensor for rapid and onsite visual detection of ochratoxin A. The Analyst 140 (21):7434–42. doi: 10.1039/C5AN01403D.
  • Qileng, A. R., S. L. Huang, L. He, W. W. Qin, W. P. Liu, Z. L. Xu, and Y. J. Liu. 2020. Composite films of CdS nanoparticles, MoS2 nanoflakes, reduced graphene oxide, and carbon nanotubes for ratiometric and modular immunosensing-based detection of toxins in cereals. ACS Applied Nano Materials 3 (3):2822–9. doi: 10.1021/acsanm.0c00126.
  • Qileng, A. R., H. Z. Liang, S. L. Huang, W. P. Liu, Z. L. Xu, and Y. J. Liu. 2020. Dual-function of ZnS/Ag2S nanocages in ratiometric immunosensors for the discriminant analysis of ochratoxins: Photoelectrochemistry and electrochemistry. Sensors and Actuators B: Chemical 314:128066. doi: 10.1016/j.snb.2020.128066.
  • Romera, D., E. M. Mateo, R. Mateo-Castro, J. V. Gómez, J. V. Gimeno-Adelantado, and M. Jiménez. 2018. Determination of multiple mycotoxins in feedstuffs by combined use of UPLC-MS/MS and UPLC-QTOF-MS. Food Chemistry 267 (SI):140–8. doi: 10.1016/j.foodchem.2017.11.040.
  • Ruchika, C. H., J. Singh, T. Sachdev, T. Basu, and B. D. Malhotra. 2016. Recent advances in mycotoxins detection. Biosensors & Bioelectronics 81:532–45. doi: 10.1016/j.bios.2016.03.004.
  • Selvaraj, J. N., L. Zhou, Y. Wang, Y. J. Zhao, F. G. Xing, X. F. Dai, and Y. Liu. 2015. Mycotoxin detection - Recent trends at global level. Journal of Integrative Agriculture 14 (11):2265–81. doi: 10.1016/S2095-3119(15)61120-0.
  • Shao, Y. N., H. Duan, S. Zhou, T. T. Ma, L. Guo, X. L. Huang, and Y. H. Xiong. 2019. Biotin-streptavidin system-mediated ratiometric multiplex immunochromatographic assay for simultaneous and accurate quantification of three mycotoxins. Journal of Agricultural and Food Chemistry 67 (32):9022–31. doi: 10.1021/acs.jafc.9b03222.
  • Shen, Y. Z., C. Nie, Y. L. Wei, Z. Zheng, Z. L. Xu, and P. Xiang. 2022. FRET-based innovative assays for precise detection of the residual heavy metals in food and agriculture-related matrices. Coordination Chemistry Reviews 469:214676. doi: 10.1016/j.ccr.2022.214676.
  • Shen, Y. Z., Y. L. Wei, C. L. Zhu, J. X. Cao, and D. M. Han. 2022. Ratiometric fluorescent signals-driven smartphone-based portable sensors for onsite visual detection of food contaminants. Coordination Chemistry Reviews 458:214442. doi: 10.1080/10408398.2020.1814197.
  • Smith, M. C., S. Madec, E. Coton, and N. Hymery. 2016. Natural Co-occurrence of mycotoxins in foods and feeds and their in vitro combined toxicological effects. Toxins 8 (4):94. doi: 10.3390/toxins8040094.
  • Suo, Z. G., X. Y. Niu, R. K. Liu, L. K. Xin, Y. Liu, and M. Wei. 2022. A methylene blue and Ag+ ratiometric electrochemical aptasensor based on Au@Pt/Fe-N-C signal amplification strategy for zearalenone detection. Sensors and Actuators B: Chemical 362:131825. doi: 10.1016/j.snb.2022.131825.
  • Tan, X. L., X. Q. Wang, A. Y. Hao, Y. F. Liu, X. P. Wang, T. Chu, L. Jiang, Y. Q. Yang, and D. M. Ming. 2020. Aptamer-based ratiometric fluorescent nanoprobe for specific and visual detection of zearalenone. Microchemical Journal 157:104943. doi: 10.1016/j.microc.2020.104943.
  • Tian, J. Y., W. Q. Wei, J. W. Wang, S. J. Ji, G. C. Chen, and J. S. Lu. 2018. Fluorescence resonance energy transfer aptasensor between nanoceria and graphene quantum dots for the determination of ochratoxin A. Analytica Chimica Acta 1000:265–72. doi: 10.1016/j.aca.2017.08.018.
  • Umapathi, R., B. Park, S. Sonwal, G. M. Rani, Y. J. Cho, and Y. S. Huh. 2022. Advances in optical-sensing strategies for the on-site detection of pesticides in agricultural foods. Trends in Food Science & Technology 119:69–89. doi: 10.1016/j.tifs.2021.11.018.
  • Wang, J., C. X. Jiang, J. R. Yuan, L. Tong, Y. Wang, D. Zhuo, W. H. Ni, J. F. Zhang, M. Huang, D. Q. Li, et al. 2022. Hue recognition competitive fluorescent lateral flow immunoassay for aflatoxin M-1 detection with improved visual and quantitative performance. Analytical Chemistry 94 (30):10865–73. doi: 10.1021/acs.analchem.2c02020.
  • Wang, Y. H., G. Ning, H. Bi, Y. H. Wu, G. Q. Liu, and Y. L. Zhao. 2018. A novel ratiometric electrochemical assay for ochratoxin A coupling Au nanoparticles decorated MoS2 nanosheets with aptamer. Electrochimica Acta 285:120–7. doi: 10.1016/j.electacta.2018.07.195.
  • Wang, X.-H., H.-S. Peng, H. Ding, F.-T. You, S.-H. Huang, F. Teng, B. Dong, and H.-W. Song. 2012. Biocompatible fluorescent core-shell nanoparticles for ratiometric oxygen sensing. Journal of Materials Chemistry 22 (31):16066. doi: 10.1039/c2jm32122j.
  • Wang, C. Q., J. Qian, K. Q. An, X. T. Lu, and X. Y. Huang. 2019. A semiconductor quantum dot-based ratiometric electrochemical aptasensor for the selective and reliable determination of aflatoxin B1. The Analyst 144 (16):4772–80. doi: 10.1039/c9an00825j.
  • Wang, L. M., F. W. Zhu, S. Liao, M. Chen, Y. Q. Zhu, Q. Liu, and X. Q. Chen. 2019. Single-stranded DNA modified protonated graphitic carbon nitride nanosheets: A versatile ratiometric fluorescence platform for multiplex detection of various targets. Talanta 197:422–30. doi: 10.1016/j.talanta.2019.01.066.
  • Wu, H.,T. Bu,Y. Cao,Y. Wang,J. Xi,M. Li,R. Li,P. Jia, andL. Wang. 2023. Double-Enzyme Active Vanadium Nanospheres-Mediated Ratiometric Multicolor Immunosensors for Sensitive Detection of the T-2 Toxin. Analytical Chemistry 95 (12):5275–84. doi: 10.1021/acs.analchem.2c05197.
  • Wu, L., F. Ding, W. M. Yin, J. Ma, B. R. Wang, A. X. Nie, and H. Y. Han. 2017. From electrochemistry to electroluminescence: Development and application in a ratiometric aptasensor for aflatoxin B1. Analytical Chemistry 89 (14):7578–85. doi: 10.1021/acs.analchem.7b01399.
  • Wu, F., J. D. Groopman, and J. J. Pestka. 2014. Public health impacts of foodborne mycotoxins. Annual Review of Food Science and Technology 5:351–72. doi: 10.1146/annurev-food-030713-092431.
  • Wu, P., X. D. Hou, J. J. Xu, and H. Y. Chen. 2016. Ratiometric fluorescence, electrochemiluminescence, and photoelectrochemical chemo/biosensing based on semiconductor quantum dots. Nanoscale 8 (16):8427–42. doi: 10.1039/c6nr01912a.
  • Wu, L. L., C. S. Huang, B. Emery, A. C. Sedgwick, S. D. Bull, X. P. He, H. Tian, J. Yoon, J. L. Sessler, and T. D. James. 2020. Forster resonance energy transfer (FRET)-based small-molecule sensors and imaging agents. Chemical Society Reviews 49 (15):5110–39. doi: https://doi.org/10.1039/C9CS00318E.
  • Wu, Z. H., H. B. Pu, and D. W. Sun. 2021. Fingerprinting and tagging detection of mycotoxins in agri-food products by surface-enhanced Raman spectroscopy: Principles and recent applications. Trends in Food Science & Technology 110:393–404. doi: 10.1016/j.tifs.2021.02.013.
  • Wu, Z. H., D. W. Sun, H. B. Pu, Q. Y. Wei, and X. R. Lin. 2022. Ti3C2Tx MXenes loaded with Au nanoparticle dimers as a surface-enhanced Raman scattering aptasensor for AFB1 detection. Food Chemistry 372:131293. doi: 10.1016/j.foodchem.2021.131293.
  • Wu, S. X., X. P. Zhang, C. Wang, G. H. Zhang, Q. Zhang, H. L. Yang, and Y. Zhou. 2023. Alkaline phosphatase triggered ratiometric fluorescence immunoassay for detection of zearalenone. Food Control. 146:109541. doi: 10.1016/j.foodcont.2022.109541.
  • Xiao, X., Y. Z. Shen, J. X. Cao, and B. G. Sun. 2023. Engineering a "dual-key-and-lock" ratiometric fluorescent nanoprobe for real-time reporting the freshness and quality of meat. Food Chemistry 398:133879. doi: 10.1016/j.foodchem.2022.133879.
  • Xing, K. Y., S. Shan, D. F. Liu, and W. H. Lai. 2020. Recent advances of lateral flow immunoassay for mycotoxins detection. TrAC Trends in Analytical Chemistry 133:116087. doi: 10.1016/j.trac.2020.116087.
  • Xu, X., X. Y. Xu, M. Han, S. T. Qiu, and X. Hou. 2019. Development of a modified QuEChERS method based on magnetic multiwalled carbon nanotubes for the simultaneous determination of veterinary drugs, pesticides and mycotoxins in eggs by UPLC-MS/MS. Food Chemistry 276:419–26. doi: 10.1016/j.foodchem.2018.10.051.
  • Yang, Q., J. H. Li, X. Y. Wang, H. L. Peng, H. Xiong, and L. X. Chen. 2018. Strategies of molecular imprinting-based fluorescence sensors for chemical and biological analysis. Biosensors & Bioelectronics 112:54–71. doi: 10.1016/j.bios.2018.04.028.
  • Yang, Y., G. L. Li, D. Wu, J. H. Liu, X. T. Li, P. J. Luo, N. Hu, H. L. Wang, and Y. N. Wu. 2020. Recent advances on toxicity and determination methods of mycotoxins in foodstuffs. Trends in Food Science & Technology 96:233–52. doi: 10.1016/j.tifs.2019.12.021.
  • Yang, C., G. Song, and W. Lim. 2020. Effects of mycotoxin-contaminated feed on farm animals. Journal of Hazardous Materials 389:122087. doi: 10.1016/j.jhazmat.2020.122087.
  • Yang, T., R. Z. Yu, Y. H. Yan, H. Zeng, S. Z. Luo, N. Z. Liu, A. Morrin, X. L. Luo, and W. H. Li. 2018. A review of ratiometric electrochemical sensors: From design schemes to future prospects. Sensors and Actuators B: Chemical 274:501–16. doi: 10.1016/j.snb.2018.07.138.
  • Z. J. Liu., X. Y. Wang, X. X. Ren, W. B. Li, J. F. Sun, X. W. Wang, Y. Q. Huang, Y. G. Guo, and H. W. Zeng. 2021. Novel fluorescence immunoassay for the detection of zearalenone using HRP-mediated fluorescence quenching of gold-silver bimetallic nanoclusters. Food Chemistry 355:129633. doi: 10.1016/j.foodchem.2021.129633.
  • Zeng, H. L., Y. L. Zhu, L. L. Ma, X. H. Xia, Y. H. Li, Y. Ren, W. Y. Zhao, H. Yang, and R. J. Deng. 2019. G-quadruplex specific dye-based ratiometric FRET aptasensor for robust and ultrafast detection of toxin. Dyes and Pigments 164:35–42. doi: 10.1016/j.dyepig.2019.01.005.
  • Zhang, B. T., H. Liu, Y. Liu, and Y. G. Teng. 2020. Application trends of nanofibers in analytical chemistry. TrAC Trends in Analytical Chemistry 131:115992. doi: 10.1016/j.trac.2020.115992.
  • Zhang, D., H. B. Pu, L. J. Huang, and D. W. Sun. 2021. Advances in flexible surface-enhanced Raman scattering (SERS) substrates for nondestructive food detection: Fundamentals and recent applications. Trends in Food Science & Technology 109:690–701. doi: 10.1016/j.tifs.2021.01.058.
  • Zhang, H., Y. L. Wang, Y. T. Lin, W. J. Chu, Z. Luo, M. Q. Zhao, J. D. Hu, X. M. Miao, and F. He. 2023. A catalytic hairpin assembly-based Forster resonance energy transfer sensor for ratiometric detection of ochratoxin A in food samples. Analytical and Bioanalytical Chemistry 415 (5):867–74. doi: 10.1007/s00216-022-04479-5.
  • Zhao, W. J., Z. K. He, and B. Z. Tang. 2020. Room-temperature phosphorescence from organic aggregates. Nature Reviews Materials 5 (12):869–85. doi: 10.1038/s41578-020-0223-z.
  • Zhao, L. Y., Z. G. Suo, Y. Liu, M. Wei, and H. L. Jin. 2023. An amplifiable ratiometric fluorescent aptasensor for aflatoxin B1 detection based on dendrimer-like DNA nanostructures coupled with catalytic hairpin self-assembly. Sensors and Actuators B: Chemical 380:133328. doi: 10.1016/j.snb.2023.133328.
  • Zhao, Y. F., H. Zeng, K. Wu, D. Luo, X. W. Zhu, W. G. Lu, and D. Li. 2020. A pH-regulated ratiometric luminescence Eu-MOF for rapid detection of toxic mycotoxin in moldy sugarcane. Journal of Materials Chemistry C 8 (13):4385–91. doi: 10.1039/D0TC00104J.
  • Zheng, F. J., W. Ke, L. X. Shi, H. Liu, and Y. Zhao. 2019. Plasmonic Au-Ag Janus nanoparticle engineered aatiometric surface-enhanced Raman scattering aptasensor for Ochratoxin A detection. Analytical Chemistry 91 (18):11812–20. doi: 10.1021/acs.analchem.9b02469.
  • Zheng, H. L., Y. M. Ke, H. Yi, H. Dai, D. D. Fang, Y. Y. Lin, Z. S. Hong, and X. H. Li. 2019. A bifunctional reagent regulated ratiometric electrochemiluminescence biosensor constructed on surfactant-assisted synthesis of TiO2 mesocrystals for the sensing of deoxynivalenol. Talanta 196:600–7. doi: 10.1016/j.talanta.2018.12.077.
  • Zhou, X., Z. B. Sun, X. Y. Su, K. Y. Zheng, X. B. Zou, and W. Zhang. 2023. Ratiometric detection of Ochratoxin A using a regenerable COF-Au-MB-Apt signal probe on a thermal-regulated sensor module. Analytical Chemistry 95 (3):1916–23. doi: 10.1021/acs.analchem.2c04031.
  • Zhu, H. S., Y. Cai, A. Qileng, Z. Quan, W. Zeng, K. Y. He, and Y. J. Liu. 2021. Template-assisted Cu2O@Fe(OH)3 yolk-shell nanocages as biomimetic peroxidase: A multi-colorimetry and ratiometric fluorescence separated-type immunosensor for the detection of ochratoxin A. Journal of Hazardous Materials 411:125090. doi: 10.1016/j.jhazmat.2021.125090.
  • Zhu, X., W. J. Li, L. P. Lin, X. J. Huang, H. F. Xu, G. D. Yang, and Z. Y. Lin. 2020. Target-responsive ratiometric fluorescent aptasensor for OTA based on energy transfer between [Ru(bpy)(3)](2+) and silica quantum dots. Mikrochimica Acta 187 (5):270. doi: 10.1007/s00604-020-04245-3.
  • Zhu, C. X., D. Liu, Y. Li, T. Chen, and T. Y. You. 2022. Label-free ratiometric homogeneous electrochemical aptasensor based on hybridization chain reaction for facile and rapid detection of aflatoxin B1 in cereal crops. Food Chemistry 373 (Pt A):131443. doi: 10.1016/j.foodchem.2021.131443.
  • Zhu, C. X., D. Liu, Y. Y. Li, S. Ma, M. Wang, and T. Y. You. 2021. Hairpin DNA assisted dual-ratiometric electrochemical aptasensor with high reliability and anti-interference ability for simultaneous detection of aflatoxin B1 and ochratoxin A. Biosensors & Bioelectronics 174:112654. doi: 10.1016/j.bios.2020.112654.
  • Zhu, C. X., D. Liu, Y. Y. Li, X. L. Shen, S. Ma, Y. Liu, and T. Y. You. 2020. Ratiometric electrochemical aptasensor for ultrasensitive detection of Ochratoxin A based on a dual signal amplification strategy: Engineering the binding of methylene blue to DNA. Biosensors & Bioelectronics 150:111814. doi: 10.1016/j.bios.2019.111814.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.