480
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Bacteria from the gut influence the host micronutrient status

, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Ahmad, A. M. R., W. Ahmed, S. Iqbal, M. Javed, S. Rashid, and I. ul-Haq. 2021. Prebiotics and iron bioavailability? Unveiling the hidden association-A review. Trends in Food Science & Technology 110: 584–590. doi: 10.1016/j.tifs.2021.01.085.
  • Åkerstrom, B., D. R. Flower, and J. P. Salier. 2000. Lipocalins: Unity in diversity. Biochimica et Biophysica Acta 1482 (1–2):1–8. (doi: 10.1016/s0167-4838(00)00137-0.
  • Alexander, C., K. S. Swanson, G. C. Fahey, and K. A. Garleb. 2019. Perspective: Physiologic importance of short-chain fatty acids from nondigestible carbohydrate fermentation. Advances in Nutrition (Bethesda, Md.) 10 (4):576–89. doi: 10.1093/advances/nmz004.
  • Allen, L., B. de Benoit, O. Dary, and R. Hurrell. 2006. Guidelines on Food Fortification with Micronutrients. Geneva: WHO/FAO.
  • Amimo, J., H. Michael, J. Chepngeno, S. Raev, L. Saif, and A. Vlasova. 2022. Immune impairment associated with vitamin A deficiency: Insights from clinical studies and animal model research. Nutrients 14 (23):5038. doi: 10.3390/nu14235038.
  • Andrews, S. C., A. K. Robinson, and F. Rodríguez-Quiñones. 2003. Bacterial iron homeostasis. FEMS Microbiology Reviews 27 (2–3):215–37. doi: 10.1016/S0168-6445(03)00055-X.
  • Archibald, F. 1983. Lactobacillus plantarum, an organism not requiring Iron. FEMS Microbiology Letters 19 (1):29–32. doi: 10.1111/j.1574-6968.1983.tb00504.x.
  • Aufreiter, S., J. H. Kim, and D. L. O’Connor. 2011. Dietary oligosaccharides increase colonic weight and the amount but not concentration of bacterially synthesized folate in the colon of piglets. The Journal of Nutrition 141 (3):366–72. doi: 10.3945/jn.110.135343.
  • Axling, U., G. Önning, T. Martinsson Niskanen, N. Larsson, S. R. Hansson, and L. Hulthén. 2021. The effect of Lactiplantibacillus plantarum 299v together with a low dose of iron on iron status in healthy pregnant women: A randomized clinical trial. Acta Obstetricia et Gynecologica Scandinavica 100 (9):1602–10. doi: 10.1111/aogs.14153.
  • Bailey, R. L., K. P.Jr.West, and R. E. Black. 2015. The epidemiology of global micronutrient deficiencies. Annals of Nutrition and Metabolism 66 (Suppl. 2):22–33. doi: 10.1159/000371618.
  • Bailey, L. B., G. C. Rampersaud, and G. P. A. Kauwell. 2003. Folic acid supplements and fortification affect the risk for neural tube defects, vascular disease and cancer: Evolving science. The Journal of Nutrition 133 (6):1961S–8S. doi: 10.1093/jn/133.6.1961S.
  • Baldi, A. J., L. M. Larson, and S.-R. Pasricha. 2020. Balancing safety and potential for impact in universal iron interventions. Global Landscape of Nutrition Challenges in Infants and Children 93:51–62. doi: 10.1159/000503356.
  • Banci, L., and I. Bertini. 2013. Metallomics and the cell: Some definitions and general comments. In Metallomics and the Cell, ed. L. Banci, 1–13. Dordrecht: Springer Netherlands. doi: 10.1007/978-94-007-5561-1_1.
  • Barkhidarian, B., L. Roldos, M. Iskandar, A. Saedisomeolia, and S. Kubow. 2021. Probiotic supplementation and micronutrient status in healthy subjects: A systematic review of clinical trials. Nutrients 13 (9):3001. doi: 10.3390/nu13093001.
  • Barra, N. G., F. F. Anhê, J. F. Cavallari, A. M. Singh, D. Y. Chan, and J. D. Schertzer. 2021. Micronutrients impact the gut microbiota and blood glucose. The Journal of Endocrinology 250 (2):R1–R21. doi: 10.1530/JOE-21-0081.
  • Barszcz, M., M. Taciak, A. Tuśnio, E. Święch, J. Skomiał, K. Čobanová, and Ľ. Grešáková. 2021. The effect of organic and inorganic zinc source, used with lignocellulose or potato fiber, on microbiota composition, fermentation, and activity of enzymes involved in dietary fiber breakdown in the large intestine of pigs. Livestock Science 245:104429. doi: 10.1016/j.livsci.2021.104429.
  • Basu, T. K., and D. Donaldson. 2003. Intestinal absorption in health and disease: Micronutrients. Best Practice & Research. Clinical Gastroenterology 17 (6):957–79. doi: 10.1016/S1521-6918(03)00084-2.
  • Bhutta, Z. A., T. Ahmed, R. E. Black, S. Cousens, K. Dewey, E. Giugliani, B. A. Haider, B. Kirkwood, S. S. Morris, H. Sachdev, et al. 2008. What works? Interventions for maternal and child undernutrition and survival. Lancet (London, England) 371 (9610):417–40. doi: 10.1016/S0140-6736(07)61693-6.
  • Bielik, V., and M. Kolisek. 2021. Bioaccessibility and bioavailability of minerals in relation to a healthy gut microbiome. International Journal of Molecular Sciences 22 (13):6803. doi: 10.3390/ijms22136803.
  • Biesalski, H. K. 2016. Nutrition meets the microbiome: Micronutrients and the microbiota. Annals of the New York Academy of Sciences 1372 (1):53–64. doi: 10.1111/nyas.13145.
  • Bishop, R. E., C. Cambillau, G. G. Privé, D. Hsi, D. Tillo, and E. R. M. Tillier. 2013. Bacterial lipocalins: Origin, structure, and function. Madame Curie Bioscience https://www.ncbi.nlm.nih.gov/books/NBK6135/.
  • Blomhoff, R., and H. K. Blomhoff. 2006. Overview of retinoid metabolism and function. Journal of Neurobiology 66 (7):606–30. doi: 10.1002/neu.20242.
  • Bloor, S., R. Schutte, and A. Hobson. 2021. Oral iron supplementation-gastrointestinal side effects and the impact on the gut microbiota. Microbiology Research 12 (2):491–502. doi: 10.3390/microbiolres12020033.
  • Borel, P. 2003. Factors affecting intestinal absorption of highly lipophilic food microconstituents (fat-soluble vitamins, carotenoids and phytosterols). Clinical Chemistry and Laboratory Medicine 41 (8):979–94. doi: 10.1515/CCLM.2003.151.
  • Bouglé, D., N. Vaghefi-Vaezzadeh, N. Roland, G. Bouvard, P. Arhan, F. Bureau, D. Neuville, and J.-L. Maubois. 2002. Influence of short-chain fatty acids on iron absorption by proximal colon. Scandinavian Journal of Gastroenterology 37 (9):1008–11. doi: 10.1080/003655202320378176.
  • Capdevila, D. A., J. Wang, and D. P. Giedroc. 2016. Bacterial strategies to maintain zinc metallostasis at the host-pathogen interface*. The Journal of Biological Chemistry 291 (40):20858–68. doi: 10.1074/jbc.R116.742023.
  • Celis, A., and D. Relman. 2020. Competitors versus collaborators: Micronutrient processing by pathogenic and commensal human-associated gut bacteria. Molecular Cell 78 (4):570–6. doi: 10.1016/j.molcel.2020.03.032.
  • Cha, H.-R., S.-Y. Chang, J.-H. Chang, J.-O. Kim, J.-Y. Yang, C.-H. Kim, and M.-N. Kweon. 2010. Downregulation of Th17 cells in the small intestine by disruption of gut flora in the absence of retinoic acid. Journal of Immunology (Baltimore, Md.: 1950) 184 (12):6799–806. doi: 10.4049/jimmunol.0902944.
  • Chen, X., Y. Jiang, Z. Wang, Y. Chen, S. Tang, S. Wang, L. Su, X. Huang, D. Long, L. Wang, et al. 2022b. Alteration in gut microbiota associated with zinc deficiency in school-age children. Nutrients 14 (14):2895. doi: 10.3390/nu14142895.
  • Chen, J., Y. Wang, J. Pan, L. Lu, J. Yu, B. Liu, F. Chen, and H. Deng. 2022a. Prebiotic oligosaccharides enhance iron absorption via modulation of protein expression and gut microbiota in a dose-response manner in iron-deficient growing rats. Molecular Nutrition & Food Research 66 (10):2101064. doi: 10.1002/mnfr.202101064.
  • Chen, L., Z. Wang, P. Wang, X. Yu, H. Ding, Z. Wang, and J. Feng. 2021b. Effect of long-term and short-term imbalanced zn manipulation on gut microbiota and screening for microbial markers sensitive to zinc status. Microbiology Spectrum 9 (3):1–18. doi: 10.1128/Spectrum.00483-21.
  • Chen, B., K. Zhang, S. Chen, C. Yang, and P. Li. 2021a. Vitamin A deficiency exacerbates gut microbiota dysbiosis and cognitive deficits in amyloid precursor protein/presenilin 1 transgenic mice. Frontiers in Aging Neuroscience 13:753351. doi: 10.3389/fnagi.2021.753351.
  • Chu, B. C., A. Garcia-Herrero, T. H. Johanson, K. D. Krewulak, C. K. Lau, R. S. Peacock, Z. Slavinskaya, and H. J. Vogel. 2010. Siderophore uptake in bacteria and the battle for iron with the host; a bird’s eye view. Biometals: An International Journal on the Role of Metal Ions in Biology, Biochemistry, and Medicine 23 (4):601–11. doi: 10.1007/s10534-010-9361-x.
  • Clemente, J. C., L. K. Ursell, L. W. Parfrey, and R. Knight. 2012. The impact of the gut microbiota on human health: An integrative view. Cell 148 (6):1258–70. doi: 10.1016/j.cell.2012.01.035.
  • Conlon, M. A., and A. R. Bird. 2014. The impact of diet and lifestyle on gut microbiota and human health. Nutrients 7 (1):17–44. doi: 10.3390/nu7010017.
  • Coombes, J. L., K. R. R. Siddiqui, C. V. Arancibia-Cárcamo, J. Hall, C.-M. Sun, Y. Belkaid, and F. Powrie. 2007. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β– and retinoic acid–dependent mechanism. The Journal of Experimental Medicine 204 (8):1757–64. doi: 10.1084/jem.20070590.
  • Cuisiniere, T., A. Calve, G. Fragoso, M. Oliero, R. Hajjar, E. Gonzalez, and M. Santos. 2021. Oral iron supplementation after antibiotic exposure induces a deleterious recovery of the gut microbiota. BMC Microbiology 21 (1):1–15. doi: 10.1186/s12866-021-02320-0.
  • Culligan, E. P., R. D. Sleator, J. R. Marchesi, and C. Hill. 2014. Metagenomic identification of a novel salt tolerance gene from the human gut microbiome which encodes a membrane protein with homology to a brp/blh-Family β-Carotene 15,15′-Monooxygenase. PloS One 9 (7):e103318. doi: 10.1371/journal.pone.0103318.
  • Czarnewski, P., S. Das, S. M. Parigi, and E. J. Villablanca. 2017. Retinoic acid and its role in modulating intestinal innate immunity. Nutrients 9 (1):68. doi: 10.3390/nu9010068.
  • Das, N., A. Schwartz, G. Barthel, N. Inohara, Q. Liu, A. Sankar, D. Hill, X. Ma, O. Lamberg, M. Schnizlein, et al. 2020. Microbial metabolite signaling is required for systemic iron homeostasis. Cell Metabolism 31 (1):115–30.e6. doi: 10.1016/j.cmet.2019.10.005.
  • Denko, C. W., and W. E. Grundy. 1946. The excretion of B-complex vitamins in the urine and feces of seven normal adults. Archives of Biochemistry 10:33–40.
  • Dhuique-Mayer, C., P. Borel, E. Reboul, B. Caporiccio, P. Besancon, and M.-J. Amiot. 2007. Beta-cryptoxanthin from citrus juices: Assessment of bioaccessibility using an in vitro digestion/Caco-2 cell culture model. The British Journal of Nutrition 97 (5):883–90. doi: 10.1017/S0007114507670822.
  • Dostal, A., J. Baumgartner, N. Riesen, C. Chassard, C. M. Smuts, M. B. Zimmermann, and C. Lacroix. 2014. Effects of iron supplementation on dominant bacterial groups in the gut, faecal SCFA and gut inflammation: A randomised, placebo-controlled intervention trial in South African children. The British Journal of Nutrition 112 (4):547–56. doi: 10.1017/S0007114514001160.
  • Dragasevic, S., B. Stankovic, N. Kotur, A. Milutinovic, T. Milovanovic, M. Lalosevic, M. Stojanovic, S. Pavlovic, and D. Popovic. 2022. Genetic aspects of micronutrients important for inflammatory bowel disease. Life 12 (10):1623. doi: 10.3390/life12101623.
  • Duhutrel, P., C. Bordat, T.-D. Wu, M. Zagorec, J.-L. Guerquin-Kern, and M.-C. Champomier-Vergès. 2010. Iron sources used by the nonpathogenic lactic acid bacterium Lactobacillus sakei as revealed by electron energy loss spectroscopy and secondary-ion mass spectrometry. Applied and Environmental Microbiology 76 (2):560–5. doi: 10.1128/AEM.02205-09.
  • Duthie, S. J., S. Narayanan, G. M. Brand, L. Pirie, and G. Grant. 2002. Impact of folate deficiency on DNA stability. The Journal of Nutrition 132 (8 Suppl):2444S–9S. doi: 10.1093/jn/132.8.2444S.
  • Engevik, M., C. Morra, D. Roth, K. Engevik, J. Spinler, S. Devaraj, S. Crawford, M. Estes, M. Kalkum, and J. Versalovic. 2019. Microbial metabolic capacity for intestinal folate production and modulation of host folate receptors. Frontiers in Microbiology 10:2305. doi: 10.3389/fmicb.2019.02305.
  • Fawzi, W. W., and D. Wang. 2021. When should universal distribution of periodic high-dose vitamin A to children cease? The American Journal of Clinical Nutrition 113 (4):769–71. doi: 10.1093/ajcn/nqaa428.
  • Flo, T. H., K. D. Smith, S. Sato, D. J. Rodriguez, M. A. Holmes, R. K. Strong, S. Akira, and A. Aderem. 2004. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 432 (7019):917–21. doi: 10.1038/nature03104.
  • Frazer, D. M., and G. J. Anderson. 2014. The regulation of iron transport. BioFactors (Oxford, England) 40 (2):206–14. doi: 10.1002/biof.1148.
  • Fukunaga, T., M. Sasaki, Y. Araki, T. Okamoto, T. Yasuoka, T. Tsujikawa, Y. Fujiyama, and T. Bamba. 2003. Effects of the soluble fibre pectin on intestinal cell proliferation, fecal short chain fatty acid production and microbial population. Digestion 67 (1-2):42–9. doi: 10.1159/000069705.
  • Fuqua, B. K., C. D. Vulpe, and G. J. Anderson. 2012. Intestinal iron absorption. Journal of Trace Elements in Medicine and Biology: Organ of the Society for Minerals and Trace Elements (GMS) 26 (2–3):115–9. doi: 10.1016/j.jtemb.2012.03.015.
  • Gehrig, J. L., S. Venkatesh, H.-W. Chang, M. C. Hibberd, V. L. Kung, J. Cheng, R. Y. Chen, S. Subramanian, C. A. Cowardin, M. F. Meier, et al. 2019. Effects of microbiota-directed foods in gnotobiotic animals and undernourished children. Science (New York, N.Y.) 365 (6449):eaau4732. doi: 10.1126/science.aau4732.
  • Gérard, P. 2013. Metabolism of cholesterol and bile acids by the gut microbiota. Pathogens (Basel, Switzerland) 3 (1):14–24. doi: 10.3390/pathogens3010014.
  • Gharibzahedi, S., and M. T. S. M. Jafari. 2017. The importance of minerals in human nutrition: Bioavailability, food fortification, processing effects and nanoencapsulation. Trends in Food Science & Technology 62:119–32. doi: 10.1016/j.tifs.2017.02.017.
  • Ghibaudo, F., E. Gerbino, G. Copello, V. Orto, and A. Gomez-Zavaglia. 2019. Pectin-decorated magnetite nanoparticles as both iron delivery systems and protective matrices for probiotic bacteria. Colloids and Surfaces. B, Biointerfaces 180:193–201. doi: 10.1016/j.colsurfb.2019.04.049.
  • Girdwood, R. H. 1950. The intestinal content in pernicious anemia of factors for the growth of Streptococcus faecalis and Lactobacillus leichmannii. Blood 5 (11):1009–16. doi: 10.1182/blood.V5.11.1009.1009.
  • Gomez-Gallego, C., I. Garcia-Mantrana, C. Martinez-Costa, S. Salminen, E. Isolauri, and M. Collado. 2019. The microbiota and malnutrition: Impact of nutritional status during early life. In Annual Review of Nutrition, eds. P. Stover and R. Balling, vol 39, 267–90. doi: 10.1146/annurev-nutr-082117-051716.
  • Gonzalez, A., J. C. Clemente, A. Shade, J. L. Metcalf, S. Song, B. Prithiviraj, B. E. Palmer, and R. Knight. 2011. Our microbial selves: What ecology can teach us. EMBO Reports 12 (8):775–84. doi: 10.1038/embor.2011.137.
  • Gopalsamy, G. L., D. H. Alpers, H. J. Binder, C. D. Tran, B. S. Ramakrishna, I. Brown, M. Manary, E. Mortimer, and G. P. Young. 2015. The relevance of the colon to zinc nutrition. Nutrients 7 (1):572–83. doi: 10.3390/nu7010572.
  • Grizotte-Lake, M., G. Zhong, K. Duncan, J. Kirkwood, N. Iyer, I. Smolenski, N. Isoherranen, and S. Vaishnava. 2018. Commensals suppress intestinal epithelial cell retinoic acid synthesis to regulate interleukin-22 activity and prevent microbial dysbiosis. Immunity 49 (6):1103–15.e6. doi: 10.1016/j.immuni.2018.11.018.
  • Hall, J. A., J. L. Cannons, J. R. Grainger, L. M. Dos Santos, T. W. Hand, S. Naik, E. A. Wohlfert, D. B. Chou, G. Oldenhove, M. Robinson, et al. 2011. Essential role for retinoic acid in the promotion of CD4+ T cell effector responses via retinoic acid receptor alpha. Immunity 34 (3):435–47. doi: 10.1016/j.immuni.2011.03.003.
  • Hambidge, M. 2000. Human zinc deficiency. The Journal of Nutrition 130 (5 Suppl):1344S–9S. doi: 10.1093/jn/130.5.1344S.
  • Han, X., F. Liu, Q. Zhang, B. Mao, X. Tang, J. Huang, R. Guo, J. Zhao, H. Zhang, S. Cui, et al. 2022. Effects of Zn-enriched bifidobacterium longum on the growth and reproduction of rats. Nutrients 14 (4):783. doi: 10.3390/nu14040783.
  • Harrison, E. H. 2005. Mechanisms of digestion and absorption of dietary vitamin A. Annual Review of Nutrition 25 (1):87–103. doi: 10.1146/annurev.nutr.25.050304.092614.
  • Hibberd, M. C., M. Wu, D. A. Rodionov, X. Li, J. Cheng, N. W. Griffin, M. J. Barratt, R. J. Giannone, R. L. Hettich, A. L. Osterman, et al. 2017. The effects of micronutrient deficiencies on bacterial species from the human gut microbiota. Science Translational Medicine 9 (390):eaal4069. doi: 10.1126/scitranslmed.aal4069.
  • Hojberg, O., N. Canibe, H. D. Poulsen, M. S. Hedemann, and B. B. Jensen. 2005. Influence of dietary zinc oxide and copper sulfate on the gastrointestinal ecosystem in newly weaned piglets. Applied and Environmental Microbiology 71 (5):2267–77. doi: 10.1128/AEM.71.5.2267-2277.2005.
  • Hooijberg, J. H., G. J. Peters, Y. G. Assaraf, I. Kathmann, D. G. Priest, M. A. Bunni, A. J. P. Veerman, G. L. Scheffer, G. J. L. Kaspers, and G. Jansen. 2003. The role of multidrug resistance proteins MRP1, MRP2 and MRP3 in cellular folate homeostasis. Biochemical Pharmacology 65 (5):765–71. doi: 10.1016/S0006-2952(02)01615-5.
  • Huang, Z., Y. Liu, G. Qi, D. Brand, and S. Zheng. 2018. Role of vitamin A in the immune system. Journal of Clinical Medicine 7 (9):258. doi: 10.3390/jcm7090258.
  • Huda, M., S. Ahmad, K. Kalanetra, D. Taft, M. Alam, A. Khanam, R. Raqib, M. Underwood, D. Mills, and C. Stephensen. 2019. Neonatal vitamin A supplementation and vitamin a status are associated with gut microbiome composition in bangladeshi infants in early infancy and at 2 years of age. The Journal of Nutrition 149 (6):1075–88. doi: 10.1093/jn/nxz034.
  • Imdad, A., M. Y. Yakoob, C. Sudfeld, B. A. Haider, R. E. Black, and Z. A. Bhutta. 2011. Impact of vitamin A supplementation on infant and childhood mortality. BMC Public Health 11 (S3):S20. doi: 10.1186/1471-2458-11-S3-S20.
  • Ivanov, I. I., K. Atarashi, N. Manel, E. L. Brodie, T. Shima, U. Karaoz, D. Wei, K. C. Goldfarb, C. A. Santee, S. V. Lynch, et al. 2009. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139 (3):485–98. doi: 10.1016/j.cell.2009.09.033.
  • Jaeggi, T., G. A. M. Kortman, D. Moretti, C. Chassard, P. Holding, A. Dostal, J. Boekhorst, H. M. Timmerman, D. W. Swinkels, H. Tjalsma, et al. 2015. Iron fortification adversely affects the gut microbiome, increases pathogen abundance and induces intestinal inflammation in Kenyan infants. Gut 64 (5):731–42. doi: 10.1136/gutjnl-2014-307720.
  • Jaehme, M., and D. J. Slotboom. 2015. Diversity of membrane transport proteins for vitamins in bacteria and archaea. Biochimica et Biophysica Acta 1850 (3):565–76. doi: 10.1016/j.bbagen.2014.05.006.
  • Kang, S., R. Li, H. Jin, H. You, and G. Ji. 2020. Effects of selenium- and zinc-enriched Lactobacillus plantarum SeZi on antioxidant capacities and gut microbiome in an ICR mouse model. Antioxidants 9 (10):1028. doi: 10.3390/antiox9101028.
  • Kennedy, G., G. Nantel, and P. Shetty. 2003. The scourge of “hidden hunger. Global Dimensions of Micronutrient Deficiencies 8–16.
  • Kim, T. H., J. Yang, P. B. Darling, and D. L. O’Connor. 2004. A large pool of available folate exists in the large intestine of human infants and piglets. The Journal of Nutrition 134 (6):1389–94. doi: 10.1093/jn/134.6.1389.
  • King, J. C., D. M. Shames, and L. R. Woodhouse. 2000. Zinc homeostasis in humans. The Journal of Nutrition 130 (5 Suppl):1360S–6S. doi: 10.1093/jn/130.5.1360S.
  • Kortman, B., A. Dutilh, U. Maathuis, J. Engelke, K. Boekhorst, F. Keegan, J. Nielsen, J. Betley, Z. Weir, L. Kingsbury, et al. 2015a. Microbial metabolism shifts towards an adverse profile with supplementary iron in the TIM-2 in vitro model of the human colon. Frontiers in Microbiology 6:1481. doi: 10.3389/fmicb.2015.01481.
  • Kortman, G. A. M., M. L. M. Mulder, T. J. W. Richters, N. K. N. Shanmugam, E. Trebicka, J. Boekhorst, H. M. Timmerman, R. Roelofs, E. T. Wiegerinck, C. M. Laarakkers, et al. 2015b. Low dietary iron intake restrains the intestinal inflammatory response and pathology of enteric infection by food-borne bacterial pathogens. European Journal of Immunology 45 (9):2553–67. doi: 10.1002/eji.201545642.
  • Kortman, G. A. M., M. Raffatellu, D. W. Swinkels, and H. Tjalsma. 2014. Nutritional iron turned inside out: Intestinal stress from a gut microbial perspective. FEMS Microbiology Reviews 38 (6):1202–34. doi: 10.1111/1574-6976.12086.
  • Kramer, J., Ö. Özkaya, and R. Kümmerli. 2020. Bacterial siderophores in community and host interactions. Nature Reviews. Microbiology 18 (3):152–63. doi: 10.1038/s41579-019-0284-4.
  • Krebs, N. F. 2000. Overview of zinc absorption and excretion in the human gastrointestinal tract. The Journal of Nutrition 130 (5S Suppl):1374S–7S. doi: 10.1093/jn/130.5.1374S.
  • Kyyaly, M. A., C. Powell, and E. Ramadan. 2015. Preparation of iron-enriched baker’s yeast and its efficiency in recovery of rats from dietary iron deficiency. Nutrition (Burbank, Los Angeles County, Calif.) 31 (9):1155–64. doi: 10.1016/j.nut.2015.04.017.
  • Lakoff, A., Z. Fazili, S. Aufreiter, C. M. Pfeiffer, B. Connolly, J. F. Gregory, P. B. Pencharz, and D. L. O’Connor. 2014. Folate is absorbed across the human colon: Evidence by using enteric-coated caplets containing 13C-labeled [6S]-5-formyltetrahydrofolate. The American Journal of Clinical Nutrition 100 (5):1278–86. doi: 10.3945/ajcn.114.091785.
  • Latunde-Dada, G. O., M. F. Aslam, P. R. Ellis, S. E. Berry, and P. A. Sharp. 2019. Chapter 39 - wheat flour fortification to prevent iron-deficiency Anemia. In Flour and Breads and Their Fortification in Health and Disease Prevention (Second Edition), eds. V.R. Preedy and R.R. Watson, 485–91. Academic Press. doi: 10.1016/B978-0-12-814639-2.00039-3.
  • Lau, C. K. Y., K. D. Krewulak, and H. J. Vogel. 2016. Bacterial ferrous iron transport: The Feo system. FEMS Microbiology Reviews 40 (2):273–98. doi: 10.1093/femsre/fuv049.
  • LeBlanc, J. G., C. Milani, G. S. de Giori, F. Sesma, D. van Sinderen, and M. Ventura. 2013. Bacteria as vitamin suppliers to their host: A gut microbiota perspective. Current Opinion in Biotechnology 24 (2):160–8. doi: 10.1016/j.copbio.2012.08.005.
  • Lechardeur, D., B. Cesselin, U. Liebl, M. H. Vos, A. Fernandez, C. Brun, A. Gruss, and P. Gaudu. 2012. Discovery of intracellular heme-binding protein HrtR, which controls heme efflux by the conserved HrtB-HrtA transporter in Lactococcus lactis*. The Journal of Biological Chemistry 287 (7):4752–8. doi: 10.1074/jbc.M111.297531.
  • Lee, H., and G. Ko. 2016. Antiviral effect of vitamin A on norovirus infection via modulation of the gut microbiome. Scientific Reports 6:25835. doi: 10.1038/srep25835.
  • Liu, M., Q. Chen, Y. Sun, L. Zeng, H. Wu, Q. Gu, and P. Li. 2022. Probiotic potential of a folate-producing strain Latilactobacillus sakei LZ217 and its modulation effects on human gut microbiota. Foods 11 (2):234. doi: 10.3390/foods11020234.
  • Liu, J. Z., S. Jellbauer, A. J. Poe, V. Ton, M. Pesciaroli, T. E. Kehl-Fie, N. A. Restrepo, M. P. Hosking, R. A. Edwards, A. Battistoni, et al. 2012. Zinc sequestration by the neutrophil protein calprotectin enhances salmonella growth in the inflamed gut. Cell Host & Microbe 11 (3):227–39. doi: 10.1016/j.chom.2012.01.017.
  • Liu, J., X. Liu, X.-Q. Xiong, T. Yang, T. Cui, N.-L. Hou, X. Lai, S. Liu, M. Guo, X.-H. Liang, et al. 2017. Effect of vitamin A supplementation on gut microbiota in children with autism spectrum disorders - a pilot study. BMC Microbiology 17 (1):1–14. doi: 10.1186/s12866-017-1096-1.
  • Liu, Y., J. Yang, X. Liu, R. Liu, Y. Wang, X. Huang, Y. Li, R. Liu, and X. Yang. 2023. Dietary folic acid addition reduces abdominal fat deposition mediated by alterations in gut microbiota and SCFA production in broilers. Animal Nutrition (Zhongguo xu mu Shou yi Xue Hui) 12:54–62. doi: 10.1016/j.aninu.2022.08.013.
  • Lobo, G. P., J. Amengual, G. Palczewski, D. Babino, and J. von Lintig. 2012. Carotenoid-oxygenases: Key players for carotenoid function and homeostasis in mammalian biology. Biochimica et Biophysica Acta 1821 (1):78–87. doi: 10.1016/j.bbalip.2011.04.010.
  • Lv, Z., Y. Wang, T. Yang, X. Zhan, Z. Li, H. Hu, T. Li, and J. Chen. 2016. Vitamin A deficiency impacts the structural segregation of gut microbiota in children with persistent diarrhea. Journal of Clinical Biochemistry and Nutrition 59 (2):113–21. doi: 10.3164/jcbn.15-148.
  • Lyu, Y., L. Wu, F. Wang, X. Shen, and D. Lin. 2018. Carotenoid supplementation and retinoic acid in immunoglobulin A regulation of the gut microbiota dysbiosis. Experimental Biology and Medicine (Maywood, N.J.) 243 (7):613–20. doi: 10.1177/1535370218763760.
  • Maares, M., and H. Haase. 2020. A guide to human zinc absorption: General overview and recent advances of in vitro intestinal models. Nutrients 12 (3):762. doi: 10.3390/nu12030762.
  • Magnúsdóttir, S., D. Ravcheev, V. de Crécy-Lagard, and I. Thiele. 2015. Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Frontiers in Genetics 6:148. doi: 10.3389/fgene.2015.00148.
  • Malinowska, A., M. Schmidt, D. Kok, and A. Chmurzynska. 2022. Ex vivo folate production by fecal bacteria does not predict human blood folate status: Associations between dietary patterns, gut microbiota, and folate metabolism. Food Research International (Ottawa, Ont.) 156:111290. doi: 10.1016/j.foodres.2022.111290.
  • Mallard, S. R., L. A. Houghton, S. Filteau, M. Chisenga, J. Siame, L. Kasonka, A. Mullen, and R. S. Gibson. 2016. Micronutrient adequacy and dietary diversity exert positive and distinct effects on linear growth in urban zambian infants. The Journal of Nutrition 146 (10):2093–101. doi: 10.3945/jn.116.233890.
  • Maynard, C., and D. Weinkove. 2020. Bacteria increase host micronutrient availability: Mechanisms revealed by studies in C. elegans. Genes & Nutrition 15 (1):1–11. doi: 10.1186/s12263-020-00662-4.
  • Mayneris-Perxachs, J., J. Moreno-Navarrete, and J. Fernandez-Real. 2022. The role of iron in host-microbiota crosstalk and its effects on systemic glucose metabolism. Nature Reviews. Endocrinology 18 (11):683–98. doi: 10.1038/s41574-022-00721-3.
  • McMillen, S., S. Thomas, E. Liang, E. Nonnecke, C. Slupsky, and B. Lonnerdal. 2022. Gut microbiome alterations following postnatal iron supplementation depend on iron form and persist into adulthood. Nutrients 14 (3):412. doi: 10.3390/nu14030412.
  • Mikulic, N., M. A. Uyoga, E. Mwasi, N. U. Stoffel, C. Zeder, S. Karanja, and M. B. Zimmermann. 2020. Iron absorption is greater from apo-lactoferrin and is similar between holo-lactoferrin and ferrous sulfate: Stable iron isotope studies in kenyan infants. The Journal of Nutrition 150 (12):3200–7. doi: 10.1093/jn/nxaa226.
  • Miller, J. L. 2013. Iron deficiency anemia: A common and curable disease. Cold Spring Harbor Perspectives in Medicine 3 (7):a011866–a011866. doi: 10.1101/cshperspect.a011866.
  • Million, M., A. Diallo, and D. Raoult. 2017. Gut microbiota and malnutrition. Microbial Pathogenesis 106:127–38. doi: 10.1016/j.micpath.2016.02.003.
  • Nemeth, E., and T. Ganz. 2006. Regulation of iron metabolism by hepcidin. Annual Review of Nutrition 26:323–42. doi: 10.1146/annurev.nutr.26.061505.111303.
  • O’Hara, A. M., and F. Shanahan. 2006. The gut flora as a forgotten organ. EMBO Reports 7 (7):688–93. doi: 10.1038/sj.embor.7400731.
  • Paganini, D., M. A. Uyoga, G. A. M. Kortman, C. I. Cercamondi, D. Moretti, T. Barth-Jaeggi, C. Schwab, J. Boekhorst, H. M. Timmerman, C. Lacroix, et al. 2017. Prebiotic galacto-oligosaccharides mitigate the adverse effects of iron fortification on the gut microbiome: A randomised controlled study in Kenyan infants. Gut 66 (11):1956–67. doi: 10.1136/gutjnl-2017-314418.
  • Pang, B., H. Jin, N. Liao, J. Li, C. Jiang, and J. Shi. 2021. Vitamin A supplementation ameliorates ulcerative colitis in gut microbiota-dependent manner. Food Research International (Ottawa, Ont.) 148:110568. doi: 10.1016/j.foodres.2021.110568.
  • Petry, N., I. Egli, C. Zeder, T. Walczyk, and R. Hurrell. 2010. Polyphenols and phytic acid contribute to the low iron bioavailability from common beans in young women. The Journal of Nutrition 140 (11):1977–82. doi: 10.3945/jn.110.125369.
  • Pieper, R., W. Vahjen, K. Neumann, A. G. Van Kessel, and J. Zentek. 2012. Dose-dependent effects of dietary zinc oxide on bacterial communities and metabolic profiles in the ileum of weaned pigs. Journal of Animal Physiology and Animal Nutrition 96 (5):825–33. doi: 10.1111/j.1439-0396.2011.01231.x.
  • Powell, J. J., S. F. A. Bruggraber, N. Faria, L. K. Poots, N. Hondow, T. J. Pennycook, G. O. Latunde-Dada, R. J. Simpson, A. P. Brown, and D. I. A. Pereira. 2014. A nano-disperse ferritin-core mimetic that efficiently corrects anemia without luminal iron redox activity. Nanomedicine : nanotechnology, Biology, and Medicine 10 (7):1529–38. doi: 10.1016/j.nano.2013.12.011.
  • Putnam, E. E., and A. L. Goodman. 2020. B vitamin acquisition by gut commensal bacteria. PLoS Pathogens 16 (1):e1008208. doi: 10.1371/journal.ppat.1008208.
  • Qi, X., Y. Zhang, H. Guo, Y. Hai, Y. Luo, and T. Yue. 2020. Mechanism and intervention measures of iron side effects on the intestine. Critical Reviews in Food Science and Nutrition 60 (12):2113–25. doi: 10.1080/10408398.2019.1630599.
  • Reboul, E. 2013. Absorption of vitamin A and carotenoids by the enterocyte: Focus on transport proteins. Nutrients 5 (9):3563–81. doi: 10.3390/nu5093563.
  • Reboul, E., A. Berton, M. Moussa, C. Kreuzer, I. Crenon, and P. Borel. 2006. Pancreatic lipase and pancreatic lipase-related protein 2, but not pancreatic lipase-related protein 1, hydrolyze retinyl palmitate in physiological conditions. Biochimica et Biophysica Acta 1761 (1):4–10. doi: 10.1016/j.bbalip.2005.12.013.
  • Reddy, N. R., and S. K. Sathe. 2001. Food Phytates. Boca Raton: CRC Press.
  • Reed, S., M. Knez, A. Uzan, J. C. R. Stangoulis, R. P. Glahn, O. Koren, and E. Tako. 2018. Alterations in the Gut (Gallus gallus) microbiota following the consumption of zinc biofortified wheat (Triticum aestivum)-based diet. Journal of Agricultural and Food Chemistry 66 (25):6291–9. doi: 10.1021/acs.jafc.8b01481.
  • Rivella, S., and B. J. Crielaard. 2014. Disorders of iron metabolism: Iron deficiency and iron overload and anemia of chronic diseases. In Pathobiology of Human Disease, eds. L. M. McManus and R. N. Mitchell, 1471–87. San Diego: Academic Press. doi: 10.1016/B978-0-12-386456-7.07903-X.
  • Rodionov, D. A., A. A. Arzamasov, M. S. Khoroshkin, S. N. Iablokov, S. A. Leyn, S. N. Peterson, P. S. Novichkov, and A. L. Osterman. 2019. Micronutrient requirements and sharing capabilities of the human gut microbiome. Frontiers in Microbiology 10:1316. doi: 10.3389/fmicb.2019.01316.
  • Rogers, L. M., A. M. Cordero, C. M. Pfeiffer, D. B. Hausman, B. L. Tsang, L. M. De-Regil, J. Rosenthal, H. Razzaghi, E. C. Wong, A. P. Weakland, et al. 2018. Global folate status in women of reproductive age: A systematic review with emphasis on methodological issues. Annals of the New York Academy of Sciences 1431 (1):35–57. doi: 10.1111/nyas.13963.
  • Rossi, M., A. Amaretti, and S. Raimondi. 2011. Folate production by probiotic bacteria. Nutrients 3 (1):118–34. doi: 10.3390/nu3010118.
  • Rowland, I., G. Gibson, A. Heinken, K. Scott, J. Swann, I. Thiele, and K. Tuohy. 2018. Gut microbiota functions: Metabolism of nutrients and other food components. European Journal of Nutrition 57 (1):1–24. doi: 10.1007/s00394-017-1445-8.
  • Rubini, E., N. Schenkelaars, M. Rousian, K. Sinclair, L. Wekema, M. Faas, R. Steegers-Theunissen, and S. Schoenmakers. 2022. Maternal obesity during pregnancy leads to derangements in one-carbon metabolism and the gut microbiota: Implications for fetal development and offspring wellbeing. American Journal of Obstetrics and Gynecology 227 (3):392–400. doi: 10.1016/j.ajog.2022.04.013.
  • Rusu, I. G., R. Suharoschi, D. C. Vodnar, C. R. Pop, S. A. Socaci, R. Vulturar, M. Istrati, I. Moroșan, A. C. Fărcaș, A. D. Kerezsi, et al. 2020. Iron supplementation influence on the gut microbiota and probiotic intake effect in iron deficiency-a literature-based review. Nutrients 12 (7):1993. doi: 10.3390/nu12071993.
  • Sabatier, M., I. Egli, R. Hurrell, M. Hoppler, C. Gysler, S. Georgeon, R. Mukherje, P.-A. Richon, M. Vigo, J. T. Foman, et al. 2017. Iron bioavailability from fresh cheese fortified with iron-enriched yeast. European Journal of Nutrition 56 (4):1551–60. doi: 10.1007/s00394-016-1200-6.
  • Sadeghpour, A., M. Rappolt, S. Misra, and C. V. Kulkarni. 2018. Bile salts caught in the act: From emulsification to nanostructural reorganization of lipid self-assemblies. Langmuir: The ACS Journal of Surfaces and Colloids 34 (45):13626–37. doi: 10.1021/acs.langmuir.8b02343.
  • Said, H. M. 2011. Intestinal absorption of water-soluble vitamins in health and disease. The Biochemical Journal 437 (3):357–72. doi: 10.1042/BJ20110326.
  • Schmidt, K., E. Haddad, K. Sugino, K. Vevang, L. Peterson, R. Koratkar, M. Gross, J. Kerver, and S. Comstock. 2021. Dietary and plasma carotenoids are positively associated with alpha diversity in the fecal microbiota of pregnant women. Journal of Food Science 86 (2):602–13. doi: 10.1111/1750-3841.15586.
  • Scrimshaw, N. S. 2003. Historical concepts of interactions, synergism and antagonism between nutrition and infection. The Journal of Nutrition 133 (1):316S–21S. doi: 10.1093/jn/133.1.316S.
  • Sepehr, E., R. W. Peace, K. B. Storey, P. Jee, B. J. Lampi, and S. P. J. Brooks. 2003. Folate derived from cecal bacterial fermentation does not increase liver folate stores in 28-d folate-depleted male Sprague-Dawley rats. The Journal of Nutrition 133 (5):1347–54. doi: 10.1093/jn/133.5.1347.
  • Seyoum, Y., K. Baye, and C. Humblot. 2021. Iron homeostasis in host and gut bacteria – a complex interrelationship. Gut Microbes 13 (1):1–19. doi: 10.1080/19490976.2021.1874855.
  • Sharma, V., D. A. Rodionov, S. A. Leyn, D. Tran, S. N. Iablokov, H. Ding, D. A. Peterson, A. L. Osterman, and S. N. Peterson. 2019. B-vitamin sharing promotes stability of gut microbial communities. Frontiers in Microbiology 10:1485. doi: 10.3389/fmicb.2019.01485.
  • Shenkin, A. 2006. Micronutrients in health and disease. Postgraduate Medical Journal 82 (971):559–67. doi: 10.1136/pgmj.2006.047670.
  • Skalny, A., M. Aschner, X. Lei, V. Gritsenko, A. Santamaria, S. Alekseenko, N. Prakash, J. Chang, E. Sizova, J. Chao, et al. 2021. Gut microbiota as a mediator of essential and toxic effects of zinc in the intestines and other tissues. International Journal of Molecular Sciences 22 (23):13074. doi: 10.3390/ijms222313074.
  • Soto-Martin, E., I. Warnke, F. Farquharson, M. Christodoulou, G. Horgan, M. Derrien, J. Faurie, H. Flint, S. Duncan, and P. Louis. 2020. Vitamin biosynthesis by human gut butyrate-producing bacteria and cross-feeding in synthetic microbial communities. mBio 11 (4):1–18. doi: 10.1128/mBio.00886-20.
  • Souffriau, J., and C. Libert. 2018. Mechanistic insights into the protective impact of zinc on sepsis. Cytokine & Growth Factor Reviews 39:92–101. doi: 10.1016/j.cytogfr.2017.12.002.
  • Srinivasan, V. 2018. Probiotics in pediatric severe sepsis: The time has come to trust our “gut.”! Critical Care Medicine 46 (10):1707–8. doi: 10.1097/CCM.0000000000003322.
  • Srinivasan, K., and E. Buys. 2019. Insights into the role of bacteria in vitamin A biosynthesis: Future research opportunities. Critical Reviews in Food Science and Nutrition 59 (19):3211–26. doi: 10.1080/10408398.2018.1546670.
  • Stacchiotti, V., S. Rezzi, M. Eggersdorfer, and F. Galli. 2021. Metabolic and functional interplay between gut microbiota and fat-soluble vitamins. Critical Reviews in Food Science and Nutrition 61 (19):3211–32. doi: 10.1080/10408398.2020.1793728.
  • Starke, I. C., R. Pieper, K. Neumann, J. Zentek, and W. Vahjen. 2014. The impact of high dietary zinc oxide on the development of the intestinal microbiota in weaned piglets. FEMS Microbiology Ecology 87 (2):416–27. doi: 10.1111/1574-6941.12233.
  • Stein, A. J., and M. Qaim. 2007. The human and economic cost of hidden hunger. Food and Nutrition Bulletin 28 (2):125–34. doi: 10.1177/156482650702800201.
  • Stephensen, C. B. 2001. Vitamin A, infection, and immune function. Annual Review of Nutrition 21:167–92. doi: 10.1146/annurev.nutr.21.1.167.
  • Stevens, G. A., T. Beal, M. N. N. Mbuya, H. Luo, L. M. Neufeld, O. Y. Addo, S. Adu-Afarwuah, S. Alayón, Z. Bhutta, K. H. Brown, et al. 2022. Micronutrient deficiencies among preschool-aged children and women of reproductive age worldwide: A pooled analysis of individual-level data from population-representative surveys. The Lancet Global Health 10 (11):e1590–e1599. doi: 10.1016/S2214-109X(22)00367-9.
  • Strozzi, G. P., and L. Mogna. 2008. Quantification of folic acid in human feces after administration of bifidobacterium probiotic strains. Journal of Clinical Gastroenterology 42 (Supplement 3):S179–S184. doi: 10.1097/MCG.0b013e31818087d8.
  • Subramanian, S., L. V. Blanton, S. A. Frese, M. Charbonneau, D. A. Mills, and J. I. Gordon. 2015. Cultivating healthy growth and nutrition through the gut microbiota. Cell 161 (1):36–48. doi: 10.1016/j.cell.2015.03.013.
  • Subramanian, S., S. Huq, T. Yatsunenko, R. Haque, M. Mahfuz, M. A. Alam, A. Benezra, J. DeStefano, M. F. Meier, B. D. Muegge, et al. 2014. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature 510 (7505):417–21. doi: 10.1038/nature13421.
  • Sun, Y., N. Ma, Z. Qi, M. Han, and X. Ma. 2022. Coated zinc oxide improves growth performance of weaned piglets via gut microbiota. Frontiers in Nutrition 9:819722. doi: 10.3389/fnut.2022.819722.
  • Tamene, A., K. Baye, S. Kariluoto, M. Edelmann, F. Bationo, N. Leconte, and C. Humblot. 2019. Lactobacillus plantarum P2R3FA isolated from traditional cereal-based fermented food increase folate status in deficient rats. Nutrients 11 (11):2819. doi: 10.3390/nu11112819.
  • Tian, Y., R. G. Nichols, J. Cai, A. D. Patterson, and M. T. Cantorna. 2018. Vitamin A deficiency in mice alters host and gut microbial metabolism leading to altered energy homeostasis. The Journal of Nutritional Biochemistry 54:28–34. doi: 10.1016/j.jnutbio.2017.10.011.
  • Tremaroli, V., and F. Bäckhed. 2012. Functional interactions between the gut microbiota and host metabolism. Nature 489 (7415):242–9. doi: 10.1038/nature11552.
  • Troxell, B., and H. M. Hassan. 2013. Transcriptional regulation by Ferric Uptake Regulator (Fur) in pathogenic bacteria. Frontiers in Cellular and Infection Microbiology 3:59. doi: 10.3389/fcimb.2013.00059.
  • Turnbaugh, P. J., and J. I. Gordon. 2009. The core gut microbiome, energy balance and obesity. The Journal of Physiology 587 (Pt 17):4153–8. doi: 10.1113/jphysiol.2009.174136.
  • Tydeman, E. A., M. L. Parker, M. S. J. Wickham, G. T. Rich, R. M. Faulks, M. J. Gidley, A. Fillery-Travis, and K. W. Waldron. 2010. Effect of carrot (Daucus carota) microstructure on carotene bioaccessibilty in the upper gastrointestinal tract. 1. In vitro simulations of carrot digestion. Journal of Agricultural and Food Chemistry 58 (17):9847–54. doi: 10.1021/jf101034a.
  • Tyssandier, V., E. Reboul, J.-F. Dumas, C. Bouteloup-Demange, M. Armand, J. Marcand, M. Sallas, and P. Borel. 2003. Processing of vegetable-borne carotenoids in the human stomach and duodenum. American Journal of Physiology. Gastrointestinal and Liver Physiology 284 (6):G913–923. doi: 10.1152/ajpgi.00410.2002.
  • Vahjen, W., R. Pieper, and J. Zentek. 2011. Increased dietary zinc oxide changes the bacterial core and enterobacterial composition in the ileum of piglets. Journal of Animal Science 89 (8):2430–9. doi: 10.2527/jas.2010-3270.
  • Vega-Bautista, A., M. de la Garza, J. C. Carrero, R. Campos-Rodríguez, M. Godínez-Victoria, and M. E. Drago-Serrano. 2019. The impact of lactoferrin on the growth of intestinal inhabitant bacteria. International Journal of Molecular Sciences 20 (19):4707. doi: 10.3390/ijms20194707.
  • Verplaetse, E., G. André-Leroux, P. Duhutrel, G. Coeuret, S. Chaillou, C. Nielsen-Leroux, and M.-C. Champomier-Vergès. 2020. Heme uptake in Lactobacillus sakei evidenced by a new energy coupling factor (ECF)-like transport system. Applied and Environmental Microbiology 86 (18):1–14. doi: 10.1128/AEM.02847-19.
  • Verrijssen, T., L. Balduyck, S. Christiaens, A. Van Loey, S. Van Buggenhout, and M. Hendrickx. 2014. The effect of pectin concentration and degree of methyl-esterification on the in vitro bioaccessibility of carotenoid-enriched emulsions. Food Research International 57:71–8. doi: 10.1016/j.foodres.2014.01.031.
  • Visentin, M., N. Diop-Bove, R. Zhao, and I. D. Goldman. 2014. The intestinal absorption of folates. Annual Review of Physiology 76:251–74. doi: 10.1146/annurev-physiol-020911-153251.
  • Voreades, N., A. Kozil, and T. L. Weir. 2014. Diet and the development of the human intestinal microbiome. Frontiers in Microbiology 5:494. doi: 10.3389/fmicb.2014.00494.
  • Wan, Z., J. Zheng, Z. Zhu, L. Sang, J. Zhu, S. Luo, Y. Zhao, R. Wang, Y. Zhang, K. Hao, et al. 2022. Intermediate role of gut microbiota in vitamin B nutrition and its influences on human health. Frontiers in Nutrition 9:1031502. doi: 10.3389/fnut.2022.1031502.
  • Wang, L., L. Zou, J. Li, H. Yang, and Y. Yin. 2021. Effect of dietary folate level on organ weight, digesta pH, short-chain fatty acid concentration, and intestinal microbiota of weaned piglets. Journal of Animal Science 99 (1):1–9. doi: 10.1093/jas/skab015.
  • Wassef, L., R. Wirawan, M. Chikindas, P. A. S. Breslin, D. J. Hoffman, and L. Quadro. 2014. β Carotene–Producing Bacteria Residing in the Intestine Provide Vitamin A to Mouse Tissues In Vivo. The Journal of Nutrition 144 (5):608–13. doi: 10.3945/jn.113.188391.
  • Wessells, K. R., and K. H. Brown. 2012. Estimating the global prevalence of zinc deficiency: Results based on zinc availability in ­national food supplies and the prevalence of stunting. PloS One 7 (11):e50568. doi: 10.1371/journal.pone.0050568.
  • Wright, A. J. A., P. M. Finglas, J. R. Dainty, D. J. Hart, C. A. Wolfe, S. Southon, and J. F. Gregory. 2003. Single oral doses of 13C forms of pteroylmonoglutamic acid and 5-formyltetrahydrofolic acid elicit differences in short-term kinetics of labelled and unlabelled folates in plasma: Potential problems in interpretation of folate bioavailability studies. The British Journal of Nutrition 90 (2):363–71. doi: 10.1079/BJN2003908.
  • Yang, X., Z. He, R. Hu, J. Yan, Q. Zhang, B. Li, X. Yuan, H. Zhang, J. He, and S. Wu. 2021. Dietary beta-carotene on postpartum uterine recovery in mice: Crosstalk between gut microbiota and inflammation. Frontiers in Immunology 12:744425. doi: 10.3389/fimmu.2021.744425.
  • Yatsunenko, T., F. E. Rey, M. J. Manary, I. Trehan, M. G. Dominguez-Bello, M. Contreras, M. Magris, G. Hidalgo, R. N. Baldassano, A. P. Anokhin, et al. 2012. Human gut microbiome viewed across age and geography. Nature 486 (7402):222–7. doi: 10.1038/nature11053.
  • Yeung, C. K., R. E. Glahn, R. M. Welch, and D. D. Miller. 2005. Prebiotics and iron bioavailability—Is there a connection? Journal of Food Science 70 (5):R88–R92. doi: 10.1111/j.1365-2621.2005.tb09984.x.
  • Yu, R., T. Ahmed, H. Jiang, G. Zhou, M. Zhang, L. Lv, and B. Li. 2021. Impact of zinc oxide nanoparticles on the composition of gut microbiota in healthy and autism spectrum disorder children. Materials 14 (19):5488. doi: 10.3390/ma14195488.
  • Zackular, J., J. Moore, A. Jordan, L. Juttukonda, M. Noto, M. Nicholson, J. Crews, M. Semler, Y. Zhang, L. Ware, et al. 2016. Dietary zinc alters the microbiota and decreases resistance to Clostridium difficile infection. Nature Medicine 22 (11):1330–4. doi: 10.1038/nm.4174.
  • Zaharik, M. L., V. L. Cullen, A. M. Fung, S. J. Libby, S. L. K. Choy, B. Coburn, D. G. Kehres, M. E. Maguire, F. C. Fang, and B. B. Finlay. 2004. The salmonella Enterica serovar typhimurium divalent cation transport systems MntH and SitABCD are essential for virulence in an nramp1G169 murine typhoid model. Infection and Immunity 72 (9):5522–5. doi: 10.1128/IAI.72.9.5522-5525.2004.
  • Zhang, T., P. Sun, Q. Geng, H. Fan, Y. Gong, Y. Hu, L. Shan, Y. Sun, W. Shen, and Y. Zhou. 2022b. Disrupted spermatogenesis in a metabolic syndrome model: The role of vitamin A metabolism in the gut-testis axis. Gut 71 (1):78–87. doi: 10.1136/gutjnl-2020-323347.
  • Zhang, H., Y. Zuo, H. Zhao, H. Zhao, Y. Wang, X. Zhang, J. Zhang, P. Wang, L. Sun, H. Zhang, et al. 2022a. Folic acid ameliorates alcohol-induced liver injury via gut-liver axis homeostasis. Frontiers in Nutrition 9:989311. doi: 10.3389/fnut.2022.989311.
  • Zhu, W., L. Spiga, and S. Winter. 2019. Transition metals and host-microbe interactions in the inflamed intestine. Biometals: An International Journal on the Role of Metal Ions in Biology, Biochemistry, and Medicine 32 (3):369–84. doi: 10.1007/s10534-019-00182-8.
  • Zimmermann, M. B. 2020. Global look at nutritional and functional iron deficiency in infancy. Hematology. American Society of Hematology. Education Program 2020 (1):471–7. doi: 10.1182/hematology.2020000131.
  • Zimmermann, M. B., and R. F. Hurrell. 2007. Nutritional iron deficiency. Lancet (London, England) 370 (9586):511–20. doi: 10.1016/S0140-6736(07)61235-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.