366
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Advances in lipo-solubility delivery vehicles for curcumin: bioavailability, precise targeting, possibilities and challenges

, , , , &

References

  • Aditya, N. P., S. Aditya, H.-J. Yang, H. W. Kim, S. O. Park, J. Lee, and S. Ko. 2015. Curcumin and catechin co-loaded water-in-oil-in-water emulsion and its beverage application. Journal of Functional Foods 15:35–43. doi:10.1016/j.jff.2015.03.013.
  • Aguilera-Garrido, A., T. del Castillo-Santaella, F. Galisteo-González, M. J. Gálvez-Ruiz, and J. Maldonado-Valderrama. 2021. Investigating the role of hyaluronic acid in improving curcumin bioaccessibility from nanoemulsions. Food Chemistry 351:129301. doi:10.1016/j.foodchem.2021.129301.
  • Ahmed, K., Y. Li, D. J. McClements, and H. Xiao. 2012. Nanoemulsion-and emulsion-based delivery systems for curcumin: Encapsulation and release properties. Food Chemistry 132 (2):799–807. doi:10.1016/j.foodchem.2011.11.039.
  • Alanchari, M., M. Mohammadi, F. Yazdian, H. Ahangari, N. Ahmadi, Z. Emam‐Djomeh, A. Homayouni‐Rad, and A. Ehsani. 2021. Optimization and antimicrobial efficacy of curcumin loaded solid lipid nanoparticles against foodborne bacteria in hamburger patty. Journal of Food Science 86 (6):2242–54. doi:10.1111/1750-3841.15732.
  • Alkhader, E., N. Billa, and C. J. Roberts. 2017. Mucoadhesive chitosan-pectinate nanoparticles for the delivery of curcumin to the colon. AAPS PharmSciTech 18 (4):1009–18. doi:10.1208/s12249-016-0623-y.
  • Anand, P., H. B. Nair, B. Sung, A. B. Kunnumakkara, V. R. Yadav, R. R. Tekmal, and B. B. Aggarwal. 2010. RETRACTED: design of curcumin-loaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo. Biochemical Pharmacology 79 (3):330–8. doi:10.1016/j.bcp.2009.09.003.
  • Anton, N., and T. F. Vandamme. 2009. The universality of low-energy nano-emulsification. International Journal of Pharmaceutics 377 (1-2):142–7. doi:10.1016/j.ijpharm.2009.05.014.
  • Araiza-Calahorra, A., M. Akhtar, and A. Sarkar. 2018. Recent advances in emulsion-based delivery approaches for curcumin: From encapsulation to bioaccessibility. Trends in Food Science & Technology 71:155–69. doi:10.1016/j.tifs.2017.11.009.
  • Araiza-Calahorra, A., and A. Sarkar. 2019. Pickering emulsion stabilized by protein nanogel particles for delivery of curcumin: Effects of pH and ionic strength on curcumin retention. Food Structure 21:100113. doi: 10.1016/j.foostr.2019.100113.
  • Araiza-Calahorra, A., Y. Wang, C. Boesch, Y. Zhao, and A. Sarkar. 2020. Pickering emulsions stabilized by colloidal gel particles complexed or conjugated with biopolymers to enhance bioaccessibility and cellular uptake of curcumin. Current Research in Food Science 3:178–88. doi:10.1016/j.crfs.2020.05.001.
  • Aw, Y. Z., H. P. Lim, L. E. Low, C. K. S. Singh, E. S. Chan and B. T. Tey. 2022. Cellulose nanocrystal (CNC)-stabilized Pickering emulsion for improved curcumin storage stability. LWT 159:113249. doi: 10.1016/j.lwt.2022.113249.
  • Bago Rodriguez, A. M., B. P. Binks, and T. Sekine. 2019. Emulsions stabilized with polyelectrolyte complexes prepared from a mixture of a weak and a strong polyelectrolyte. Langmuir : The ACS Journal of Surfaces and Colloids 35 (20):6693–707. doi:10.1021/acs.langmuir.9b00897.
  • Ban, C., M. Jo, Y. H. Park, J. H. Kim, J. Y. Han, K. W. Lee, D.-H. Kweon and Y. J. Choi. 2020. Enhancing the oral bioavailability of curcumin using solid lipid nanoparticles. Food Chemistry 302:125328. doi: 10.1016/j.foodchem.2019.125328.
  • Beloqui, A., R. Coco, P. B. Memvanga, B. Ucakar, A. Des Rieux, and V. Préat. 2014. pH-sensitive nanoparticles for colonic delivery of curcumin in inflammatory bowel disease. International Journal of Pharmaceutics 473 (1-2):203–12. doi:10.1016/j.ijpharm.2014.07.009.
  • Bouarab, L., B. Maherani, A. Kheirolomoom, M. Hasan, B. Aliakbarian, M. Linder, and E. Arab-Tehrany. 2014. Influence of lecithin–lipid composition on physico-chemical properties of nanoliposomes loaded with a hydrophobic molecule. Colloids and Surfaces. B, Biointerfaces 115:197–204. doi:10.1016/j.colsurfb.2013.11.034.
  • Chaves, M. A., L. Baldino, S. C. Pinho, and E. Reverchon. 2022. Supercritical CO2 assisted process for the production of mixed phospholipid nanoliposomes: unloaded and vitamin D3-loaded vesicles. Journal of Food Engineering 316:110851. doi:10.1016/j.jfoodeng.2021.110851.
  • Chávez-Zamudio, R., A. A. Ochoa-Flores, I. Soto-Rodríguez, R. Garcia-Varela and H. S. García. 2017. Preparation, characterization and bioavailability by oral administration of O/W curcumin nanoemulsions stabilized with lysophosphatidylcholine. Food & Function 8:3346–3354. doi: 10.1039/c7fo00933j.
  • Chen, Z., Z. Shi and Z. Meng. 2023. Development and characterization of antioxidant-fortified oleogels by encapsulating hydrophilic tea polyphenols. Food Chemistry 414:135664. doi: 10.1016/j.foodchem.2023.135664.
  • Chen, Y., W. Su, S. Tie, L. Zhang, and M. Tan. 2022. Advances of astaxanthin-based delivery systems for precision nutrition. Trends in Food Science & Technology 127:63–73. doi:10.1016/j.tifs.2022.07.007.
  • Chen, Y., Q. Wu, Z. Zhang, L. Yuan, X. Liu, and L. Zhou. 2012. Preparation of curcumin-loaded liposomes and evaluation of their skin permeation and pharmacodynamics. Molecules (Basel, Switzerland) 17 (5):5972–87. doi:10.3390/molecules17055972.
  • Chen, H., R. Zhao, J. Hu, Z. Wei, D. J. McClements, S. Liu, B. Li, and Y. Li. 2020. One-step dynamic imine chemistry for preparation of chitosan-stabilized emulsions using a natural aldehyde: acid trigger mechanism and regulation and gastric delivery. Journal of Agricultural and Food Chemistry 68 (19):5412–25. doi:10.1021/acs.jafc.9b08301.
  • Chen, X., L.-Q. Zou, J. Niu, W. Liu, S.-F. Peng and C.-M. Liu. 2015. The stability, sustained release and cellular antioxidant activity of curcumin nanoliposomes. Molecules 20:14293–14311.
  • Ching, Y. C., T. M. S. U. Gunathilake, C. H. Chuah, K. Y. Ching, R. Singh and N.-S. Liou. 2019. Curcumin/Tween 20-incorporated cellulose nanoparticles with enhanced curcumin solubility for nano-drug delivery: Characterization and in vitro evaluation. Cellulose 26:5467–5481. doi: 10.1007/s10570-019-02445-6.
  • Chirio, D., E. Peira, C. Dianzani, E. Muntoni, C. L. Gigliotti, B. Ferrara, S. Sapino, G. Chindamo and M. Gallarate. 2019. Development of solid lipid nanoparticles by cold dilution of microemulsions: Curcumin loading, preliminary in vitro studies, and biodistribution. Nanomaterials 9:230. doi: 10.3390/nano9020230.
  • Cong, L., J. Wang, H. Lu, M. Tian, R. Ying, and M. Huang. 2023. Influence of different anionic polysaccharide coating on the properties and delivery performance of nanoliposomes for quercetin. Food Chemistry 409:135270. doi:10.1016/j.foodchem.2022.135270.
  • Cuomo, F., M. Cofelice, F. Venditti, A. Ceglie, M. Miguel, B. Lindman, and F. Lopez. 2018. In-vitro digestion of curcumin loaded chitosan-coated liposomes. Colloids and Surfaces. B, Biointerfaces 168:29–34. doi:10.1016/j.colsurfb.2017.11.047.
  • Dammak I. and P. J. do Amaral Sobral. 2021. Curcumin nanoemulsions stabilized with natural plant-based emulsifiers. Food Bioscience 43:101335. doi: 10.1016/j.fbio.2021.101335.
  • Dhillon, N., B. B. Aggarwal, R. A. Newman, R. A. Wolff, A. B. Kunnumakkara, J. L. Abbruzzese, C. S. Ng, V. Badmaev, and R. Kurzrock. 2008. Phase II trial of curcumin in patients with advanced pancreatic cancer. Clinical Cancer Research 14 (14):4491–9. doi:10.1158/1078-0432.CCR-08-0024.
  • Elmi, N., B. Ghanbarzadeh, A. Ayaseh, S. Sahraee, M. K. Heshmati, M. Hoseini, and A. Pezeshki. 2021. Physical properties and stability of quercetin loaded niosomes: stabilizing effects of phytosterol and polyethylene glycol in orange juice model. Journal of Food Engineering 296:110463. doi:10.1016/j.jfoodeng.2020.110463.
  • Esfanjani, A. F., E. Assadpour, and S. M. Jafari. 2018. Improving the bioavailability of phenolic compounds by loading them within lipid-based nanocarriers. Trends in Food Science & Technology 76:56–66. doi:10.1016/j.tifs.2018.04.002.
  • Estephan, M., R. El Kurdi, and D. Patra. 2021. Interaction of curcumin with diarachidonyl phosphatidyl choline (DAPC) liposomes: chitosan protects DAPC liposomes without changing phase transition temperature but impacting membrane permeability. Colloids and Surfaces. B, Biointerfaces 199:111546. doi:10.1016/j.colsurfb.2020.111546.
  • Estupiñan, O. R., P. Garcia-Manrique, M. d C. Blanco-Lopez, M. Matos, and G. Gutiérrez. 2020. Vitamin D3 loaded niosomes and transfersomes produced by ethanol injection method: identification of the critical preparation step for size control. Foods 9 (10):1367. doi:10.3390/foods9101367.
  • Feng, T., Z. Hu, K. Wang, X. Zhu, D. Chen, H. Zhuang, L. Yao, S. Song, H. Wang and M. Sun. 2020. Emulsion-based delivery systems for curcumin: Encapsulation and interaction mechanism between debranched starch and curcumin. International Journal of Biological Macromolecules 161:746–754. doi: 10.1016/j.ijbiomac.2020.06.088.
  • Gonçalves, R. F. S., J. T. Martins, L. Abrunhosa, A. A. Vicente and A. C. Pinheiro. 2021. Nanoemulsions for enhancement of curcumin bioavailability and their safety evaluation: Effect of emulsifier type. Nanomaterials 11:815. doi: 10.3390/nano11030815.
  • Gou, S., Y. Huang, Y. Wan, Y. Ma, X. Zhou, X. Tong, J. Huang, Y. Kang, G. Pan, F. Dai, et al. 2019. Multi-bioresponsive silk fibroin-based nanoparticles with on-demand cytoplasmic drug release capacity for CD44-targeted alleviation of ulcerative colitis. Biomaterials 212:39–54. doi:10.1016/j.biomaterials.2019.05.012.
  • Greenhill, C. 2020. Towards precision nutrition. Nature Reviews. Endocrinology 16 (9):473. doi:10.1038/s41574-020-0385-1.
  • Gong, H., S. Lin, H. Ren, X. Song and Q. Zhao. 2022. Pickering emulsion stabilised by double‐modified starch particles and its delivery property for curcumin. International Journal of Food Science & Technology 57:7751–7762. doi: 10.1111/ijfs.16135.
  • Gupta, T., J. Singh, S. Kaur, S. Sandhu, G. Singh and I. P. Kaur. 2020. Enhancing bioavailability and stability of curcumin using solid lipid nanoparticles (CLEN): A covenant for its effectiveness. Frontiers in Bioengineering and Biotechnology 8:879. doi: 10.3389/fbioe.2020.00879.
  • Hamadou, A. H., W.-C. Huang, C. Xue, and X. Mao. 2020. Comparison of β-carotene loaded marine and egg phospholipids nanoliposomes. Journal of Food Engineering 283:110055. doi:10.1016/j.jfoodeng.2020.110055.
  • Han, J., F. Chen, C. Gao, Y. Zhang and X. Tang. 2020. Environmental stability and curcumin release properties of Pickering emulsion stabilized by chitosan/gum Arabic nanoparticles. International Journal of Biological Macromolecules 157:202–211. doi: 10.1016/j.ijbiomac.2020.04.177.
  • Hasan, M., N. Belhaj, H. Benachour, M. Barberi-Heyob, C. J. F. Kahn, E. Jabbari, M. Linder, and E. Arab-Tehrany. 2014. Liposome encapsulation of curcumin: physico-chemical characterizations and effects on MCF7 cancer cell proliferation. International Journal of Pharmaceutics 461 (1-2):519–28. doi:10.1016/j.ijpharm.2013.12.007.
  • Hasan, M., K. Elkhoury, N. Belhaj, C. Kahn, A. Tamayol, M. Barberi-Heyob, E. Arab-Tehrany and M. Linder. 2020. Growth-inhibitory effect of chitosan-coated liposomes encapsulating curcumin on MCF-7 breast cancer cells. Marine Drugs 18:217.
  • He, S., C. Gu, D. Wang, W. Xu, R. Wang and Y. Ma. 2020. The stability and in vitro digestion of curcumin emulsions containing Konjac glucomannan. LWT 117:108672. doi: 10.1016/j.lwt.2019.108672.
  • Helson, L. 2013. Curcumin (diferuloylmethane) delivery methods: A review. BioFactors (Oxford, England) 39 (1):21–6. doi:10.1002/biof.1080.
  • Hu, B., X. Liu, C. Zhang, and X. Zeng. 2017. Food macromolecule based nanodelivery systems for enhancing the bioavailability of polyphenols. Journal of Food and Drug Analysis 25 (1):3–15. doi:10.1016/j.jfda.2016.11.004.
  • Huang, R., Y. Zhu, L. Lin, S. Song, L. Cheng and R. Zhu. 2020. Solid lipid nanoparticles enhanced the neuroprotective role of curcumin against epilepsy through activation of Bcl-2 family and P38 MAPK pathways. ACS Chemical Neuroscience 11:1985–1995. doi: 10.1021/acschemneuro.0c00242.
  • Huang, S., J. He, L. Cao, H. Lin, W. Zhang and Q. Zhong. 2020. Improved physicochemical properties of curcumin-loaded solid lipid nanoparticles stabilized by sodium caseinate-lactose Maillard conjugate. Journal of Agricultural and Food Chemistry 68:7072–7081. doi: 10.1021/acs.jafc.0c01171.
  • Jain, A., S. Saxena, and V. Rani. 2018. Comprehensive assessment of curcumin as a functional food. Functional Food and Human Health 107–118.
  • Jiang, H., Y. Wang, X. Xu, L. Deng, L. Feng, J. Han and W. Liu. 2023. Effect of oligosaccharides as lyoprotectants on the stability of curcumin-loaded nanoliposomes during lyophilization. Food Chemistry 410:135436. doi: 10.1016/j.foodchem.2023.135436.
  • Jiang, T., R. Ghosh, and C. Charcosset. 2021. Extraction, purification and applications of curcumin from plant materials – a comprehensive review. Trends in Food Science & Technology 112:419–30. doi:10.1016/j.tifs.2021.04.015.
  • Jiang, S., R. Zhu, X. He, J. Wang, M. Wang, Y. Qian and S. Wang. 2017. Enhanced photocytotoxicity of curcumin delivered by solid lipid nanoparticles. International Journal of Nanomedicine 12:167. doi: 10.2147/IJN.S123107.
  • Jin, H., L. Shang, Y. Xue, Y. Wan, C. Liu, Z. Fan, J. Xu and Q. Zhao. 2023. Lipolytic behavior and bioaccessibility of curcumin nanoemulsions stabilized by rice bran protein hydrolysate. LWT 179:114616. doi: 10.1016/j.lwt.2023.114616.
  • Jo, M., C. Ban, K. K. T. Goh and Y. J. Choi. 2023. Enhancement of the intestinal permeability of curcumin using Pickering emulsions stabilized by starch crystals and chitosan. Food Chemistry 405:134889. doi: 10.1016/j.foodchem.2022.134889.
  • Jourghanian, P., S. Ghaffari, M. Ardjmand, S. Haghighat, and M. Mohammadnejad. 2016. Sustained release curcumin loaded solid lipid nanoparticles. Advanced Pharmaceutical Bulletin 6 (1):17–21. doi:10.15171/apb.2016.04.
  • Ju, Y., H. Liao, J. J. Richardson, J. Guo, and F. Caruso. 2022. Nanostructured particles assembled from natural building blocks for advanced therapies. Chemical Society Reviews 51 (11):4287–336. doi:10.1039/d1cs00343g.
  • Kamwilaisak, K., K. Rittiwut, P. Jutakridsada, W. Iamamorphanth, N. Pimsawat, J. T. N. Knijnenburg and S. Theerakulpisut. 2022. Rheology, stability, antioxidant properties, and curcumin release of oil-in-water Pickering emulsions stabilized by rice starch nanoparticles. International Journal of Biological Macromolecules 214:370–380. doi: 10.1016/j.ijbiomac.2022.06.032.
  • Kakkar, V., S. Singh, D. Singla, and I. P. Kaur. 2011. Exploring solid lipid nanoparticles to enhance the oral bioavailability of curcumin. Molecular Nutrition & Food Research 55 (3):495–503. doi:10.1002/mnfr.201000310.
  • Kaur, G., S. Jain, and A. K. Tiwary. 2010. Investigations on microbially triggered system for colon delivery of budesonide. Asian Journal of Pharmaceutical Sciences 5:96.
  • Kharat, M., J. Aberg, T. Dai, and D. J. McClements. 2020. Comparison of emulsion and nanoemulsion delivery systems: The chemical stability of curcumin decreases as oil droplet size decreases. Journal of Agricultural and Food Chemistry 68 (34):9205–12. doi:10.1021/acs.jafc.0c01877.
  • Kolev, T. M., E. A. Velcheva, B. A. Stamboliyska, and M. Spiteller. 2005. DFT and experimental studies of the structure and vibrational spectra of curcumin. International Journal of Quantum Chemistry 102 (6):1069–79. doi:10.1002/qua.20469.
  • Kumar, A., G. Kaur, S. K. Kansal, G. R. Chaudhary, and S. K. Mehta. 2016. (Cationic + nonionic) mixed surfactant aggregates for solubilisation of curcumin. The Journal of Chemical Thermodynamics 93:115–22. doi:10.1016/j.jct.2015.09.027.
  • Kurniawansyah, F., R. Mammucari, and N. R. Foster. 2017. Polymorphism of curcumin from dense gas antisolvent precipitation. Powder Technology 305:748–56. doi:10.1016/j.powtec.2016.10.067.
  • Lao, C. D., M. T. Ruffin, D. Normolle, D. D. Heath, S. I. Murray, J. M. Bailey, M. E. Boggs, J. Crowell, C. L. Rock, and D. E. Brenner. 2006. Dose escalation of a curcuminoid formulation. BMC Complementary and Alternative Medicine 6 (1):1–4. doi:10.1186/1472-6882-6-10.
  • Lee, B. N., S. J. Hong, M. H. Yu, G. H. Shin and J. T. Kim. 2022. Enhancement of storage stability and masking effect of curcumin by turmeric extract-loaded nanoemulsion and water-soluble chitosan coating. Pharmaceutics 14:1547. doi: 10.3390/pharmaceutics14081547.
  • Lee, P., H. Tuan-Mu, L. Hsiao, J. Hu, and J. Jan. 2017. Nanogels comprising reduction-cleavable polymers for glutathione-induced intracellular curcumin delivery. Journal of Polymer Research 24 (5):1–10. doi:10.1007/s10965-017-1207-6.
  • Leiva-Vega, J., R. Villalobos-Carvajal, G. Ferrari, F. Donsì, R. N. Zúñiga, C. Shene and T. Beldarraín-Iznaga. 2020. Influence of interfacial structure on physical stability and antioxidant activity of curcumin multilayer emulsions. Food and Bioproducts Processing 121:65–75. doi: 10.1016/j.fbp.2020.01.010.
  • Li, K., C. Pi, J. Wen, Y. He, J. Yuan, H. Shen, W. Zhao, M. Zeng, X. Song and R. J. Lee. 2022. Formulation of the novel structure curcumin derivative–loaded solid lipid nanoparticles: Synthesis, optimization, characterization and anti-tumor activity screening in vitro. Drug Delivery 29:2044–2057.
  • Li, J., R. Niu, L. Dong, L. Gao, J. Zhang, Y. Zheng, M. Shi, Z. Liu and K. Li. 2019. Nanoencapsulation of curcumin and its protective effects against CCl4-induced hepatotoxicity in mice. Journal of Nanomaterials 2019:7140132. doi: 10.1155/2019/7140132.
  • Li, J., I.-C. Hwang, X. Chen, and H. J. Park. 2016. Effects of chitosan coating on curcumin loaded nano-emulsion: Study on stability and in vitro digestibility. Food Hydrocolloids. 60:138–47. doi:10.1016/j.foodhyd.2016.03.016.
  • Liang, T., R. Guan, H. Shen, Q. Xia, and M. Liu. 2017. Optimization of conditions for cyanidin-3-O-glucoside (C3G) nanoliposome production by response surface methodology and cellular uptake studies in Caco-2 cells. Molecules 22 (3):457. doi:10.3390/molecules22030457.
  • Linke, C., and S. Drusch. 2018. Pickering emulsions in foods-opportunities and limitations. Critical Reviews in Food Science and Nutrition 58 (12):1971–85. doi:10.1080/10408398.2017.1290578.
  • Liu, Y., and R. Guo. 2008. pH-dependent structures and properties of casein micelles. Biophysical Chemistry 136 (2-3):67–73. doi:10.1016/j.bpc.2008.03.012.
  • Liu, W., Y. Kong, P. Tu, J. Lu, C. Liu, W. Liu, J. Han, and J. Liu. 2017. Physical–chemical stability and in vitro digestibility of hybrid nanoparticles based on the layer-by-layer assembly of lactoferrin and BSA on liposomes. Food & Function 8 (4):1688–97. doi:10.1039/c7fo00308k.
  • Liu, C., Z. Wang, H. Jin, X. Wang, Y. Gao, Q. Zhao, C. Liu and J. Xu. 2020. Effect of enzymolysis and glycosylation on the curcumin nanoemulsions stabilized by β-conglycinin: Formation, stability and in vitro digestion. International Journal of Biological Macromolecules 142:658–667. doi: 10.1016/j.ijbiomac.2019.10.007.
  • Liu, G., Q. Wang, Z. Hu, J. Cai and X. Qin. 2019. Maillard-reacted whey protein isolates and epigallocatechin gallate complex enhance the thermal stability of the pickering emulsion delivery of curcumin. Journal of Agricultural and Food Chemistry 67:5212–5220. doi: 10.1021/acs.jafc.9b00950.
  • Liu, N., Y. Lu, Y. Zhang, Y. Gao and L. Mao. 2020. Surfactant addition to modify the structures of ethylcellulose oleogels for higher solubility and stability of curcumin. International Journal of Biological Macromolecules 165:2286–2294. doi: 10.1016/j.ijbiomac.2020.10.115.
  • Lu, X., C. Li and Q. Huang. 2019. Combining in vitro digestion model with cell culture model: Assessment of encapsulation and delivery of curcumin in milled starch particle stabilized Pickering emulsions. International Journal of Biological Macromolecules 139:917–924. doi: 10.1016/j.ijbiomac.2019.08.078.
  • Lu, X., J. Zhu, Y. Pan and Q. Huang. 2019. Assessment of dynamic bioaccessibility of curcumin encapsulated in milled starch particle stabilized Pickering emulsions using TNO’s gastrointestinal model. Food & function 10:2583–2594. doi: 10.1039/c8fo02495b.
  • Luo, Y., K. Pan, and Q. Zhong. 2015. Casein/pectin nanocomplexes as potential oral delivery vehicles. International Journal of Pharmaceutics 486 (1-2):59–68. doi:10.1016/j.ijpharm.2015.03.043.
  • Liu, Q., F. Li, N. Ji, L. Dai, L. Xiong and Q. Sun. 2021. Acetylated debranched starch micelles as a promising nanocarrier for curcumin. Food Hydrocolloids 111:106253. doi: 10.1016/j.foodhyd.2020.106253.
  • Lv, P., D. Wang, L. Dai, X. Wu, Y. Gao, and F. Yuan. 2020. Pickering emulsion gels stabilized by high hydrostatic pressure-induced whey protein isolate gel particles: characterization and encapsulation of curcumin. Food Research International (Ottawa, Ontario) 132:109032. doi:10.1016/j.foodres.2020.109032.
  • Ma, Q., W. Qian, W. Tao, Y. Zhou, and B. Xue. 2019. Delivery of curcumin nanoliposomes using surface modified with CD133 aptamers for prostate cancer. Drug Design, Development and Therapy 13:4021–33. doi:10.2147/DDDT.S210949.
  • Marathe, S. A., I. Dasgupta, D. P. Gnanadhas, and D. Chakravortty. 2011. Multifaceted roles of curcumin: Two sides of a coin!. Expert Opinion on Biological Therapy 11 (11):1485–99. doi:10.1517/14712598.2011.623124.
  • Marefati, A., M. Bertrand, M. Sjöö, P. Dejmek, and M. Rayner. 2017. Storage and digestion stability of encapsulated curcumin in emulsions based on starch granule Pickering stabilization. Food Hydrocolloids. 63:309–20. doi:10.1016/j.foodhyd.2016.08.043.
  • McClements, D. J., and S. M. Jafari. 2018. General aspects of nanoemulsions and their formulation. Nanoemulsions :3–20.
  • Mehanny, M., R. M. Hathout, A. S. Geneidi, and S. Mansour. 2016. Exploring the use of nanocarrier systems to deliver the magical molecule; curcumin and its derivatives. Journal of Controlled Release : official Journal of the Controlled Release Society 225:1–30. doi:10.1016/j.jconrel.2016.01.018.
  • Mehnert, W., and K. Mäder. 2012. Solid lipid nanoparticles: production, characterization and applications. Advanced Drug Delivery Reviews 64:83–101. doi:10.1016/j.addr.2012.09.021.
  • Mohamed, J. M., A. Alqahtani, F. Ahmad, V. Krishnaraju and K. Kalpana. 2021. Pectin co-functionalized dual layered solid lipid nanoparticle made by soluble curcumin for the targeted potential treatment of colorectal cancer. Carbohydrate Polymers 252:117180.
  • Mohanty, C., and S. K. Sahoo. 2010. The in vitro stability and in vivo pharmacokinetics of curcumin prepared as an aqueous nanoparticulate formulation. Biomaterials 31 (25):6597–611. doi:10.1016/j.biomaterials.2010.04.062.
  • Muschiolik, G., and E. Dickinson. 2017. Double emulsions relevant to food systems: preparation, stability, and applications. Comprehensive Reviews in Food Science and Food Safety 16 (3):532–55. doi:10.1111/1541-4337.12261.
  • Nazari-Vanani, R., L. Moezi and H. Heli. 2017. In vivo evaluation of a self-nanoemulsifying drug delivery system for curcumin. Biomedicine & Pharmacotherapy 88:715–720. doi: 10.1016/j.biopha.2017.01.102.
  • Ngwabebhoh, F. A., S. I. Erdagi and U. Yildiz. 2018. Pickering emulsions stabilized nanocellulosic-based nanoparticles for coumarin and curcumin nanoencapsulations: In vitro release, anticancer and antimicrobial activities. Carbohydrate Polymers 201 :317–328. doi: 10.1016/j.carbpol.2018.08.079.
  • Oshi, M. A., J. Lee, M. Naeem, N. Hasan, J. Kim, H. J. Kim, E. H. Lee, Y. Jung and J.-W. Yoo. 2020. Curcumin nanocrystal/pH-responsive polyelectrolyte multilayer core–shell nanoparticles for inflammation-targeted alleviation of ulcerative colitis. Biomacromolecules 21:3571–3581. doi: 10.1021/acs.biomac.0c00589.
  • Paulucci, V. P., R. O. Couto, C. C. C. Teixeira, and L. A. P. Freitas. 2013. Optimization of the extraction of curcumin from Curcuma longa rhizomes. Revista Brasileira de Farmacognosia 23 (1):94–100. doi:10.1590/S0102-695X2012005000117.
  • Pi, C., W. Zhao, M. Zeng, J. Yuan, H. Shen, K. Li, Z. Su, Z. Liu, J. Wen and X. Song. 2022. Anti-lung cancer effect of paclitaxel solid lipid nanoparticles delivery system with curcumin as co-loading partner in vitro and in vivo. Drug Delivery 29:1878–1891. doi: 10.1080/10717544.2022.2086938.
  • Prasad, C., E. Bhatia and R. Banerjee. 2020. Curcumin encapsulated lecithin nanoemulsions: An oral platform for ultrasound mediated spatiotemporal delivery of curcumin to the tumor. Scientific Reports 10:1–15. doi: 10.1038/s41598-020-65468-1.
  • Qazi, H. J., A. Ye, A. Acevedo-Fani and H. Singh. 2022. Impact of recombined milk systems on gastrointestinal fate of curcumin nanoemulsion. Frontiers in Nutrition 9:890876. doi: 10.3389/fnut.2022.890876.
  • Qiao, X., F. Liu, Z. Kong, Z. Yang, L. Dai, Y. Wang, Q. Sun, D. J. McClements and X. Xu. 2023. Pickering emulsion gel stabilized by pea protein nanoparticle induced by heat-assisted pH-shifting for curcumin delivery. Journal of Food Engineering 350:111504. doi: 10.1016/j.jfoodeng.2023.111504.
  • Ramalingam, P., and Y. T. Ko. 2015. Enhanced oral delivery of curcumin from N-trimethyl chitosan surface-modified solid lipid nanoparticles: pharmacokinetic and brain distribution evaluations. Pharmaceutical Research 32 (2):389–402. doi:10.1007/s11095-014-1469-1.
  • Ramalingam, P., S. W. Yoo and Y. T. Ko. 2016. Nanodelivery systems based on mucoadhesive polymer coated solid lipid nanoparticles to improve the oral intake of food curcumin. Food Research International 84:113–119.
  • Rebollo, R., F. Oyoun, Y. Corvis, M. M. El-Hammadi, B. Saubamea, K. Andrieux, N. Mignet, and K. Alhareth. 2022. Microfluidic manufacturing of liposomes: development and optimization by design of experiment and machine learning. ACS Applied Materials & Interfaces 14 (35):39736–45. doi:10.1021/acsami.2c06627.
  • Richa R. and A. R. Choudhury. 2020. Exploration of polysaccharide based nanoemulsions for stabilization and entrapment of curcumin. International Journal of Biological Macromolecules 156:1287–1296. doi: 10.1016/j.ijbiomac.2019.11.167.
  • Ru, Q., H. Yu, and Q. Huang. 2010. Encapsulation of epigallocatechin-3-gallate (EGCG) using oil-in-water (O/W) submicrometer emulsions stabilized by ι-carrageenan and β-lactoglobulin. Journal of Agricultural and Food Chemistry 58 (19):10373–81. doi:10.1021/jf101798m.
  • Sadegh Malvajerd, S., A. Azadi, Z. Izadi, M. Kurd, T. Dara, M. Dibaei, M. Sharif Zadeh, H. Akbari Javar and M. Hamidi. 2018. Brain delivery of curcumin using solid lipid nanoparticles and nanostructured lipid carriers: Preparation, optimization, and pharmacokinetic evaluation. ACS Chemical Neuroscience 10:728–739. doi: 10.1021/acschemneuro.8b00510.
  • Sari, T. P., B. Mann, R. Kumar, R. R. B. Singh, R. Sharma, M. Bhardwaj and S. Athira. 2015. Preparation and characterization of nanoemulsion encapsulating curcumin. Food Hydrocolloids 43:540–546. doi: 10.1016/j.foodhyd.2014.07.011.
  • Sabet, S., A. Rashidinejad, L. D. Melton, and D. J. McGillivray. 2021. Recent advances to improve curcumin oral bioavailability. Trends in Food Science & Technology 110:253–66. doi:10.1016/j.tifs.2021.02.006.
  • Safaeian Laein, S., I. Katouzian, M. R. Mozafari, A. Farnudiyan-Habibi, Z. Akbarbaglu, M. R. Shadan, and K. Sarabandi. 2023. Biological and thermodynamic stabilization of lipid-based delivery systems through natural biopolymers; controlled release and molecular dynamics simulations. Critical Reviews in Food Science and Nutrition :1–20. doi:10.1080/10408398.2023.2191281.
  • Saffarionpour, S., and L. L. Diosady. 2022. Curcumin, a potent therapeutic nutraceutical and its enhanced delivery and bioaccessibility by pickering emulsions. Drug Delivery and Translational Research 12 (1):124–57. doi:10.1007/s13346-021-00936-3.
  • Sahne, F., M. Mohammadi, G. D. Najafpour, and A. A. Moghadamnia. 2017. Enzyme-assisted ionic liquid extraction of bioactive compound from turmeric (Curcuma longa L.): Isolation, purification and analysis of curcumin. Industrial Crops and Products 95:686–94. doi:10.1016/j.indcrop.2016.11.037.
  • Santos, A. C., I. Pereira, M. Pereira-Silva, L. Ferreira, M. Caldas, M. Magalhães, A. Figueiras, A. J. Ribeiro, and F. Veiga. 2019. Nanocarriers for resveratrol delivery: Impact on stability and solubility concerns. Trends in Food Science & Technology 91:483–97. doi:10.1016/j.tifs.2019.07.048.
  • Sarkar, A., B. Murray, M. Holmes, R. Ettelaie, A. Abdalla, and X. Yang. 2016. In vitro digestion of Pickering emulsions stabilized by soft whey protein microgel particles: Influence of thermal treatment. Soft Matter 12 (15):3558–69. doi:10.1039/c5sm02998h.
  • Shehzad, Q., A. Rehman, S. M. Jafari, M. Zuo, M. A. Khan, A. Ali, S. Khan, A. Karim, M. Usman and A. Hussain. 2021. Improving the oxidative stability of fish oil nanoemulsions by co-encapsulation with curcumin and resveratrol. Colloids and surfaces B: Biointerfaces 199:111481. doi: 10.1016/j.colsurfb.2020.111481.
  • Shao, P., J. Feng, P. Sun, N. Xiang, B. Lu, and D. Qiu. 2020. Recent advances in improving stability of food emulsion by plant polysaccharides. Food Research International (Ottawa, Ontario) 137:109376. doi:10.1016/j.foodres.2020.109376.
  • Shin, G. H., S. K. Chung, J. T. Kim, H. J. Joung, and H. J. Park. 2013. Preparation of chitosan-coated nanoliposomes for improving the mucoadhesive property of curcumin using the ethanol injection method. Journal of Agricultural and Food Chemistry 61 (46):11119–26. doi:10.1021/jf4035404.
  • Shirsath, S. R., S. S. Sable, S. G. Gaikwad, S. H. Sonawane, D. R. Saini, and P. R. Gogate. 2017. Intensification of extraction of curcumin from Curcuma amada using ultrasound assisted approach: Effect of different operating parameters. Ultrasonics Sonochemistry 38:437–45. doi:10.1016/j.ultsonch.2017.03.040.
  • Shtay, R., C. P. Tan, and K. Schwarz. 2018. Development and characterization of solid lipid nanoparticles (SLNs) made of cocoa butter: a factorial design study. Journal of Food Engineering 231:30–41. doi:10.1016/j.jfoodeng.2018.03.006.
  • Silva, H. D., E. Beldíková, J. Poejo, L. Abrunhosa, A. T. Serra, C. M. M. Duarte, T. Brányik, M. A. Cerqueira, A. C. Pinheiro and A. A. Vicente. 2019. Evaluating the effect of chitosan layer on bioaccessibility and cellular uptake of curcumin nanoemulsions. Journal of Food Engineering 243:89–100. doi: 10.1016/j.jfoodeng.2018.09.007.
  • Silva, H. D., J. Poejo, A. C. Pinheiro, F. Donsì, A. T. Serra, C. M. M. Duarte, G. Ferrari, M. A. Cerqueira, and A. A. Vicente. 2018. Evaluating the behaviour of curcumin nanoemulsions and multilayer nanoemulsions during dynamic in vitro digestion. Journal of Functional Foods 48:605–13. doi:10.1016/j.jff.2018.08.002.
  • Sinha, V. R., and R. Kumria. 2004. Polysaccharide matrices for microbially triggered drug delivery to the colon. Drug Development and Industrial Pharmacy 30 (2):143–50. doi:10.1081/ddc-120028709.
  • Su, R., H. Yan, P. Li, B. Zhang, Y. Zhang, and W. Su. 2021. Photo-enhanced antibacterial activity of polydopamine-curcumin nanocomposites with excellent photodynamic and photothermal abilities. Photodiagnosis and Photodynamic Therapy 35:102417. doi:10.1016/j.pdpdt.2021.102417.
  • Sun, Y., J. Chi, X. Ye, S. Wang, J. Liang, P. Yue, H. Xiao, and X. Gao. 2021. Nanoliposomes as delivery system for anthocyanins: physicochemical characterization, cellular uptake, and antioxidant properties. LWT 139:110554. doi:10.1016/j.lwt.2020.110554.
  • Sun, S., X. Du, M. Fu, A. R. Khan, J. Ji, W. Liu, and G. Zhai. 2021. Galactosamine-modified PEG-PLA/TPGS micelles for the oral delivery of curcumin. International Journal of Pharmaceutics 595:120227. doi:10.1016/j.ijpharm.2021.120227.
  • Sun, M., X. Su, B. Ding, X. He, X. Liu, A. Yu, H. Lou, and G. Zhai. 2012. Advances in nanotechnology-based delivery systems for curcumin. Nanomedicine (London, England) 7 (7):1085–100. doi:10.2217/nnm.12.80.
  • Tahmasebi, B. M., M. V. Erfani, E. Babaei, F. Najafi, M. Zamani, M. Shariati, S. Nazem, B. Farhangi, P. Motahari, and M. Sadeghizadeh. 2015. Dendrosomal nano-curcumin, the novel formulation to improve the anticancer properties of curcumin. Progress in Biological Sciences 5:143–58.
  • Teixé-Roig, J., G. Oms-Oliu, I. Odriozola-Serrano and O. Martín-Belloso. 2022. Enhancing the gastrointestinal stability of curcumin by using sodium alginate-based nanoemulsions containing natural emulsifiers. International Journal of Molecular Sciences 24:498. doi: 10.3390/ijms24010498.
  • Tikekar, R. V., Y. Pan, and N. Nitin. 2013. Fate of curcumin encapsulated in silica nanoparticle stabilized Pickering emulsion during storage and simulated digestion. Food Research International 51 (1):370–7. doi:10.1016/j.foodres.2012.12.027.
  • Tosi, M. M., A. P. Ramos, B. S. Esposto, and S. M. Jafari. 2020. Dynamic light scattering (DLS) of nanoencapsulated food ingredients. Characterization of nanoencapsulated food ingredients. 191–211.
  • Tsai, Y.-M., C.-F. Chien, L.-C. Lin, and T.-H. Tsai. 2011. Curcumin and its nano-formulation: the kinetics of tissue distribution and blood–brain barrier penetration. International Journal of Pharmaceutics 416 (1):331–8. doi:10.1016/j.ijpharm.2011.06.030.
  • Van Hooghten, R., V. E. Blair, A. Vananroye, A. B. Schofield, J. Vermant, and J. H. J. Thijssen. 2017. Interfacial rheology of sterically stabilized colloids at liquid interfaces and its effect on the stability of Pickering emulsions. Langmuir : The ACS Journal of Surfaces and Colloids 33 (17):4107–18. doi:10.1021/acs.langmuir.6b04365.
  • Wang, Y., R. Ding, Z. Zhang, C. Zhong, J. Wang, and M. Wang. 2021. Curcumin-loaded liposomes with the hepatic and lysosomal dual-targeted effects for therapy of hepatocellular carcinoma. International Journal of Pharmaceutics 602:120628. doi:10.1016/j.ijpharm.2021.120628.
  • Wang, T., X. Ma, Y. Lei and Y. Luo. 2016. Solid lipid nanoparticles coated with cross-linked polymeric double layer for oral delivery of curcumin. Colloids and Surfaces B: Biointerfaces 148:1–11.
  • Wang, C., Z. Liu, G. Xu, B. Yin and P. Yao. 2016. BSA-dextran emulsion for protection and oral delivery of curcumin. Food Hydrocolloids 61:11–19. doi: 10.1016/j.foodhyd.2016.04.037.
  • Wang, K., T. Zhang, L. Liu, X. Wang, P. Wu, Z. Chen, C. Ni, J. Zhang, F. Hu, and J. Huang. 2012. Novel micelle formulation of curcumin for enhancing antitumor activity and inhibiting colorectal cancer stem cells. International Journal of Nanomedicine 7:4487–97. doi:10.2147/IJN.S34702.
  • Wang, X., Y. Jiang, Y.-W. Wang, M.-T. Huang, C.-T. Ho and Q. Huang. 2008. Enhancing anti-inflammation activity of curcumin through O/W nanoemulsions. Food Chemistry 108:419–424. doi: 10.1016/j.foodchem.2007.10.086.
  • Wei, Y., K. Li, W. Zhao, Y. He, H. Shen, J. Yuan, C. Pi, X. Zhang, M. Zeng and S. Fu. 2022. The effects of a novel curcumin derivative loaded long-circulating solid lipid nanoparticle on the MHCC-97H liver cancer cells and pharmacokinetic behavior. International Journal of Nanomedicine 2022:2225–2241. doi: 10.2147/IJN.S363237.
  • Wei, Y., C. Wang, X. Liu, A. Mackie, M. Zhang, L. Dai, J. Liu, L. Mao, F. Yuan and Y. Gao. 2022. Co-encapsulation of curcumin and β-carotene in Pickering emulsions stabilized by complex nanoparticles: Effects of microfluidization and thermal treatment. Food Hydrocolloids 122:107064. doi: 10.1016/j.foodhyd.2021.107064.
  • Wei, Z. and Q. Huang. 2020. Development of high internal phase Pickering emulsions stabilised by ovotransferrin–gum arabic particles as curcumin delivery vehicles. International Journal of Food Science & Technology 55:1891–1899. doi: 10.1111/ijfs.14340.
  • Wei, Z., H. Zhang, and Q. Huang. 2019. Curcumin-loaded Pickering emulsion stabilized by insoluble complexes involving ovotransferrin–gallic acid conjugates and carboxymethyldextran. Food & Function 10 (8):4911–23. doi:10.1039/c9fo01162e.
  • Wong, K. E., S. C. Ngai, K.-G. Chan, L.-H. Lee, B.-H. Goh, and L.-H. Chuah. 2019. Curcumin nanoformulations for colorectal cancer: a review. Frontiers in Pharmacology 10:152. doi:10.3389/fphar.2019.00152.
  • Wu, Y., K. Wang, Q. Liu, X. Liu, B. Mou, O.-M. Lai, C.-P. Tan and L.-Z. Cheong. 2022. Selective antibacterial activities and storage stability of curcumin-loaded nanoliposomes prepared from bovine milk phospholipid and cholesterol. Food Chemistry 367:130700. doi: 10.1016/j.foodchem.2021.130700.
  • Xu, G., C. Wang, and P. Yao. 2017. Stable emulsion produced from casein and soy polysaccharide compacted complex for protection and oral delivery of curcumin. Food Hydrocolloids. 71:108–17. doi:10.1016/j.foodhyd.2017.05.010.
  • Xue, J., T. Wang, Q. Hu, M. Zhou and Y. Luo. 2018. Insight into natural biopolymer-emulsified solid lipid nanoparticles for encapsulation of curcumin: Effect of loading methods. Food Hydrocolloids 79:110–116. doi: 10.1016/j.foodhyd.2017.12.018.
  • Yan, S., J. Xu, G. Liu, X. Du, M. Hu, S. Zhang, L. Jiang, H. Zhu, B. Qi, and Y. Li. 2022. Emulsions co-stabilized by soy protein nanoparticles and tea saponin: physical stability, rheological properties, oxidative stability, and lipid digestion. Food Chemistry 387:132891. doi:10.1016/j.foodchem.2022.132891.
  • Yang, Z., J. Yan, Y. Duan, L. Dai, Y. Wang, Q. Sun, D. J. McClements and X. Xu. 2023. Hydrolyzed rice glutelin nanoparticles as particulate emulsifier for Pickering emulsion: Structure, interfacial properties, and application for encapsulating curcumin. Food Hydrocolloids 134:108105. doi: 10.1016/j.foodhyd.2022.108105.
  • Yang, K., L. Lin, T. Tseng, S. Wang, and T. Tsai. 2007. Oral bioavailability of curcumin in rat and the herbal analysis from Curcuma longa by LC–MS/MS. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 853 (1-2):183–9. doi:10.1016/j.jchromb.2007.03.010.
  • Yeo, S., M. J. Kim, Y. K. Shim, I. Yoon and W. K. Lee. 2022. Solid lipid nanoparticles of curcumin designed for enhanced bioavailability and anticancer efficiency. ACS omega 7 :35875–35884. doi: 10.1021/acsomega.2c04407.
  • Yu, Z., L. Ma, S. Ye, G. Li, and M. Zhang. 2020. Construction of an environmentally friendly octenylsuccinic anhydride modified pH-sensitive chitosan nanoparticle drug delivery system to alleviate inflammation and oxidative stress. Carbohydrate Polymers 236:115972. doi:10.1016/j.carbpol.2020.115972.
  • Yu, S., Z. Wei, H. Xiao, H. Mohamed, S. Xu, X. Yang, X. Ren, L. Li, and Y. Song. 2021. Effect of mono- and double-layer polysaccharide surface coating on the physical stability of nanoliposomes under various environments. Colloids and Surfaces A: Physicochemical and Engineering Aspects 629:127324. doi:10.1016/j.colsurfa.2021.127324.
  • Zainuddin, N., I. Ahmad, H. Kargarzadeh, and S. Ramli. 2017. Hydrophobic kenaf nanocrystalline cellulose for the binding of curcumin. Carbohydrate Polymers 163:261–9. doi:10.1016/j.carbpol.2017.01.036.
  • Zhang, B., Y. Wang and R. Lu. 2023. Pickering emulsion stabilized by casein‐caffeic acid covalent nanoparticles to enhance the bioavailability of curcumin in vitro and in vivo. Journal of the Science of Food and Agriculture 103:3579–3591. doi: 10.1002/jsfa.12447.
  • Zhang, R., S. Li, Z. Zhu, and J. He. 2019. Recent advances in valorization of Chaenomeles fruit: a review of botanical profile, phytochemistry, advanced extraction technologies and bioactivities. Trends in Food Science & Technology 91:467–82. doi:10.1016/j.tifs.2019.07.012.
  • Zhang, G., Q. Zhang, L. Wang, L. Ji, P. Han, F. Zhao, and Q. Su. 2022. Preparation and optimization of O/w emulsions stabilized by triglycerol monolaurate for curcumin encapsulation. Molecules 27 (24):8861. doi:10.3390/molecules27248861.
  • Zheng, B., X. Zhang, S. Peng and D. J. McClements. 2019. Impact of curcumin delivery system format on bioaccessibility: Nanocrystals, nanoemulsion droplets, and natural oil bodies. Food & function 10:4339–4349. doi: 10.1039/c8fo02510j.
  • Zheng, B., S. Peng, X. Zhang, and D. J. McClements. 2018. Impact of delivery system type on curcumin bioaccessibility: comparison of curcumin-loaded nanoemulsions with commercial curcumin supplements. Journal of Agricultural and Food Chemistry 66 (41):10816–26. doi:10.1021/acs.jafc.8b03174.
  • Zheng, B., Z. Zhang, F. Chen, X. Luo and D. J. McClements. 2017. Impact of delivery system type on curcumin stability: Comparison of curcumin degradation in aqueous solutions, emulsions, and hydrogel beads. Food Hydrocolloids 71:187–197. doi: 10.1016/j.foodhyd.2017.05.022.
  • Zhu, X., J. Chen, Y. Hu, N. Zhang, Y. Fu and X. Chen. 2021. Tuning complexation of carboxymethyl cellulose/cationic chitosan to stabilize Pickering emulsion for curcumin encapsulation. Food Hydrocolloids 110:106135. doi: 10.1016/j.foodhyd.2020.106135.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.