859
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Deep eutectic solvents for the food industry: extraction, processing, analysis, and packaging applications – a review

ORCID Icon, , , , , & show all

References

  • Abbott, A. P., G. Capper, D. L. Davies, H. L. Munro, R. K. Rasheed, and V. Tambyrajah. 2001. Preparation of novel, moisture-stable, lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains. Chemical Communications 1 (19):2010–1. doi: 10.1039/b106357j.
  • Ahmed Janjhi, F., R. Castro-Muñoz, and G. Boczkaj. 2023. Deep eutectic solvents – Ideal solution for clean air or hidden danger? Separation and Purification Technology 314 (February):123590. doi: 10.1016/j.seppur.2023.123590.
  • Alibade, A., O. Kaltsa, E. Bozinou, V. Athanasiadis, D. Palaiogiannis, S. Lalas, A. Chatzilazarou, and D. P. Makris. 2022. Stability of microemulsions containing red grape pomace extract obtained with a glycerol/sodium benzoate deep eutectic solvent. Ocl 29:28. doi: 10.1051/ocl/2022023.
  • Anastas, P. T., and J. C. Warner. 1998. Green chemistry: Theory and practice. New York: Oxford University Press.
  • Avilés-Betanzos, K. A., J. E. Oney-Montalvo, J. Valerio Cauich-Rodríguez, M. González-Ávila, M. Scampicchio, K. Morozova, M. O. Ramírez-Sucre, and I. M. Rodríguez-Buenfil. 2022. Antioxidant capacity, vitamin C and polyphenol profile evaluation of a capsicum chinense by-product extract obtained by ultrasound using eutectic solvent. Plants 11 (15):2060. doi: 10.3390/plants11152060.
  • Basar, A. O., C. Prieto, E. Durand, P. Villeneuve, H. T. Sasmazel, and J. Lagaron. 2020. Encapsulation of β-carotene by emulsion electrospraying using deep eutectic solvents. Molecules 25 (4):981. doi: 10.3390/molecules25040981.
  • Bener, M., F. B. Şen, A. N. Önem, B. Bekdeşer, S. E. Çelik, M. Lalikoglu, Y. S. Aşçı, E. Capanoglu, and R. Apak. 2022. Microwave-assisted extraction of antioxidant compounds from by-products of Turkish hazelnut (Corylus avellana L.) using natural deep eutectic solvents: Modeling, optimization and phenolic characterization. Food Chemistry 385 (September 2021):132633. doi: 10.1016/j.foodchem.2022.132633.
  • Brehm, L., O. Frank, J. Ranner, and T. Hofmann. 2020. Quantitative determination of thiamine-derived taste enhancers in aqueous model systems, natural deep eutectic solvents, and thermally processed foods. Journal of Agricultural and Food Chemistry 68 (22):6181–9. doi: 10.1021/acs.jafc.0c01849.
  • Cabezas, R., E. Zurob, B. Gomez, G. Merlet, A. Plaza, C. Araya-Lopez, J. Romero, F. Olea, E. Quijada-Maldonado, L. Pino-Soto, et al. 2022. Challenges and possibilities of deep eutectic solvent-based membranes. Industrial & Engineering Chemistry Research 61 (48):17397–422. doi: 10.1021/acs.iecr.2c02747.
  • Cai, C., X. Chen, F. Li, and Z. Tan. 2021. Three-phase partitioning based on CO2-responsive deep eutectic solvents for the green and sustainable extraction of lipid from nannochloropsis Sp. Separation and Purification Technology 279 (September):119685. doi: 10.1016/j.seppur.2021.119685.
  • Cao, J., and E. Su. 2021. Hydrophobic deep eutectic solvents: The new generation of green solvents for diversified and colorful applications in green chemistry. Journal of Cleaner Production 314 (December 2020):127965. doi: 10.1016/j.jclepro.2021.127965.
  • Castro-Muñoz, R. 2020. Breakthroughs on tailoring pervaporation membranes for water desalination: A review. Water Research 187:116428. doi: 10.1016/j.watres.2020.116428.
  • Castro-Muñoz, R., E. Diaz-Montes, E. Gontarek-Castro, G. Boczkaj, and C. M. Galanakis. 2022. A comprehensive review on current and emerging technologies toward the valorization of bio-based wastes and by products from foods. Comprehensive Reviews in Food Science and Food Safety 21 (1):46–105. doi: 10.1111/1541-4337.12894.
  • Castro-Muñoz, R., E. Gontarek-Castro, J. Karczewski, R. Cabezas, G. Merlet, C. Araya-Lopez, and G. Boczkaj. 2022. Hybrid cross-linked chitosan/protonated-proline:glucose DES membranes with superior pervaporation performance for ethanol dehydration. Journal of Molecular Liquids 360:119499. doi: 10.1016/j.molliq.2022.119499.
  • Castro-Muñoz, R. 2020. The role of new inorganic materials in composite membranes for water disinfection. Membranes 10 (5):101. doi: 10.3390/membranes10050101.
  • Castro-Muñoz, R. 2023. A critical review on electrospun membranes containing 2D materials for seawater desalination. Desalination 555 (June):116528. doi: 10.1016/j.desal.2023.116528.
  • Castro-Muñoz, R., E. Gontarek-Castro, and S. M. Jafari. 2022. Up-to-date strategies and future trends towards the extraction and purification of capsaicin: A comprehensive review. Trends in Food Science & Technology 123 (July 2021):161–71. doi: 10.1016/j.tifs.2022.03.014.
  • Castro-Muñoz, R., A. Msahel, F. Galiano, M. Serocki, J. Ryl, S. B. Hamouda, A. Hafiane, G. Boczkaj, and A. Figoli. 2022. Towards azeotropic MeOH-MTBE separation using pervaporation chitosan-based deep eutectic solvent membranes. Separation and Purification Technology 281 (October 2021):119979. doi: 10.1016/j.seppur.2021.119979.
  • Cen, P., K. Spahiu, M. S. Tyumentsev, M. R. St, and J. Foreman. 2020. Metal extraction from a deep eutectic solvent, an insight into activities. Physical Chemistry Chemical Physics : PCCP 22 (19):11012–24. doi: 10.1039/c9cp05982b.
  • Chandra Roy, V., T. C. Ho, H. J. Lee, J. S. Park, S. Y. Nam, H. Lee, A. T. Getachew, and B. Soo Chun. 2021. Extraction of astaxanthin using ultrasound-assisted natural deep eutectic solvents from shrimp wastes and its application in bioactive films. Journal of Cleaner Production 284:125417. doi: 10.1016/j.jclepro.2020.125417.
  • Chen, J., Y. Li, X. Wang, and W. Liu. 2019. Application of deep eutectic solvents in food analysis: A review. Molecules 24 (24):4594. doi: 10.3390/molecules24244594.
  • Chen, S., L. Xiao, S. Li, T. Meng, L. Wang, and W. Zhang. 2022. The effect of sonication-synergistic natural deep eutectic solvents on extraction yield, structural and physicochemical properties of pectins extracted from mango peels. Ultrasonics Sonochemistry 86 (May):106045. doi: 10.1016/j.ultsonch.2022.106045.
  • Chen, Z., K. Wu, W. Z. Zhu, Y. Wang, C. Su, and F. Yi. 2022. Chemical compositions and bioactivities of essential oil from perilla leaf (Perillae folium) Obtained by ultrasonic-assisted hydro-distillation with natural deep eutectic solvents. Food Chemistry 375 (100):131834. doi: 10.1016/j.foodchem.2021.131834.
  • Choe, E., and D. B. Min. 2009. Mechanisms of antioxidants in the oxidation of foods. Comprehensive Reviews in Food Science and Food Safety 8 (4):345–58. doi: 10.1111/j.1541-4337.2009.00085.x.
  • Choi, Y. H., and R. Verpoorte. 2019. Green solvents for the extraction of bioactive compounds from natural products using ionic liquids and deep eutectic solvents. Current Opinion in Food Science 26:87–93. doi: 10.1016/j.cofs.2019.04.003.
  • Craveiro, R., L. Meneses, L. Durazzo, Â. Rocha, J. M. Silva, R. L. Reis, S. Barreiros, A. R. C. Duarte, and A. Paiva. 2019. Deep eutectic solvents for enzymatic esterification of racemic menthol. ACS Sustainable Chemistry & Engineering 7 (24):19943–50. doi: 10.1021/acssuschemeng.9b05434.
  • Cunha, S. C., and J. O. Fernandes. 2018. Extraction techniques with deep eutectic solvents. TrAC Trends in Analytical Chemistry 105:225–39. doi: 10.1016/j.trac.2018.05.001.
  • Deniz, S., A. E. Ünlü, and S. Takaç. 2023. Ultrasound-assisted natural deep eutectic solvent extraction of phenolic compounds from apple pomace. Separation Science and Technology 58 (2):302–13. doi: 10.1080/01496395.2022.2112603.
  • Díaz-Montes, E., and R. Castro-Muñoz. 2021. Edible films and coatings as food-quality preservers: An overview. Foods 10 (2):249. doi: 10.3390/foods10020249.
  • Díaz-Montes, E., and R. Castro-Muñoz. 2022. Analyzing the phenolic enriched fractions from Nixtamalization wastewater (Nejayote) fractionated in a three-step membrane process. Current Research in Food Science 5 (November 2021):1–10. doi: 10.1016/j.crfs.2021.11.012.
  • Díaz-Montes, E., J. Yáñez-Fernández, and R. Castro-Muñoz. 2020. Microfiltration-mediated extraction of dextran produced by leuconostoc mesenteroides SF3. Food and Bioproducts Processing 119:317–28. doi: 10.1016/j.fbp.2019.11.017.
  • Díaz-Montes, E., J. Yáñez-Fernández, and R. Castro-Muñoz. 2021. Characterization of oligodextran produced by leuconostoc mesenteroides SF3 and its effect on film-forming properties of chitosan. Materials Today Communications 28 (March):102487. doi: 10.1016/j.mtcomm.2021.102487.
  • Díaz‐Montes, E., and R. Castro‐Muñoz. 2021. Trends in chitosan as a primary biopolymer for functional films and coatings manufacture for food and natural products. Polymers 13 (5):767. doi: 10.3390/polym13050767.
  • Dwamena, A. K. 2019. Recent advances in hydrophobic deep eutectic solvents for extraction. Separations 6 (1):9. doi: 10.3390/separations6010009.
  • El Achkar, T., S. Fourmentin, and H. Greige-Gerges. 2019. Deep eutectic solvents: An overview on their interactions with water and biochemical compounds. Journal of Molecular Liquids 288:111028. doi: 10.1016/j.molliq.2019.111028.
  • Elahi, F., M. B. Arain, W. Ali Khan, H. Ul Haq, A. Khan, F. Jan, R. Castro-Muñoz, and G. Boczkaj. 2022. Ultrasound-assisted deep eutectic solvent-based liquid–liquid microextraction for simultaneous determination of Ni (II) and Zn (II) in food samples. Food Chemistry 393 (June):133384. doi: 10.1016/j.foodchem.2022.133384.
  • Elencovan, V., J. Joseph, N. Yahaya, N. Abdul Samad, M. Raoov, V. Lim, and N. N. M. Zain. 2022. Exploring a novel deep eutectic solvents combined with vortex assisted dispersive liquid–liquid microextraction and its toxicity for organophosphorus pesticides analysis from honey and fruit samples. Food Chemistry 368 (August 2021):130835. doi: 10.1016/j.foodchem.2021.130835.
  • Faller, A. L., and E. Fialho. 2010. Polyphenol content and antioxidant capacity in organic and conventional plant foods. Journal of Food Composition and Analysis 23 (6):561–8. doi: 10.1016/j.jfca.2010.01.003.
  • Fang, L., M. Jia, H. Zhao, L. Kang, L. Shi, L. Zhou, and W. Kong. 2021. Molecularly imprinted polymer-based optical sensors for pesticides in foods: Recent advances and future trends. Trends in Food Science & Technology 116 (August):387–404. doi: 10.1016/j.tifs.2021.07.039.
  • Fang, X., Y. Li, Y. Kua, Z. Chew, S. Gan, K. Tan, T. Lee, W. Cheng, H. Lik, and N. Lau. 2022. Insights on the potential of natural deep eutectic solvents (NADES) to fine-tune durian seed gum for use as edible food coating. Food Hydrocolloids. 132:107861. doi: 10.1016/j.foodhyd.2022.107861.
  • Faraz, N., H. U. Haq, M. Balal, R. Castro-Muñoz, G. Boczkaj, and A. Khan. 2021. Deep eutectic solvent based method for analysis of niclosamide in pharmaceutical and wastewater samples – A green analytical chemistry approach. Journal of Molecular Liquids 335:116142. doi: 10.1016/j.molliq.2021.116142.
  • Gałuszka, A., Z. Migaszewski, and J. Namieśnik. 2013. The 12 principles of green analytical chemistry and the significance mnemonic of green analytical practices. TrAC Trends in Analytical Chemistry 50:78–84. doi: 10.1016/j.trac.2013.04.010.
  • Gómez, A. V., C. C. Tadini, A. Biswas, M. Buttrum, S. Kim, V. M. Boddu, and H. N. Cheng. 2019. Microwave-assisted extraction of soluble sugars from banana puree with natural deep eutectic solvents (NADES). Lwt 107 (December 2018):79–88. doi: 10.1016/j.lwt.2019.02.052.
  • González, C. G., N. R. Mustafa, E. G. Wilson, R. Verpoorte, and Y. H. Choi. 2018. Application of natural deep eutectic solvents for the “green” extraction of vanillin from vanilla pods. Flavour and Fragrance Journal 33 (1):91–6. doi: 10.1002/ffj.3425.
  • Haq, H. U., M. Balal, R. Castro-Muñoz, Z. Hussain, F. Safi, S. Ullah, and G. Boczkaj. 2021. Deep eutectic solvents based assay for extraction and determination of zinc in fish and eel samples using FAAS. Journal of Molecular Liquids 333:115930. doi: 10.1016/j.molliq.2021.115930.
  • Hernández-Corroto, E., N. Boussetta, M. L. Marina, M. C. García, and E. Vorobiev. 2022. High voltage electrical discharges followed by deep eutectic solvents extraction for the valorization of pomegranate seeds (Punica granatum L.). Innovative Food Science & Emerging Technologies 79 (June):103055. doi: 10.1016/j.ifset.2022.103055.
  • Hoppe, J., E. Byzia, M. Szymańska, R. Drozd, and M. Smiglak. 2022. Acceleration of lactose hydrolysis using beta-galactosidase and deep eutectic solvents. Food Chemistry 384 (April 2021):132498. doi: 10.1016/j.foodchem.2022.132498.
  • Hoppe, J., R. Drozd, E. Byzia, and M. Smiglak. 2019. Deep eutectic solvents based on choline cation – Physicochemical properties and influence on enzymatic reaction with β-galactosidase. International Journal of Biological Macromolecules 136:296–304. doi: 10.1016/j.ijbiomac.2019.06.027.
  • Hussain, M., M. Tariq Qamar, and D. Ahmed. 2022. Microwave- and ultrasound-assisted extraction of capsaicin from Capsicum annuum using deep eutectic solvents. International Journal of Vegetable Science 28 (4):312–9. doi: 10.1080/19315260.2021.1960459.
  • Jablonský, M., A. Škulcová, A. Malvis, and J. Šima. 2018. Extraction of value-added components from food industry based and agro-forest biowastes by deep eutectic solvents. Journal of Biotechnology 282 (February):46–66. doi: 10.1016/j.jbiotec.2018.06.349.
  • Jakubowska, E., M. Gierszewska, J. Nowaczyk, and E. Olewnik-Kruszkowska. 2020. Physicochemical and storage properties of chitosan-based films plasticized with deep eutectic solvent. Food Hydrocolloids. 108 (January):106007. doi: 10.1016/j.foodhyd.2020.106007.
  • Jakubowska, E., M. Gierszewska, J. Nowaczyk, and E. Olewnik-Kruszkowska. 2021. The role of a deep eutectic solvent in changes of physicochemical and antioxidative properties of chitosan-based films. Carbohydrate Polymers 255 (July 2020):117527. doi: 10.1016/j.carbpol.2020.117527.
  • Jalili, V., R. Zendehdel, and A. Barkhordari. 2021. Supramolecular solvent-based microextraction techniques for sampling and preconcentration of heavy metals: A review. Reviews in Analytical Chemistry 40 (1):93–107. doi: 10.1515/revac-2021-0130.
  • Kasaai, M. R. 2014. Use of water properties in food technology: A global view. International Journal of Food Properties 17 (5):1034–54. doi: 10.1080/10942912.2011.650339.
  • Kerton, F. M. 2016. Solvent systems for sustainable chemistry. In Encyclopedia of Inorganic and Bioinorganic Chemistry 1–17. New Jersey: Wiley. doi: 10.1002/9781119951438.eibc2417.
  • Khajavian, M., V. Vatanpour, R. Castro-Muñoz, and G. Boczkaj. 2022. Chitin and derivative chitosan-based structures – Preparation strategies aided by deep eutectic solvents: A review. Carbohydrate Polymers 275 (September 2021):118702. doi: 10.1016/j.carbpol.2021.118702.
  • Kirby, R. M., J. Bartram, and R. Carr. 2003. Water in food production and processing: Quantity and quality concerns. Food Control. 14 (5):283–99. doi: 10.1016/S0956-7135(02)00090-7.
  • Kondo, M., L. Zhang, H. Ji, Y. Kou, and B. Ou. 2009. Bioavailability and antioxidant effects of a xanthone-rich mangosteen (Garcinia mangostana) product in humans. Journal of Agricultural and Food Chemistry 57 (19):8788–92. doi: 10.1021/jf901012f.
  • Koutsoukos, S., T. Tsiaka, A. Tzani, P. Zoumpoulakis, and A. Detsi. 2019. Choline chloride and tartaric acid, a natural deep eutectic solvent for the efficient extraction of phenolic and carotenoid compounds. Journal of Cleaner Production 241:118384. doi: 10.1016/j.jclepro.2019.118384.
  • Kranz, M., and T. Hofmann. 2018. Food-grade synthesis of maillard-type taste enhancers using natural deep eutectic solvents (NADES). Molecules 23 (2):261. doi: 10.3390/molecules23020261.
  • Larrauri, J. A. 1999. New approaches in the preparation of high dietary fibre powders from fruit by-products. Trends in Food Science & Technology 10 (1):3–8. doi: 10.1016/S0924-2244(99)00016-3.
  • Li, Y., K. Hu, C. Huang, Y. Hu, H. Ji, S. Liu, and J. Gao. 2022. Improvement of solubility, stability and antioxidant activity of carotenoids using deep eutectic solvent-based microemulsions. Colloids and Surfaces. B, Biointerfaces 217 (May):112591. doi: 10.1016/j.colsurfb.2022.112591.
  • Li, Z., Y. Ma, F. Hollmann, and Y. Wang. 2022. Study on green extraction of limonene from orange peel and cascade catalysis to produce carvol and carvone in deep eutectic solvents. Flavour and Fragrance Journal 37 (4):254–61. doi: 10.1002/ffj.3698.
  • Lin, J., H. Xiang, D. Sun-Waterhouse, C. Cui, and W. Wang. 2022. Deep eutectic solvents and alkaline extraction of protein from seabuckthorn seed meal: A comparison study. Food Science and Human Wellness 11 (4):1028–35. doi: 10.1016/j.fshw.2022.03.019.
  • Ling, J. K. U., and K. Hadinoto. 2022. Deep eutectic solvent as green solvent in extraction of biological macromolecules: A review. International Journal of Molecular Sciences 23 (6):3381. doi: 10.3390/ijms23063381.
  • Liu, L., P. F. Silva, G. W. Curtzwiler, and K. L. Vorst. 2021. In-process monitoring of total organic volatiles during packaging film manufacturing using portable sensors. Cleaner Engineering and Technology 4 (September 2020):100129. doi: 10.1016/j.clet.2021.100129.
  • Liu, P., J. W. Hao, L. P. Mo, and Z. H. Zhang. 2015. Recent advances in the application of deep eutectic solvents as sustainable media as well as catalysts in organic reactions. RSC Advances 5 (60):48675–704. doi: 10.1039/C5RA05746A.
  • Liu, W., X. Fu, and Z. Li. 2019. Extraction of tocopherol from soybean oil deodorizer distillate by deep eutectic solvents. Journal of Oleo Science 68 (10):951–8. doi: 10.5650/jos.ess19146.
  • Liu, X., Z. Y. Deng, Y. Zou, Y. Q. Huang, and X. Quan Yang. 2020. Preparation of high freeze-thaw stable wheat gluten-based emulsions by incorporated deep eutectic solvents. Food Hydrocolloids. 98 (July 2019):105280. doi: 10.1016/j.foodhyd.2019.105280.
  • Liu, Y., J. B. Friesen, J. B. McAlpine, D. C. Lankin, S.-N. Chen, and G. F. Pauli. 2018. Natural deep eutectic solvents: properties, applications, and perspectives. Journal of Natural Products 81 (3):679–90. doi: 10.1021/acs.jnatprod.7b00945.
  • Lores, H., V. Romero, I. Costas, C. Bendicho, and I. Lavilla. 2017. Natural deep eutectic solvents in combination with ultrasonic energy as a green approach for solubilisation of proteins: Application to gluten determination by immunoassay. Talanta 162 (October 2016):453–9. doi: 10.1016/j.talanta.2016.10.078.
  • Lu, W., S. Liu, and Z. Wu. 2022. Recent application of deep eutectic solvents as green solvent in dispersive liquid–liquid microextraction of trace level chemical contaminants in food and water. Critical Reviews in Analytical Chemistry 52 (3):504–18. doi: 10.1080/10408347.2020.1808947.
  • Luo, T., C. Wang, X. Ji, G. Yang, J. Chen, C. G. Yoo, S. Janaswamy, and G. Lyu. 2021. Innovative production of lignin nanoparticles using deep eutectic solvents for multifunctional nanocomposites. International Journal of Biological Macromolecules 183:781–9. doi: 10.1016/j.ijbiomac.2021.05.005.
  • Lustenberger, S., G. Boczkaj, and R. Castro-Muñoz. 2022. Cannabinoids: Challenges, opportunities and current techniques towards its extraction and purification for edibles. Food Bioscience 49 (February):101835. doi: 10.1016/j.fbio.2022.101835.
  • Marchel, M., H. Cieśliński, and G. Boczkaj. 2022. Deep eutectic solvents microbial toxicity: Current state of art and critical evaluation of testing methods. Journal of Hazardous Materials 425:127963. doi: 10.1016/j.jhazmat.2021.127963.
  • Maštovská, K., and S. J. Lehotay. 2004. Evaluation of common organic solvents for gas chromatographic analysis and stability of multiclass pesticide residues. Journal of Chromatography. A 1040 (2):259–72. doi: 10.1016/j.chroma.2004.04.017.
  • Mirzajani, R., F. Kardani, and Z. Ramezani. 2020. Fabrication of UMCM-1 based monolithic and hollow fiber – Metal-organic framework deep eutectic solvents/molecularly imprinted polymers and their use in solid phase microextraction of phthalate esters in yogurt, water and edible oil by GC-FID. Food Chemistry 314 (April 2019):126179. doi: 10.1016/j.foodchem.2020.126179.
  • Mišan, A., J. Nađpal, A. Stupar, M. Pojić, A. Mandić, R. Verpoorte, and Y. H. Choi. 2020. The perspectives of natural deep eutectic solvents in agri-food sector. Critical Reviews in Food Science and Nutrition 60 (15):2564–92. doi: 10.1080/10408398.2019.1650717.
  • Momotko, M., J. Łuczak, A. Przyjazny, and G. Boczkaj. 2022. A natural deep eutectic solvent - protonated L-proline-xylitol - based stationary phase for gas chromatography. Journal of Chromatography. A 1676:463238. doi: 10.1016/j.chroma.2022.463238.
  • Morales-Jiménez, M., L. Gouveia, J. Yañez-Fernandez, J. Castro-Muñoz, and B. E. Barragan-Huerta. 2020. Production, preparation and characterization of microalgae-based biopolymer as a potential bioactive film. Coatings 10 (2):120. doi: 10.3390/coatings10020120.
  • Mulia, K., F. Fauzia, and E. Krisanti. 2019. Polyalcohols as hydrogen-bonding donors in choline chloride-based deep eutectic solvents for extraction of xanthones from the pericarp of Garcinia mangostana L. Molecules 24 (3):636. doi: 10.3390/molecules24030636.
  • Musarurwa, H., and N. T. Tavengwa. 2021. Deep eutectic solvent-based dispersive liquid-liquid micro-extraction of pesticides in food samples. Food Chemistry 342:127943. doi: 10.1016/j.foodchem.2020.127943.
  • Oliveira, G., C. Marques, A. de Oliveira, A. de Almeida dos Santos, W. do Amaral, R. P. Ineu, F. Vitória Leimann, A. P. Peron, L. Igarashi-Mafra, and M. R. Mafra. 2021. Extraction of bioactive compounds from Curcuma longa L. Using deep eutectic solvents: in vitro and in vivo biological activities. Innovative Food Science & Emerging Technologies 70 (April):102697. doi: 10.1016/j.ifset.2021.102697.
  • Palos-Hernández, A., M. Y. Gutiérrez Fernández, J. Escuadra Burrieza, J. L. Pérez-Iglesias, and A. M. González-Paramás. 2022. Obtaining green extracts rich in phenolic compounds from underexploited food by-products using natural deep eutectic solvents. Opportunities and challenges. Sustainable Chemistry and Pharmacy 29 (February):100773. doi: 10.1016/j.scp.2022.100773.
  • Pandey, A., and S. Pandey. 2014. Solvatochromic probe behavior within choline chloride-based deep eutectic solvents: Effect of temperature and water. The Journal of Physical Chemistry. B 118 (50):14652–61. doi: 10.1021/jp510420h.
  • Pedraza-Chaverri, J., N. Cárdenas-Rodríguez, M. Orozco-Ibarra, and J. M. Pérez-Rojas. 2008. Medicinal PROPERTIES OF MANGOSTEEN (Garcinia mangostana). Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association 46 (10):3227–39. doi: 10.1016/j.fct.2008.07.024.
  • Pérez-Guzmán, C. J., and R. Castro-Muñoz. 2020. A review of zein as a potential biopolymer for tissue engineering and nanotechnological applications. Processes 8 (11):1376. doi: 10.3390/pr8111376.
  • Popović, B. M., D. Uka, O. Alioui, R. Ždero Pavlović, and Y. Benguerba. 2022. Experimental and COSMO-RS theoretical exploration of rutin formulations in natural deep eutectic solvents: solubility, stability, antioxidant activity, and bioaccessibility. Journal of Molecular Liquids 359:119266. doi: 10.1016/j.molliq.2022.119266.
  • Radošević, K., I. Čanak, M. Panić, K. Markov, M. C. Bubalo, J. Frece, V. G. Srček, and I. R. Redovniković. 2018. Antimicrobial, cytotoxic and antioxidative evaluation of natural deep eutectic solvents. Environmental Science and Pollution Research International 25 (14):14188–96. doi: 10.1007/s11356-018-1669-z.
  • Rico, X., B. Gullón, and R. Yáñez. 2022. A comparative assessment on the recovery of pectin and phenolic fractions from aqueous and DES extracts obtained from melon peels. Food and Bioprocess Technology 15 (6):1406–21. doi: 10.1007/s11947-022-02823-2.
  • Saini, R., S. Kumar, A. Sharma, V. Kumar, R. Sharma, S. Janghu, and P. Suthar. 2022. Deep eutectic solvents: The new generation sustainable and safe extraction systems for bioactive compounds in agri food sector: An update. Journal of Food Processing and Preservation 46 (10):1–39. doi: 10.1111/jfpp.16250.
  • Schmid, M., F. Guihéneuf, and D. B. Stengel. 2016. Evaluation of food grade solvents for lipid extraction and impact of storage temperature on fatty acid composition of edible seaweeds Laminaria digitata (Phaeophyceae) and Palmaria palmata (Rhodophyta). Food Chemistry 208:161–8. doi: 10.1016/j.foodchem.2016.03.123.
  • Serna-Vázquez, J., M. Zamidi Ahmad, G. Boczkaj, and R. Castro-Muñoz. 2021. Latest insights on novel deep eutectic solvents (DES) for sustainable extraction of phenolic compounds from natural sources. Molecules 26 (16):5037. doi: 10.3390/molecules26165037.
  • Shafie, M. H., R. Yusof, and C. Yuen Gan. 2019. Deep eutectic solvents (DES) mediated extraction of pectin from Averrhoa bilimbi: Optimization and characterization studies. Carbohydrate Polymers 216 (January):303–11. doi: 10.1016/j.carbpol.2019.04.007.
  • Shen, C., X. Wang, Y. Zhu, J. Jiao, S. Bao, P. Kou, H. Pan, Y. Li, and Y. Fu. 2020. A green one-pot method for simultaneous extraction and transesterification of seed oil catalyzed by a p-toluenesulfonic acid based deep eutectic solvent. Industrial Crops and Products 152 (April):112517. Elsevier doi: 10.1016/j.indcrop.2020.112517.
  • Shishov, A., A. Gerasimov, and A. Bulatov. 2022. Deep eutectic solvents based on carboxylic acids for metals separation from plant samples: Elemental analysis by ICP-OES. Food Chemistry 366 (July 2021):130634. doi: 10.1016/j.foodchem.2021.130634.
  • Sim, S. Y., J. W. Ng, W. K. Ng, C. G. Forde, and C. J. Henry. 2016. Plant polyphenols to enhance the nutritional and sensory properties of chocolates. Food Chemistry 200:46–54. doi: 10.1016/j.foodchem.2015.12.092.
  • Smith, E. L., A. P. Abbott, and K. S. Ryder. 2014. Deep eutectic solvents (DESs) and their applications. Chemical Reviews 114 (21):11060–82. doi: 10.1021/cr300162p.
  • Socas-Rodríguez, B., M. V. Torres-Cornejo, G. Álvarez-Rivera, and J. A. Mendiola. 2021. Deep eutectic solvents for the extraction of bioactive compounds from natural sources and agricultural by-products. Applied Sciences (Switzerland) 11 (11):4897. doi: 10.3390/app11114897.
  • Song, X., L. Wang, L. Liu, J. Li, and X. Wu. 2022. Impact of tea tree essential oil and citric acid/choline chloride on physical, structural and antibacterial properties of chitosan-based films. Food Control. 141:109186. doi: 10.1016/j.foodcont.2022.109186.
  • Song, X., and X. Huang. 2022. Recent developments in microextraction techniques for detection and speciation of heavy metals. Advances in Sample Preparation 2 (April):100019. doi: 10.1016/j.sampre.2022.100019.
  • Stupar, A., V. Šeregelj, B. Dias Ribeiro, L. Pezo, A. Cvetanović, A. Mišan, and I. Marrucho. 2021. Recovery of β-carotene from pumpkin using switchable natural deep eutectic solvents. Ultrasonics Sonochemistry 76 (April):105638. doi: 10.1016/j.ultsonch.2021.105638.
  • Suo, H., Z. Peng, Z. Guo, C. Wu, J. Liu, L. Wang, J. Xiao, and X. Li. 2022. Deep eutectic solvent-based ultrasonic-assisted extraction of phenolic compounds from different potato genotypes: comparison of free and bound phenolic profiles and antioxidant activity. Food Chemistry 388 (January):133058. doi: 10.1016/j.foodchem.2022.133058.
  • Tian, Y., D. Wen Sun, and Z. Zhu. 2022. Development of natural deep eutectic solvents (NADESs) as anti-freezing agents for the frozen food industry: Water-tailoring effects, anti-freezing mechanisms and applications. Food Chemistry 371 (September 2021):131150. doi: 10.1016/j.foodchem.2021.131150.
  • Ul Haq, H., R. Bibi, M. Balal Arain, F. Safi, S. Ullah, R. Castro-Muñoz, and G. Boczkaj. 2022. Deep eutectic solvent (DES) with silver nanoparticles (Ag-NPs) based assay for analysis of lead (II) in edible oils. Food Chemistry 379 (April 2021):132085. doi: 10.1016/j.foodchem.2022.132085.
  • Umar, M. I., A. Javeed, M. Ashraf, A. Riaz, M. M. Mukhtar, S. Afzal, and R. Altaf. 2013. Polarity-based solvents extraction of Opuntia dillenii and Zingiber officinale for in vitro antimicrobial activities. International Journal of Food Properties 16 (1):114–24. doi: 10.1080/10942912.2010.517886.
  • Waliszewski, K. N., V. T. Pardio, and S. L. Ovando. 2007. A simple and rapid HPLC technique for vanillin determination in alcohol extract. Food Chemistry 101 (3):1059–62. doi: 10.1016/j.foodchem.2006.03.004.
  • Wan, M., W. M. Asyraf, A. Lorwirachsutee, C. Theodoropoulos, and M. Gonzalez-Miquel. 2019. Polyol-based deep eutectic solvents for extraction of natural polyphenolic antioxidants from Chlorella vulgaris. ACS Sustainable Chemistry & Engineering 7 (5):5018–26. doi: 10.1021/acssuschemeng.8b05642.
  • Xian, C. Y., T. C. Sin, M. R. Liyana, A. Awang, and M. Fathullah. 2017. Green perspective in food industry production line design: A review. AIP Conference Proceedings 1885:020103. doi: 10.1063/1.5002297.
  • Yue, J., Z. Zhu, J. Yi, H. Li, B. Chen, and J. Rao. 2021. One-step extraction of oat protein by choline chloride-alcohol deep eutectic solvents: role of chain length of dihydric alcohol. Food Chemistry 376 (December 2021):131943. doi: 10.1016/j.foodchem.2021.131943.
  • Zahrina, I., M. Nasikin, E. Krisanti, and K. Mulia. 2018. Deacidification of palm oil using betaine monohydrate-based natural deep eutectic solvents. Food Chemistry 240 (February 2017):490–5. doi: 10.1016/j.foodchem.2017.07.132.
  • Zannou, O., and I. Koca. 2022. Greener extraction of anthocyanins and antioxidant activity from blackberry (Rubus Spp) using natural deep eutectic solvents. Lwt 158 (August 2021):113184. doi: 10.1016/j.lwt.2022.113184.
  • Zannou, O., H. Pashazadeh, S. A. Ibrahim, I. Koca, and C. M. Galanakis. 2022. Green and highly extraction of phenolic compounds and antioxidant capacity from kinkeliba (Combretum micranthum G. Don) by natural deep eutectic solvents (NADESs) using maceration, ultrasound-assisted extraction and homogenate-assisted extraction. Arabian Journal of Chemistry 15 (5):103752. doi: 10.1016/j.arabjc.2022.103752.
  • Zdanowicz, M., K. Wilpiszewska, and T. Spychaj. 2018. Deep eutectic solvents for polysaccharides processing. A review. Carbohydrate Polymers 200 (July):361–80. doi: 10.1016/j.carbpol.2018.07.078.
  • Zeng, Y. J., P. Xu, H. Rong Yang, M. Hua Zong, and W. Yong Lou. 2018. Purification of anthocyanins from saskatoon berries and their microencapsulation in deep eutectic solvents. Lwt 95:316–25. doi: 10.1016/j.lwt.2018.04.087.
  • Zhou, P., D. Tang, J. Zou, and X. Wang. 2022. An Alternative Strategy for Enhancing Stability and Antimicrobial Activity of Catechins by Natural Deep Eutectic Solvents. Lwt 153 (September 2021)Elsevier Ltd::112558. doi: 10.1016/j.lwt.2021.112558.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.