303
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Dehydration–rehydration mechanism of vegetables at the cell-wall and cell-membrane levels and future research challenges

, , , , , ORCID Icon & ORCID Icon show all

References

  • Alolga, R. N., R. Osae, G. Essilfie, F. K. Saalia, S. Akaba, and F. Chikari. 2021. Sonication, osmosonication and vacuum-assisted osmosonication pretreatment of Ghanaian garlic slices: Effect on physicochemical properties and quality characteristics. Food Chemistry 343 (3):128535. doi: 10.1016/j.foodchem.2020.128535.
  • An, N. N., W. Q. Lv, D. Li, L. J. Wang, and Y. Wang. 2023. Effects of hot-air microwave rolling blanching pretreatment on the drying of turmeric (Curcuma longa L.): Physiochemical properties and microstructure evaluation. Food Chemistry 398:133925. doi: 10.1016/j.foodchem.2022.133925.
  • Arzami, A. N., T. M. Ho, and K. S. Mikkonen. 2022. Valorization of cereal by-product hemicelluloses: Fractionation and purity considerations. Food Research International (Ottawa, Ont.) 151:110818. doi: 10.1016/j.foodres.2021.110818.
  • Bassey, E. J., J. H. Cheng, and D. W. Sun. 2021. Novel nonthermal and thermal pretreatments for enhancing drying performance and improving quality of fruits and vegetables. Trends in Food Science & Technology 112:137–48. doi: 10.1016/j.tifs.2021.03.045.
  • Bozkir, H., and A. R. Ergün. 2020. Effect of sonication and osmotic dehydration applications on the hot air drying kinetics and quality of persimmon. Lwt 131:109704. doi: 10.1016/j.lwt.2020.109704.
  • Bozkir, H., A. Rayman Ergün, E. Serdar, G. Metin, and T. Baysal. 2019. Influence of ultrasound and osmotic dehydration pretreatments on drying and quality properties of persimmon fruit. Ultrasonics Sonochemistry 54:135–41. doi: 10.1016/j.ultsonch.2019.02.006.
  • Cárdenas-Pérez, S., J. J. Chanona-Pérez, N. Güemes-Vera, J. Cybulska, M. Szymanska-Chargot, M. Chylinska, A. Kozioł, D. Gawkowska, P. M. Pieczywek, and A. Zdunek. 2018. Structural, mechanical and enzymatic study of pectin and cellulose during mango ripening. Carbohydrate Polymers 196:313–21. doi: 10.1016/j.carbpol.2018.05.044.
  • Chirug, L., Z. Okun, O. Ramon, and A. Shpigelman. 2018. Iron ions as mediators in pectin-flavonols interactions. Food Hydrocolloids. 84:441–9. doi: 10.1016/j.foodhyd.2018.06.039.
  • Cox, S., S. Gupta, and N. Abu-Ghannam. 2012. Effect of different rehydration temperatures on the moisture, content of phenolic compounds, antioxidant capacity and textural properties of edible Irish brown seaweed. Lwt 47 (2):300–7. doi: 10.1016/j.lwt.2012.01.023.
  • Cybulska, J., A. Zdunek, and A. Kozioł. 2015. The self-assembled network and physiological degradation of pectins in carrot cell walls. Food Hydrocolloids. 43:41–50. doi: 10.1016/j.foodhyd.2014.04.032.
  • Deng, L. Z., A. S. Mujumdar, X. H. Yang, J. Wang, Q. Zhang, Z. A. Zheng, Z. J. Gao, and H. W. Xiao. 2018. High humidity hot air impingement blanching (HHAIB) enhances drying rate and softens texture of apricot via cell wall pectin polysaccharides degradation and ultrastructure modification. Food Chemistry 261 (30):292–300. doi: 10.1016/j.foodchem.2018.04.062.
  • Deng, L.-Z., Z. Pan, Q. Zhang, Z.-L. Liu, Y. Zhang, J.-S. Meng, Z.-J. Gao, and H.-W. Xiao. 2019. Effects of ripening stage on physicochemical properties, drying kinetics, pectin polysaccharides contents and nanostructure of apricots. Carbohydrate Polymers 222 (15):114980. doi: 10.1016/j.carbpol.2019.114980.
  • Diener, M., J. Adamcik, A. Sánchez-Ferrer, F. Jaedig, L. Schefer, and R. Mezzenga. 2019. Primary, secondary, tertiary and quaternary structure levels in linear polysaccharides: From random coil, to single helix to supramolecular assembly. Biomacromolecules 20 (4):1731–9. doi: 10.1021/acs.biomac.9b00087.
  • Ding, X., H. Kong, M. Qiao, Z. Hu, and M. Yu. 2019. Effect of different pressures on microstructure and mechanical performance of F-III fibers in supercritical carbon dioxide fluid. Materials 12 (5):690. doi: 10.3390/ma12050690.
  • Faleri, C., X. Xu, L. Mareri, J. F. Hausman, G. Cai, and G. Guerriero. 2022. Immunohistochemical analyses on two distinct internodes of stinging nettle show different distribution of polysaccharides and proteins in the cell walls of bast fibers. Protoplasma 259 (1):75–90. doi: 10.1007/s00709-021-01641-1.
  • Fauster, T., M. Giancaterino, P. Pittia, and H. Jaeger. 2020. Effect of pulsed electric field pretreatment on shrinkage, rehydration capacity and texture of freeze-dried plant materials. Lwt 121:108937. doi: 10.1016/j.lwt.2019.108937.
  • Femenia, A., M. J. Bestard, N. Sanjuan, C. Rosselló, and A. Mulet. 2000. Effect of rehydration temperature on the cell wall components of broccoli (Brassica oleracea L. var. Italica) plant tissues. Journal of Food Engineering 46 (3):157–63. doi: 10.1016/S0260-8774(00)00078-9.
  • Feng, Y. B., C. P. Tan, C. S. Zhou, A. E. A. Yagoub, B. G. Xu, Y. H. Sun, M. H. B. G. Xu, Y. H. Sun, H. Ma, X. Xu, et al. 2020. Effect of freeze-thaw cycles pretreatment on the vacuum freeze-drying process and physicochemical properties of the dried garlic slices. Food Chemistry 324:126883. doi: 10.1016/j.foodchem.2020.126883.
  • Feng, Y., B. Xu, A. ElGasim A Yagoub, H. Ma, Y. Sun, X. Xu, X. Yu, and C. Zhou. 2021. Role of drying techniques on physical, rehydration, flavor, bioactive compounds and antioxidant characteristics of garlic. Food Chemistry 343:128404. doi: 10.1016/j.foodchem.2020.128404.
  • García-Segovia, P., A. Andrés-Bello, and J. Martínez-Monzó. 2011. Rehydration of air-dried shiitake mushroom (lentinus edodes) caps: Comparison of conventional and vacuum water immersion processes. LWT - Food Science and Technology 44 (2):480–8. doi: 10.1016/j.lwt.2010.08.010.
  • Górnicki, K., A. Choińska, and A. Kaleta. 2020. Effect of variety on rehydration characteristics of dried apples. Processes 8 (11):1454. doi: 10.3390/pr8111454.
  • Guedes, J. S., K. C. Santos, N. Castanha, M. L. Rojas, M. D. M. Junior, D. C. Lima, and P. E. D. Augusto. 2021. Structural modification on potato tissue and starch using ethanol pre-treatment and drying process. Food Structure 29:100202. doi: 10.1016/j.foostr.2021.100202.
  • Haas, K., R. Wightman, E. Meyerowitz, and A. Peaucelle. 2020. Pectin homogalacturonan nanofilament expansion drives morphogenesis in plant epidermal cells. Science (New York, N.Y.) 367 (6481):1003–7. doi: 10.1126/science.aaz5103.
  • Haas, K. T., R. Wightman, A. Peaucelle, and H. Höfte. 2021. The role of pectin phase separation in plant cell wall assembly and growth. Cell Surface (Amsterdam, Netherlands) 7:100054. doi: 10.1016/j.tcsw.2021.100054.
  • Jin, J., L. Yang, D. Fan, X. Liu, and Q. Hao. 2020. Comparative transcriptome analysis uncovers different heat stress responses in heat-resistant and heat-sensitive jujube cultivars. PloS One 15 (9):e0235763. doi: 10.1371/journal.pone.0235763.
  • Kapepula, P. M., P. M. Mungitshi, D. T. Tshitenge, T. Franck, D. M. Ngoyi, P. Kalenda, M. Tits, M. Frédérich, N. K. Ngombe, and A. Mouithys-Mickalad. 2021. Microscopic characteristics, chromatographic profiles and inhibition of peroxidase activity of the leaves of Manihot esculenta and Manihot glaziovii, consumed as traditional vegetables. Journal of Biosciences and Medicines 09 (09):59–73. doi: 10.4236/jbm.2021.99006.
  • Ke, Y., L. Deng, T. Dai, M. Xiao, M. Chen, R. Liang, W. Liu, C. Liu, and J. Chen. 2022. Effects of cell wall polysaccharides on the bioaccessibility of carotenoids, polyphenols, and minerals: An overview. Critical Reviews in Food Science and Nutrition 22:1–14. doi: 10.1080/10408398.2022.2089626.
  • Khan, M. I. H., S. A. Nagy, and M. A. Karim. 2018a. Transport of cellular water during drying: An understanding of cell rupturing mechanism in apple tissue. Food Research International (Ottawa, Ont.) 105:772–81. doi: 10.1016/j.foodres.2017.12.010.
  • Khan, M. I. H., T. Farrell, S. A. Nagy, and M. A. Karim. 2018b. Fundamental understanding of cellular water transport process in bio-food material during drying. Scientific Reports 8 (1):15191. doi: 10.1038/s41598-018-33159-7.
  • Khan, M. I. H., R. M. Wellard, S. A. Nagy, M. U. H. Joardder, and M. A. Karim. 2016. Investigation of bound and free water in plant-based food material using NMR T2 relaxometry. Innovative Food Science & Emerging Technologies 38:252–61. doi: 10.1016/j.ifset.2016.10.015.
  • Kumar, V., M. Kalpana Devi, B. Panda, and S. L. Shrivastava. 2019. Shrinkage and rehydration characteristics of vacuum assisted microwave dried green bell pepper. Journal of Food Process Engineering 42 (4):e13030. doi: 10.1111/jfpe.
  • Kumar, Y., L. Singh, V. S. Sharanagat, S. Mani, S. Kumar, and A. Kumar. 2021. Quality attributes of convective hot air dried spine gourd (Momordica dioica Roxb. Ex Willd) slices. Food Chemistry 347:129041. doi: 10.1016/j.foodchem.2021.129041.
  • Lahaye, M., C. Bouin, A. Barbacci, S. Le Gall, and L. Foucat. 2018. Water and cell wall contributions to apple mechanical properties. Food Chemistry 268:386–94. doi: 10.1016/j.foodchem.2018.06.110.
  • Lahaye, M., X. Falourd, B. Laillet, and S. Le Gall. 2020. Cellulose, pectin and water in cell walls determine apple flesh viscoelastic mechanical properties. Carbohydrate Polymers 232:115768. doi: 10.1016/j.carbpol.2019.115768.
  • Lahaye, M., X. Falourd, B. Quemener, M. C. Ralet, W. Howad, E. Dirlewanger, and P. Arús. 2012. Cell wall polysaccharide chemistry of peach genotypes with contrasted textures and other fruit traits. Journal of Agricultural and Food Chemistry 60 (26):6594–605. doi: 10.1021/jf301494j.
  • Li, D., L. Deng, T. Dai, M. Chen, R. Liang, W. Liu, C. Liu, J. Chen, and J. Sun. 2022. Ripening induced degradation of pectin and cellulose affects the far infrared drying kinetics of mangoes. Carbohydrate Polymers 291:119582. doi: 10.1016/j.carbpol.2022.119582.
  • Li, D., Z. Zhu, and D. W. Sun. 2018. Effects of freezing on cell structure of fresh cellular food materials: A review. Trends in Food Science & Technology 75:46–55. doi: 10.1016/j.tifs.2018.02.019.
  • Li, L., X. Ren, J. Chen, W. Cao, G. Ren, B. Bhandari, A. Ren, and X. Duan. 2022. Changes and relationships of viscoelastic and physical properties of Chinese yam during a novel multiphase microwave drying process. Lwt 168:113969. doi: 10.1016/j.lwt.2022.113969.
  • Li, P., Y. Jin, and L. Sheng. 2020. Impact of microwave assisted phosphorylation on the physicochemistry and rehydration behaviour of egg white powder. Food Hydrocolloids. 100:105380. doi: 10.1016/j.foodhyd.2019.105380.
  • Li, Q., R. Xu, Q. Fang, Y. Yuan, J. Cao, and W. Jiang. 2020a. Analyses of microstructure and cell wall polysaccharides of flesh tissues provide insights into cultivar difference in mealy patterns developed in apple fruit. Food Chemistry 321:126707. doi: 10.1016/j.foodchem.2020.126707.
  • Li, S., S. Chen, Q. Liang, Z. Ma, F. Han, Y. Xu, Y. Jin, and W. Wu. 2019a. Low temperature plasma pretreatment enhances hot-air drying kinetics of corn kernels. Journal of Food Process Engineering 42 (6):e13195. doi: 10.1111/jfpe.13195.
  • Li, T., S. X. Li, W. Kong, C. Chen, E. Hitz, C. Jia, J. Dai, X. Zhang, R. Briber, Z. Siwy, et al. 2019b. A nanofluidic ion regulation membrane with aligned cellulose nanofibers. Science Advances 5 (2):4238. doi: 10.1126/sciadv.aau4238.
  • Li, X., J. Bi, X. Jin, X. Li, X. Wu, and J. Lyu. 2020b. Characterization of water binding properties of apple pectin modified by instant controlled pressure drop drying (DIC) by LF-NMR and DSC methods. Food and Bioprocess Technology 13 (2):265–74. doi: 10.1007/s11947-019-02387-8.
  • Li, Y., and O. I. Padilla-Zakour. 2021. High pressure processing vs. thermal pasteurization of whole concord grape puree: Effect on nutritional value, quality parameters and refrigerated shelf life. Foods 10 (11):2608. doi: 10.3390/foods10112608.
  • Lin, K. H., T. Enomae , and F. C. Chang. 2019. Cellulose nanocrystal isolation from hardwood pulp using various hydrolysis conditions. Molecules 24 (20):3724. doi: 10.3390/molecules24203724.
  • Liu, H., F. S. Chen, S. J. Lai, J. R. Tao, H. S. Yang, and Z. G. Jiao. 2017. Effects of calcium treatment and low temperature storage on cell wall polysaccharide nanostructures and quality of postharvest apricot (Prunus armeniaca). Food Chemistry 225:87–97. doi: 10.1016/j.foodchem.2017.01.008.
  • Liu, X., C. Le Bourvellec, and C. M. G. C. Renard. 2020. Interactions between cell wall polysaccharides and polyphenols: Effect of molecular internal structure. Comprehensive Reviews in Food Science and Food Safety 19 (6):3574–617. doi: 10.1111/1541-4337.12632.
  • Llavata, B., J. V. García-Pérez, S. Simal, and J. A. Cárcel. 2020. Innovative pre-treatments to enhance food drying: A current review. Current Opinion in Food Science 35:20–6. doi: 10.1016/j.cofs.2019.12.001.
  • López-Castejón, M., M. Reviriego, E. Álvarez-Castillo, J. Aguilar, and C. Bengoechea. 2022. Eco-composites from silkworm meal and polycaprolactone: Effect of formulation and processing conditions. Polymers 14 (12):2342. doi: 10.3390/polym14122342.
  • López-Hortas, L., C. Caleja, J. Pinela, J. Petrović, M. Soković, I. C. F. R. Ferreira, M. D. Torres, H. Domínguez, E. Pereira, and L. Barros. 2022. Comparative evaluation of physicochemical profile and bioactive properties of red edible seaweed Chondrus crispus subjected to different drying methods. Food Chemistry 383:132450. doi: 10.1016/j.foodchem.2022.132450.
  • López-Serrano, L., Á. Calatayud, S. López-Galarza, R. Serrano, and E. Bueso. 2021. Uncovering salt tolerance mechanisms in pepper plants: A physiological and transcriptomic approach. BMC Plant Biology 21 (1):169. doi: 10.1186/s12870-021-02938-2.
  • Lopez-Quiroga, E., V. Prosapio, P. J. Fryer, I. T. Norton, and S. Bakalis. 2020. Model discrimination for drying and rehydration kinetics of freeze-dried tomatoes. Journal of Food Process Engineering 43 (5):e13192. doi: 10.1111/jfpe.13192.
  • Luo, C., X. T. Cai, J. Du, T. L. Zhao, P. F. Wang, P. X. Zhao, R. Liu, Q. Xie, X. Cao, and C. B. Xiang. 2016. PARAQUAT TOLERANCE3 is an E3 ligase and acts as a negative regulator of oxidative stress response by targeting histone-modifying PROTEIN METHYLTRANSFERASE4b. PLoS Genetics 12 (9):e1006332. doi: 10.1371/journal.pgen.1006332.
  • Ma, X., R. Qian, X. Zhang, Q. Hu, H. Liu, and J. Zheng. 2019. Contrasting growth, physiological and gene expression responses of Clematis crassifolia and Clematis cadmia to different irradiance conditions. Scientific Reports 9 (1):17842. doi: 10.1038/s41598-019-54428-z.
  • Mauro, M. A., N. Dellarosa, U. Tylewicz, S. Tappi, L. Laghi, P. Rocculi, and M. D. Rosa. 2016. Calcium and ascorbic acid affect cellular structure and water mobility in apple tissue during osmotic dehydration in sucrose solutions. Food Chemistry 195:19–28. doi: 10.1016/j.foodchem.2015.04.096.
  • Merenkova, S., O. Zinina, M. Stuart, E. Okuskhanova, and N. Androsova. 2020. Effects of dietary fiber on human health: A review. Human Sport Medicine 20 (1):106–13. doi: 10.14529/hsm200113.
  • Miano, A. C., M. L. Rojas, and P. E. D. Augusto. 2021. Combining ultrasound, vacuum and/or ethanol as pretreatments to the convective drying of celery slices. Ultrasonics Sonochemistry 79:105779. doi: 10.1016/j.ultsonch.2021.105779.
  • Miraei Ashtiani, S. H., M. Rafiee, M. Mohebi Morad, M. Khojastehpour, M. R. Khani, A. Rohani, B. Shokri, and A. Martynenko. 2020. Impact of gliding arc plasma pretreatment on drying efficiency and physicochemical properties of grape. Innovative Food Science & Emerging Technologies 63:102381. doi: 10.1016/j.ifset.2020.102381.
  • Niu, N., Y. Yu, Z. J. Zhang, M. M. Kang, L. Wang, Z. Zhao, D. Wang, and B. Z. Tang. 2022. A cell membrane-targeting AIE photosensitizer as a necroptosis inducer for boosting cancer theranostics. Chemical Science 13 (20):5929–37. doi: 10.1039/d2sc01260j.
  • Nowacka, M., L. Laghi, K. Rybak, M. D. Rosa, D. Witrowa-Rajchert, and U. Tylewicz. 2019. Water state and sugars in cranberry fruits subjected to combined treatments: Cutting, blanching and sonication. Food Chemistry 299:125122. doi: 10.1016/j.foodchem.2019.125122.
  • Nurkhoeriyati, T., B. Kulig, B. Sturm, and O. Hensel. 2021. The effect of pre-drying treatment and drying conditions on quality and energy consumption of hot air-dried celeriac slices: Optimisation. Foods 10 (8):1758. doi: 10.3390/foods10081758.
  • Özkan-Karabacak, A., B. Acoğlu, P. Yolci Ömeroğlu, and Ö. U. Çopur. 2020. Microwave pre-treatment for vacuum drying of orange slices: Drying characteristics, rehydration capacity and quality properties. Journal of Food Process Engineering 43 (11):e13511. doi: 10.1111/jfpe.13511.
  • Pan, X., W. Zhao, Y. Wang, Y. Xu, W. Zhang, F. Lao, X. Liao, and J. Wu. 2022. Physicochemical and structural properties of three pectin fractions from muskmelon (Cucumis melo) and their correlation with juice cloud stability. Food Hydrocolloids. 124:107313. doi: 10.1016/j.foodhyd.2021.107313.
  • Peng, J., J. Bi, J. Yi, X. Wu, M. Zhou, Y. Zhao, and J. N. Liu. 2019. Characteristics of cell wall pectic polysaccharides affect textural properties of instant controlled pressure drop dried carrot chips derived from different tissue zone. Food Chemistry 293:358–67. doi: 10.1016/j.foodchem.2019.05.008.
  • Posé, S., C. Paniagua, A. J. Matas, A. P. Gunning, V. J. Morris, M. A. Quesada, and J. A. Mercado. 2019. A nanostructural view of the cell wall disassembly process during fruit ripening and postharvest storage by atomic force microscopy. Trends in Food Science & Technology 87:47–58. doi: 10.1016/j.tifs.2018.02.011.
  • Prosapio, V., and I. Norton. 2018. Simultaneous application of ultrasounds and firming agents to improve the quality properties of osmotic + freeze-dried foods. Lwt 96:402–10. doi: 10.1016/j.lwt.2018.05.068.
  • Qiao, L., and K. Du. 2021. Toluidine blue-immobilized macroporous chitosan microspheres for highly efficient purification of fucoidan. Biochemical Engineering Journal 176:108206. doi: 10.1016/j.bej.2021.108206.
  • Qin, Z., H. M. Liu, X. C. Cheng, and X. D. Wang. 2019. Effect of drying pretreatment methods on structure and properties of pectins extracted from Chinese quince fruit. International Journal of Biological Macromolecules 137:801–8. doi: 10.1016/j.ijbiomac.2019.06.209.
  • Qiu, Y., J. Bi, X. Jin, L. Hu, J. Lyu, and X. Wu. 2021. An understanding of the changes in water holding capacity of rehydrated shiitake mushroom (Lentinula edodes) from cell wall, cell membrane and protein. Food Chemistry 351:129230. doi: 10.1016/j.foodchem.2021.129230.
  • Qiu, Y., J. Bi, X. Jin, X. Wu, L. Hu, and L. Chen. 2022. Investigation on the rehydration mechanism of freeze-dried and hot-air dried shiitake mushrooms from pores and cell wall fibrous material. Food Chemistry 383:132360. doi: 10.1016/j.foodchem.2022.132360.
  • Oshima, T., K. Kato, and T. Imaizumi. 2021. Effects of blanching on drying characteristics, quality, and pectin nanostructures of dried cut-persimmons. Lwt 143:111094. doi: 10.1016/j.lwt.2021.111094.
  • Ozturk, O. K., and P. S. Takhar. 2020. Physical and viscoelastic properties of carrots during drying. Journal of Texture Studies 51 (3):532–41. doi: 10.1111/jtxs.12496.
  • Poomanee, W., I. Wattananapakasem, W. Panjan, and K. Kiattisin. 2021. Optimizing anthocyanins extraction and the effect of cold plasma treatment on the anti-aging potential of purple glutinous rice (Oryza sativa L.) extract. Cereal Chemistry 98 (3):571–82. doi: 10.1002/cche.10399.
  • Rahman, M. M., M. U. H. Joardder, and A. Karim. 2018. Non-destructive investigation of cellular level moisture distribution and morphological changes during drying of a plant-based food material. Biosystems Engineering 169:126–38. doi: 10.1016/j.biosystemseng.2018.02.007.
  • Rashid, F., Y. Bao, Z. Ahmed, and J. Y. Huang. 2020. Effect of high voltage atmospheric cold plasma on extraction of fenugreek galactomannan and its physicochemical properties. Food Research International (Ottawa, Ont.) 138 (Pt A):109776. doi: 10.1016/j.foodres.2020.109776.
  • Ribas-Agustí, A., S. Van Buggenhout, P. Palmero, M. Hendrickx, and A. Van Loey. 2014. Investigating the role of pectin in carrot cell wall changes during thermal processing: A microscopic approach. Innovative Food Science & Emerging Technologies 24:113–20. doi: 10.1016/j.ifset.2013.09.005.
  • Ríos, Y., J. Ulloa, P. Ulloa, P. Bautista-Rosales, J. Ramírez, R. Leyva, and Y. Carrillo. 2020. Effect of ultrasound treatment on dehydration kinetics and physicochemical, microbiological, structural and rehydration characteristics of tilapia. CyTA - Journal of Food 18:31–42. doi: 10.1080/19476337.2019.1702106.
  • Rojas, M. L., and P. E. D. Augusto. 2018. Ethanol pre-treatment improves vegetable drying and rehydration: Kinetics, mechanisms and impact on viscoelastic properties. Journal of Food Engineering 233:17–27. doi: 10.1016/j.jfoodeng.2018.03.028.
  • Rojas, M. L., P. E. D. Augusto, and J. A. Cárcel. 2020. Ethanol pre-treatment to ultrasound-assisted convective drying of apple. Innovative Food Science & Emerging Technologies 61:102328. doi: 10.1016/j.ifset.2020.102328.
  • Saha, N. K., M. Balakrishnan, and M. Ulbricht. 2007. Sugarcane juice ultrafiltration: FTIR and SEM analysis of polysaccharide fouling. Journal of Membrane Science 306 (1–2):287–97. doi: 10.1016/j.memsci.2007.09.006.
  • Sarifudin, A., T. Keeratiburana, S. Soontaranon, C. Tangsathitkulchai, and S. Tongta. 2020. Pore characteristics and structural properties of ethanol-treated starch in relation to water absorption capacity. Lwt 129:109555. doi: 10.1016/j.lwt.2020.109555.
  • Sarkar, A., M. W. Hossain, M. Alam, R. Biswas, M. Roy, and M. I. Haque. 2023. Drying conditions and varietal impacts on physicochemical, antioxidant and functional properties of onion powder. Journal of Agriculture and Food Research 12:100578. doi: 10.1016/j.jafr.2023.100578.
  • Shewale, S. R., D. Rajoriya, M. L. Bhavya, and H. U. Hebbar. 2021. Application of radiofrequency heating and low humidity air for sequential drying of apple slices: Process intensification and quality improvement. LWT - Food Science and Technology 135:109904. doi: 10.1016/j.lwt.2020.109904.
  • Shi, Y., G. Chen, K. Chen, X. Chen, Q. Hong, and J. Kan. 2021. Assessment of fresh star anise (Illicium verum Hook. f.) drying methods for influencing drying characteristics, color, flavor, volatile oil and shikimic acid. Food Chemistry 342:128359. doi: 10.1016/j.foodchem.2020.128359.
  • Song, Y. K., X. Zang, T. Kamal, J. Bi, S. Cong, B. Zhu, and M. Tan. 2018. Real-time detection of water dynamics in abalone (Haliotis discus hannai Ino) during drying and rehydration processes assessed by LF-NMR and MRI. Drying Technology 36 (1):72–83. doi: 10.1080/07373937.2017.1300807.
  • Souza, E. L., T. S. Nascimento, C. M. Magalhães, G. D. Barreto, I. L. Leal, J. P. dos Anjos, and B. A. S. Machado. 2022. Development and characterization of powdered antioxidant compounds made from shiraz (Vitis vinifera L.) grape peels and arrowroot (Maranta arundinacea L.). TheScientificWorldJournal 2022:7664321. doi: 10.1155/2022/7664321.
  • Spadoni Andreani, E., S. Karboune, and L. Liu. 2021. Extraction and characterization of cell wall polysaccharides from cranberry (Vaccinium macrocarpon var. Stevens) pomace. Carbohydrate Polymers 267:118212. doi: 10.1016/j.carbpol.2021.118212.
  • Sun, Q., X. Song, M. Arun S, L. Zhang, X. Yu, C. Zhou, Y. Tang, and A. E. A. Yagoub. 2022. Effects of blanching drying methods on the structure and physicochemical properties of starch in sweet potato slices. Food Hydrocolloids. 127:107543. doi: 10.1016/j.foodhyd.2022.107543.
  • Tan, S., Z. Ke, D. Chai, Y. Miao, K. Luo, and W. Li. 2021. Lycopene, polyphenols and antioxidant activities of three characteristic tomato cultivars subjected to two drying methods. Food Chemistry 338:128062. doi: 10.1016/j.foodchem.2020.128062.
  • Tao, Y., M. Han, X. Gao, Y. Han, P. L. Show, C. Liu, X. Ye, and G. Xie. 2019. Applications of water blanching, surface contacting ultrasound-assisted air drying, and their combination for dehydration of white cabbage: Drying mechanism, bioactive profile, color and rehydration property. Ultrasonics Sonochemistry 53:192–201. doi: 10.1016/j.ultsonch.2019.01.003.
  • Vaahtera, L., J. Schulz, and T. Hamann. 2019. Cell wall integrity maintenance during plant development and interaction with the environment. Nature Plants 5 (9):924–32. doi: 10.1038/s41477-019-0502-0.
  • Vaziriyeganeh, M., M. Carvajal, N. Du, and J. Zwiazek. 2022. Salinity tolerance of halophytic grass Puccinellia nuttalliana is associated with enhancement of aquaporin-mediated water transport by sodium. International Journal of Molecular Sciences 23 (10):5732. doi: 10.3390/ijms23105732.
  • Wang, H., X. Duan, L. Duan, and G. Ren. 2020. Mutual transformation of the water binding state and moisture diffusion characteristics of Chinese yams during microwave freeze drying. Drying Technology 39 (1):66–76. doi: 10.1080/07373937.2019.1693400.
  • Wang, T., Y. B. Park, D. Cosgrove, and M. Hong. 2015. Cellulose-pectin spatial contacts are inherent to never-dried Arabidopsis primary cell walls: Evidence from solid-state nuclear magnetic resonance. Plant Physiology 168 (3):871–84. doi: 10.1104/pp.15.00665.
  • Wang, J., X. M. Fang, A. S. Mujumdar, J. Y. Qian, Q. Zhang, X. H. Yang, Y. H. Liu, Z. J. Gao, and H. W. Xiao. 2017. Effect of high-humidity hot air impingement blanching (HHAIB) on drying and quality of red pepper (Capsicum annuum L.). Food Chemistry 220:145–52. doi: 10.1016/j.foodchem.2016.09.200.
  • Wang, J., C. L. Law, P. K. Nema, J. H. Zhao, Z. L. Liu, L. Z. Deng, Z. J. Gao, and H. W. Xiao. 2018. Pulsed vacuum drying enhances drying kinetics and quality of lemon slices. Journal of Food Engineering 224:129–38. doi: 10.1016/j.jfoodeng.2018.01.002.
  • Wang, J., Y. P. Pei, C. Chen, X. H. Yang, K. An, and H. W. Xiao. 2023. High-humidity hot air impingement blanching (HHAIB) enhances drying behavior of red pepper via altering cellular structure, pectin profile and water state. Innovative Food Science & Emerging Technologies 83:103246. doi: 10.1016/j.ifset.2022.103246.
  • Wang, X., Y. Feng, C. Zhou, Y. Sun, B. Wu, A. E. A. Yagoub, and E. A. A. Aboagarib. 2019. Effect of vacuum and ethanol pretreatment on infrared-hot air drying of scallion (Allium fistulosum). Food Chemistry 295:432–40. doi: 10.1016/j.foodchem.2019.05.145.
  • Wong, S. S., S. Kasapis, and Y. M. Tan. 2009. Bacterial and plant cellulose modification using ultrasound irradiation. Carbohydrate Polymers 77 (2):280–7. doi: 10.1016/j.carbpol.2008.12.038.
  • Xu, K., M. M. Martinez, B. Yang, and M. Guo. 2020. Fine structure, physicochemical and antioxidant properties of LM-pectins from okra pods dried under different techniques. Carbohydrate Polymers 241:116272. doi: 10.1016/j.carbpol.2020.116272.
  • Xu, L., X. Fang, W. Wu, H. Chen, H. Mu, and H. Gao. 2019. Effects of high-temperature pre-drying on the quality of air-dried shiitake mushrooms (Lentinula edodes). Food Chemistry 285:406–13. doi: 10.1016/j.foodchem.2019.01.179.
  • Xu, X., L. Zhang, A. E. A. Yagoub, X. Yu, H. Ma, and C. Zhou. 2021. Effects of ultrasound, freeze-thaw pretreatments and drying methods on structure and functional properties of pectin during the processing of okra. Food Hydrocolloids. 120:106965. doi: 10.1016/j.foodhyd.2021.106965.
  • Xu, X., L. Zhang, Y. Feng, A. ElGasim, A. Yagoub, Y. Sun, H. Ma, and C. Zhou. 2020. Vacuum pulsation drying of okra (Abelmoschus esculentus L. Moench): Better retention of the quality characteristics by flat sweep frequency and pulsed ultrasound pretreatment. Food Chemistry 326:127026. doi: 10.1016/j.foodchem.2020.127026.
  • Yan, J. K., L. X. Wu, Z. R. Qiao, W. D. Cai, and H. Ma. 2019. Effect of different drying methods on the product quality and bioactive polysaccharides of bitter gourd (Momordica charantia L.) slices. Food Chemistry 271:588–96. doi: 10.1016/j.foodchem.2018.08.012.
  • Yang, J. S., T. H. Mu, and M. M. Ma. 2018. Extraction, structure, and emulsifying properties of pectin from potato pulp. Food Chemistry 244:197–205. doi: 10.1016/j.foodchem.2017.10.059.
  • Yang, R. L., Q. Li, and Q. P. Hu. 2020. Physicochemical properties, microstructures, nutritional components, and free amino acids of Pleurotus eryngii as affected by different drying methods. Scientific Reports 10 (1):121. doi: 10.1038/s41598-019-56901-1.
  • Yi, J., L. Zhou, J. Bi, X. Liu, C. Qinqin, and X. Wu. 2016. Influences of microwave pre-drying and explosion puffing drying induced cell wall polysaccharide modification on physicochemical properties, texture, microstructure and rehydration of pitaya fruit chips. Lwt 70:271–9. doi: 10.1016/j.lwt.2016.03.001.
  • Zdunek, A., P. Pieczywek, and J. Cybulska. 2021. The primary, secondary, and structures of higher levels of pectin polysaccharides. Comprehensive Reviews in Food Science and Food Safety 20 (1):1101–17. doi: 10.1111/1541-4337.12689.
  • Zhang, X. L., C. S. Zhong, A. S. Mujumdar, X. H. Yang, L. Z. Deng, J. Wang, and H. W. Xiao. 2019. Cold plasma pretreatment enhances drying kinetics and quality attributes of chili pepper (Capsicum annuum L.). Journal of Food Engineering 241:51–7. doi: 10.1016/j.jfoodeng.2018.08.002.
  • Zhao, Y., J. Bi, J. Yi, D. M. Njoroge, J. Peng, and C. Hou. 2019. Comparison of dynamic water distribution and microstructure formation of shiitake mushrooms during hot air and far infrared radiation drying by low-field nuclear magnetic resonance and scanning electron microscopy. Journal of the Science of Food and Agriculture 99 (6):2826–34. doi: 10.1002/jsfa.9494.
  • Zhou, C., Y. Feng, L. Zhang, A. E. A. Yagoub, H. Wahia, H. Ma, Y. Sun, and X. Yu. 2021. Rehydration characteristics of vacuum freeze- and hot air-dried garlic slices. Lwt 143:111158. doi: 10.1016/j.lwt.2021.111158.
  • Zhou, Y. H., S. K. Vidyarthi, C. S. Zhong, Z. A. Zheng, Y. An, J. Wang, Q. Wei, and H. W. Xiao. 2020. Cold plasma enhances drying and color, rehydration ratio and polyphenols of wolfberry via microstructure and ultrastructure alteration. Lwt 134:110173. doi: 10.1016/j.lwt.2020.110173.
  • Zhu, Z., Y. Zhao, Y. Zhang, X. Wu, J. Liu, Q. Shi, and Z. Fang. 2021. Effects of ultrasound pretreatment on the drying kinetics, water status and distribution in scallop adductors during heat pump drying. Journal of the Science of Food and Agriculture 101 (15):6239–47. doi: 10.1002/jsfa.11290.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.