681
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Consumer-oriented smart dynamic detection of fresh food quality: recent advances and future prospects

, , &

References

  • Abdo, H., J. Sandeep, G. Guillermo, T. Hana, P. Mirian, M. L. José, T. Monica, R. Alexandru Vasile, A. Rana Muhammad, Š. Vida, et al. 2022. Food quality 4.0: From traditional approaches to digitalized automated analysis. Journal of Food Engineering 337:111216. doi: 10.1016/j.jfoodeng.2022.111216.
  • Abedi-Firoozjah, R., S. A. Salim, S. Hasanvand, E. Assadpour, M. Azizi-Lalabadi, M. A. Prieto, and S. M. Jafari. 2023. Application of smart packaging for seafood: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety 22 (2):1438–61. doi: 10.1111/1541-4337.13117.
  • Alam, A. U., P. Rathi, H. Beshai, G. K. Sarabha, and M. J. Deen. 2021. Fruit quality monitoring with smart packaging. Sensors 21 (4):1509. doi: 10.3390/s21041509.
  • Aghaei, Z., B. Ghorani, B. Emadzadeh, R. Kadkhodaee, and N. Tucker. 2020. Protein-based halochromic electrospun nanosensor for monitoring trout fish freshness. Food Control 111:107065. doi: 10.1016/j.foodcont.2019.107065.
  • Bai, J., S. M. Baker, R. M. Goodrich-Schneider, N. Montazeri, and P. J. Sarnoski. 2021. Development of a rapid colorimetric strip method for determination of volatile bases in mahi-mahi and tuna. Journal of Food Science 86 (6):2398–409. doi: 10.1111/1750-3841.15737.
  • Bashir, H. A., and A. B. A. Abu-Goukh. 2003. Compositional changes during guava fruit ripening. Food Chemistry 80 (4):557–63. doi: 10.1016/s0308-8146(02)00345-x.
  • Becerril, R., C. Nerín, and F. Silva. 2021. Bring some colour to your package: Freshness indicators based on anthocyanin extracts. Trends in Food Science & Technology 111:495–505. doi: 10.1016/j.tifs.2021.02.042.
  • Bezdekova, J., K. Zemankova, J. Hutarova, S. Kociova, K. Smerkova, V. Adam, and M. Vaculovicova. 2020. Magnetic molecularly imprinted polymers used for selective isolation and detection of Staphylococcus aureus. Food Chemistry 321:126673. doi: 10.1016/j.foodchem.2020.126673.
  • Brühl, L., and G. Unbehend. 2021. Precise color communication by determination of the color of vegetable oils and fats in the CIELAB 1976 (L*a*b*) color space. European Journal of Lipid Science and Technology 123 (7):2000329. doi: 10.1002/ejlt.202000329.
  • Chen, F., M. Zhang, and C. Yang. 2020. Application of ultrasound technology in processing of ready-to-eat fresh food: A review. Ultrasonics Sonochemistry 63:104953. doi: 10.1016/j.ultsonch.2019.104953.
  • Chen, H., M. Zhang, B. Bhandari, and Z. Guo. 2018. Applicability of a colorimetric indicator label for monitoring freshness of fresh-cut green bell pepper. Postharvest Biology and Technology 140:85–92. doi: 10.1016/j.postharvbio.2018.02.011.
  • Chen, H., M. Zhang, B. Bhandari, and C. H. Yang. 2019. Development of a novel colorimetric food package label for monitoring lean pork freshness. LWT 99:43–9. doi: 10.1016/j.lwt.2018.09.048.
  • Chen, H., M. Zhang, B. Bhandari, and C. Yang. 2020. Novel pH-sensitive films containing curcumin and anthocyanins to monitor fish freshness. Food Hydrocolloids 100:105438. doi: 10.1016/j.foodhyd.2019.105438.
  • Chen, Y., G. Fu, Y. Zilberman, W. Ruan, S. K. Ameri, Y. S. Zhang, E. Miller, and S. R. Sonkusale. 2017. Low cost smart phone diagnostics for food using paper-based colorimetric sensor arrays. Food Control 82:227–32. doi: 10.1016/j.foodcont.2017.07.003.
  • Cheng, H., H. Xu, D. Julian McClements, L. Chen, A. Jiao, Y. Tian, M. Miao, and Z. Jin. 2022. Recent advances in intelligent food packaging materials: Principles, preparation and applications. Food Chemistry 375:131738. doi: 10.1016/j.foodchem.2021.131738.
  • Cheng, N., Q. Shi, C. Zhu, S. Li, Y. Lin, and D. Du. 2019. Pt-Ni(OH)2 nanosheets amplified two-way lateral flow immunoassays with smartphone readout for quantification of pesticides. Biosensors & Bioelectronics 142:111498. doi: 10.1016/j.bios.2019.111498.
  • Choi, I., H. Choi, J.-S. Lee, and J. Han. 2023. Novel color stability and colorimetry-enhanced intelligent CO2 indicators by metal complexation of anthocyanins for monitoring chicken freshness. Food Chemistry 404 (Pt A):134534. doi: 10.1016/j.foodchem.2022.134534.
  • Chow, C.-F., P.-Y. Ho, D. Sun, Y.-J. Lu, W.-L. Wong, Q. Tang, and C.-B. Gong. 2017. Development of sensitive and selective food sensors using new Re(I)-Pt(II) bimetallic complexes to detect volatile biogenic sulfides formed by meat spoilage. Food Chemistry 216:382–9. doi: 10.1016/j.foodchem.2016.08.046.
  • Cova, C. M., E. Rincón, E. Espinosa, L. Serrano, and A. Zuliani. 2022. Paving the way for a green transition in the design of sensors and biosensors for the detection of volatile organic compounds (VOCs). Biosensors 12 (2):51. doi: 10.3390/bios12020051.
  • Ding, N., S. Dong, Y. Zhang, D. Lu, J. Lin, Q. Zhao, and X. Shi. 2022. Portable silver-doped prussian blue nanoparticle hydrogels for colorimetric and photothermal monitoring of shrimp and fish freshness. Sensors and Actuators B: Chemical 363:131811. doi: 10.1016/j.snb.2022.131811.
  • Dirpan, A., R. Latief, A. Syarifuddin, A. N. F. Rahman, R. P. Putra, and S. H. Hidayat. 2018. The use of colour indicator as a smart packaging system for evaluating mangoes Arummanis (Mangifera indica L. var. Arummanisa) freshness. IOP Conference Series: Earth and Environmental Science 157:012031. doi: 10.1088/1755-1315/157/1/012031.
  • Ezati, P., H. Tajik, and M. Moradi. 2019. Fabrication and characterization of alizarin colorimetric indicator based on cellulose-chitosan to monitor the freshness of minced beef. Sensors and Actuators B: Chemical 285:519–28. doi: 10.1016/j.snb.2019.01.089.
  • Eze, F. N., T. J. Jayeoye, and S. Singh. 2022. Fabrication of intelligent pH-sensing films with antioxidant potential for monitoring shrimp freshness via the fortification of chitosan matrix with broken Riceberry phenolic extract. Food Chemistry 366:130574. doi: 10.1016/j.foodchem.2021.130574.
  • Ezeanaka Melvina, C., Z. Min, C. H. E. N. Kai, and W. A. N. G. Yuchuan. 2022. Influence of microwave blanching and modified atmosphere packaging on physiochemical properties and quality of carrot used. Journal of Food Science and Biotechnology 41 (5):46–55.
  • Fan, H., M. Zhang, B. Bhandari, and C. Yang. 2020. Food waste as a carbon source in carbon quantum dots technology and their applications in food safety detection. Trends in Food Science & Technology 95:86–96. doi: 10.1016/j.tifs.2019.11.008.
  • Fan, K., and M. Zhang. 2019. Recent developments in the food quality detected by non-invasive nuclear magnetic resonance technology. Critical Reviews in Food Science and Nutrition 59 (14):2202–13. doi: 10.1080/10408398.2018.1441124.
  • Fan, M., T. F. Rakotondrabe, G. Chen, and M. Guo. 2023. Advances in microbial analysis: Based on volatile organic compounds of microorganisms in food. Food Chemistry 418:135950. doi: 10.1016/j.foodchem.2023.135950.
  • Feng, S., Q. Tang, Z. Xu, K. Huang, H. Li, and Z. Zou. 2023. Development of novel Co-MOF loaded sodium alginate based packaging films with antimicrobial and ammonia-sensitive functions for shrimp freshness monitoring. Food Hydrocolloids 135:108193. doi: 10.1016/j.foodhyd.2022.108193.
  • Gavahian, M., B. K. Tiwari, Y.-H. Chu, Y. Ting, and A. Farahnaky. 2019. Food texture as affected by ohmic heating: Mechanisms involved, recent findings, benefits, and limitations. Trends in Food Science & Technology 86:328–39. doi: 10.1016/j.tifs.2019.02.022.
  • Ghasemi, M., C. Apetrei, J. Lozano, and A. Anyogu. 2018. Potential use of electronic noses, electronic tongues and biosensors as multisensor systems for spoilage examination in foods. Trends in Food Science & Technology 80:71–92. doi: 10.1016/j.tifs.2018.07.018.
  • Guénard-Lampron, V., M. Masson, and D. Blumenthal. 2021. Critical review of sensory texture descriptors: From pureed to transitional foods for dysphagia patients. Journal of Texture Studies 52 (5-6):665–78. doi: 10.1111/jtxs.12604.
  • Guo, C., A. S. Mujumdar, and M. Zhang. 2019. New development in radio frequency heating for fresh food processing: A review. Food Engineering Reviews 11 (1):29–43. doi: 10.1007/s12393-018-9184-z.
  • Guo, L., T. Wang, Z. Wu, J. Wang, M. Wang, Z. Cui, S. Ji, J. Cai, C. Xu, and X. Chen. 2020. Portable food-freshness prediction platform based on colorimetric barcode combinatorics and deep convolutional neural networks. Advanced Materials 32 (45):e2004805. doi: 10.1002/adma.202004805.
  • Guo, R., S. Wang, F. Huang, Q. Chen, Y. Li, M. Liao, and J. Lin. 2019. Rapid detection of Salmonella typhimurium using magnetic nanoparticle immunoseparation, nanocluster signal amplification and smartphone image analysis. Sensors and Actuators B: Chemical 284:134–9. doi: 10.1016/j.snb.2018.12.110.
  • Han, T., C. Xia, Y. Huang, C. Sun, D. Liu, W. Xu, and D. Wang. 2023. An electrospun sensing label based on poly (vinyl alcohol)-Ag-grape seed anthocyanidin nanofibers for smart, real-time meat freshness monitoring. Sensors and Actuators B: Chemical 376:132975. doi: 10.1016/j.snb.2022.132975.
  • Hashim, S. B. H., H. E. Tahir, L. Lui, J. Zhang, X. Zhai, A. A. Mahdi, N. A. Ibrahim, G. K. Mahunu, M. M. Hassan, Z. Xiaobo, et al. 2023. Smart films of carbohydrate-based/sunflower wax/purple Chinese cabbage anthocyanins: A biomarker of chicken freshness. Food Chemistry 399:133824. doi: 10.1016/j.foodchem.2022.133824.
  • Hassan, A. H. A., J. F. Bergua, E. Morales-Narváez, and A. Mekoçi. 2019. Validity of a single antibody-based lateral flow immunoassay depending on graphene oxide for highly sensitive determination of E. coli O157:H7 in minced beef and river water. Food Chemistry 297:124965. doi: 10.1016/j.foodchem.2019.124965.
  • Hassoun, A., A. Aït-Kaddour, A. M. Abu-Mahfouz, N. B. Rathod, F. Bader, F. J. Barba, A. Biancolillo, J. Cropotova, C. M. Galanakis, A. R. Jambrak, et al. 2022. The fourth industrial revolution in the food industry—Part I: Industry 4.0 technologies. Critical Reviews in Food Science and Nutrition 1–17. doi: 10.1080/10408398.2022.2034735.
  • He, X., Y. Pu, L. Chen, H. Jiang, Y. Xu, J. Cao, and W. Jiang. 2023. A comprehensive review of intelligent packaging for fruits and vegetables: Target responders, classification, applications, and future challenges. Comprehensive Reviews in Food Science and Food Safety 22 (2):842–81. doi: 10.1111/1541-4337.13093.
  • He, Y., B. Li, J. Du, S. Cao, M. Liu, X. Li, D. Ren, X. Wu, and D. Xu. 2022. Development of pH-responsive absorbent pad based on polyvinyl alcohol/agarose/anthocyanins for meat packaging and freshness indication. International Journal of Biological Macromolecules 201:203–15. doi: 10.1016/j.ijbiomac.2021.12.171.
  • Hoffmann, M., Y. Luo, S. R. Monday, N. Gonzalez-Escalona, A. R. Ottesen, T. Muruvanda, C. Wang, G. Kastanis, C. Keys, D. Janies, et al. 2016. Tracing origins of the Salmonella Bareilly strain causing a food-borne outbreak in the United States. The Journal of Infectious Diseases 213 (4):502–8. doi: 10.1093/infdis/jiv297.
  • Hu, X. G., X. Li, S. H. Park, Y.-H. Kim, and S. I. Yang. 2016. Nondestructive monitoring of kiwi ripening process using colorimetric ethylene sensor. Bulletin of the Korean Chemical Society 37 (5):759–62. doi: 10.1002/bkcs.10745.
  • Hu, Z., H. Wang, L. Li, Q. Wang, S. Jiang, M. Chen, X. Li, and J. Shaotong. 2021. pH-responsive antibacterial film based polyvinyl alcohol/poly (acrylic acid) incorporated with aminoethyl-phloretin and application to pork preservation. Food Research International 147:110532. doi: 10.1016/j.foodres.2021.110532.
  • Huang, H., I. L. Tsai, C. Lin, Y. Hang, Y. Ho, M. Tsai, and F. Mi. 2023. Intelligent films of marine polysaccharides and purple cauliflower extract for food packaging and spoilage monitoring. Carbohydrate Polymers 299:120133. doi: 10.1016/j.carbpol.2022.120133.
  • Huang, X., X. Zou, J. Shi, Y. Guo, J. Zhao, J. Zhang, and L. Hao. 2014. Determination of pork spoilage by colorimetric gas sensor array based on natural pigments. Food Chemistry 145:549–54. doi: 10.1016/j.foodchem.2013.08.101.
  • Ivanov, V. M. 2004. The 125th anniversary of the Griess reagent. Journal of Analytical Chemistry 59 (10):1002–5. doi: 10.1023/B:JANC.0000043920.77446.d7.
  • Jang, J. H., H. J. Kang, O. E. Adedeji, G. Y. Kim, J. K. Lee, D. H. Kim, and Y. H. Jung. 2023. Development of a pH indicator for monitoring the freshness of minced pork using a cellulose nanofiber. Food Chemistry 403:134366. doi: 10.1016/j.foodchem.2022.134366.
  • Jayan, H., H. Pu, and D. Sun. 2020. Recent development in rapid detection techniques for microorganism activities in food matrices using bio-recognition: A review. Trends in Food Science & Technology 95:233–46. doi: 10.1016/j.tifs.2019.11.007.
  • Jian, L., L. Kai, C. Yinglong, D. Hui, W. Hailei, G. Yongfeng, H. Shaocong, W. Hong, K. Dexin, Y. Zhuohong, et al. 2022. Active and smart biomass film containing cinnamon oil and curcumin for meat preservation and freshness indicator. Food Hydrocolloids 133:107979. doi: 10.1016/j.foodhyd.2022.107979.
  • Jiang, Q., M. Zhang, A. S. Mujumdar, and D. Wang. 2023. Non-destructive quality determination of frozen food using NIR spectroscopy-based machine learning and predictive modelling. Journal of Food Engineering 343:111374. doi: 10.1016/j.jfoodeng.2022.111374.
  • Kamer, D. D. A., G. B. Kaynarca, E. Yücel, and T. Gümüş. 2022. Development of gelatin/PVA based colorimetric films with a wide pH sensing range winery solid by-product (Vinasse) for monitor shrimp freshness. International Journal of Biological Macromolecules 220:627–37. doi: 10.1016/j.ijbiomac.2022.08.113.
  • Kang, S., H. Wang, L. Xia, M. Chen, L. Li, J. Cheng, X. Li, and S. Jiang. 2020. Colorimetric film based on polyvinyl alcohol/okra mucilage polysaccharide incorporated with rose anthocyanins for shrimp freshness monitoring. Carbohydrate Polymers 229:115402. doi: 10.1016/j.carbpol.2019.115402.
  • Kaur, J., and P. K. Singh. 2020. Enzyme-based optical biosensors for organophosphate class of pesticide detection. Physical Chemistry Chemical Physics 22 (27):15105–19. doi: 10.1039/d0cp01647k.
  • Khaled, A. Y., C. A. Parrish, and A. Adedeji. 2021. Emerging nondestructive approaches for meat quality and safety evaluation–A review. Comprehensive Reviews in Food Science and Food Safety 20 (4):3438–63. doi: 10.1111/1541-4337.12781.
  • Kim, Y. H., Y. J. Yang, J. S. Kim, D. S. Choi, S. H. Park, S. Y. Jin, and J. S. Park. 2018. Non-destructive monitoring of apple ripeness using an aldehyde sensitive colorimetric sensor. Food Chemistry 267:149–56. doi: 10.1016/j.foodchem.2018.02.110.
  • Kong, J., X. Ge, Y. Sun, M. Mao, H. Yu, R. Chu, and Y. Wang. 2023. Multi-functional pH-sensitive active and intelligent packaging based on highly cross-linked zein for the monitoring of pork freshness. Food Chemistry 404 (Pt B):134754. doi: 10.1016/j.foodchem.2022.134754.
  • Kumar, I., J. Rawat, N. Mohd, and S. Husain. 2021. Opportunities of artificial intelligence and machine learning in the food industry. Journal of Food Quality 2021:1–10. doi: 10.1155/2021/4535567.
  • Kuswandi, B., C. Maryska, N. Jayus, A. Abdullah, and L. Y. Heng. (2013). Real time on-package freshness indicator for guavas packaging. Journal of Food Measurement and Characterization 7:29–39. doi: 10.1007/s11694-013-9136-5.
  • Kuswandi, B., M. Moradi, and P. Ezati. 2022. Food sensors: Off-package and on-package approaches. Packaging Technology and Science 35 (12):847–62. doi: 10.1002/pts.2683.
  • Lang, C., and T. Hübert. 2012. A colour ripeness indicator for apples. Food and Bioprocess Technology 5 (8):3244–9. doi: 10.1007/s11947-011-0694-4.
  • Li, B., Y. Bao, J. Li, J. Bi, Q. Chen, H. Cui, Y. Wang, J. Tian, C. Shu, Y. Wang, et al. 2022. A sub-freshness monitoring chitosan/starch-based colorimetric film for improving color recognition accuracy via controlling the pH value of the film-forming solution. Food Chemistry 388:132975. doi: 10.1016/j.foodchem.2022.132975.
  • Li, M., X. Hua, M. Ma, J. Liu, L. Zhou, and M. Wang. 2014. Detecting clothianidin residues in environmental and agricultural samples using rapid, sensitive enzyme-linked immunosorbent assay and gold immunochromatographic assay. The Science of the Total Environment 499:1–6. doi: 10.1016/j.scitotenv.2014.08.029.
  • Li, Z., and K. S. Suslick. 2019. Colorimetric sensor array for monitoring CO and ethylene. Analytical Chemistry 91 (1):797–802. doi: 10.1021/acs.analchem.8b04321.
  • Liu, D., C. Zhang, Y. Pu, S. Chen, L. Liu, Z. Cui, and Y. Zhong. 2022. Recent advances in pH-responsive freshness indicators using natural food colorants to monitor food freshness. Foods 11 (13):1884. doi: 10.3390/foods11131884.
  • Liu, H., Y. Saito, D. F. A. Riza, N. Kondo, X. Yang, and D. Han. 2019. Rapid evaluation of quality deterioration and freshness of beef during low temperature storage using three-dimensional fluorescence spectroscopy. Food Chemistry 287:369–74. doi: 10.1016/j.foodchem.2019.02.119.
  • Liu, H., C. Shi, X. Sun, J. Zhang, and Z. Ji. 2021. Intelligent colorimetric indicator film based on bacterial cellulose and pelargonidin dye to indicate the freshness of tilapia fillets. Food Packaging and Shelf Life 29:100712. doi: 10.1016/j.fpsl.2021.100712.
  • Liu, L., W. Wu, L. Zheng, J. Yu, P. Sun, and P. Shao. 2022. Intelligent packaging films incorporated with anthocyanins-loaded ovalbumin-carboxymethyl cellulose nanocomplexes for food freshness monitoring. Food Chemistry 387:132908. doi: 10.1016/j.foodchem.2022.132908.
  • Liu, Q., M. Zhang, B. Bhandari, J. Xu, and C. Yang. 2020. Effects of nanoemulsion-based active coatings with composite mixture of star anise essential oil, polylysine, and nisin on the quality and shelf life of ready-to-eat Yao meat products. Food Control 107:106771. doi: 10.1016/j.foodcont.2019.106771.
  • Lu, P., R. Liu, X. Liu, and M. Wu. 2018. Preparation of self-supporting bagasse cellulose nanofibrils hydrogels induced by zinc ions. Nanomaterials 8 (10):800. doi: 10.3390/nano8100800.
  • Lu, Y., Z. Shi, and Q. Liu. 2019. Smartphone-based biosensors for portable food evaluation. Current Opinion in Food Science 28:74–81. doi: 10.1016/j.cofs.2019.09.003.
  • Luo, Q., A. Hossen, D. E. Sameen, S. Ahmed, J. Dai, S. Li, W. Qin, and Y. Liu. 2023. Recent advances in the fabrication of pH-sensitive indicators films and their application for food quality evaluation. Critical Reviews in Food Science and Nutrition 63 (8):1102–18. doi: 10.1080/10408398.2021.1959296.
  • Luo, X., A. Zaitoon, and L. Lim. 2022. A review on colorimetric indicators for monitoring product freshness in intelligent food packaging: Indicator dyes, preparation methods, and applications. Comprehensive Reviews in Food Science and Food Safety 21 (3):2489–519. doi: 10.1111/1541-4337.12942.
  • Lv, R., X. Huang, C. Dai, W. Ye, and X. Tian. 2019. A rapid colorimetric sensing unit for histamine content of mackerel using azo reagent. Journal of Food Process Engineering 42 (5):e13099. doi: 10.1111/jfpe.13099.
  • Ma, S., J. He, M. Guo, X. Sun, M. Zheng, and Y. Wang. 2018. Ultrasensitive colorimetric detection of triazophos based on the aggregation of silver nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects 538:343–9. doi: 10.1016/j.colsurfa.2017.11.030.
  • Ma, T., H. Wang, M. Wei, T. Lan, J. Wang, S. Bao, Q. Ge, Y. Fang, and X. Sun. 2022. Application of smart-phone use in rapid food detection, food traceability systems, and personalized diet guidance, making our diet more health. Food Research International 152:110918. doi: 10.1016/j.foodres.2021.110918.
  • Maftoonazad, N., and H. Ramaswamy. 2019. Design and testing of an electrospun nanofiber mat as a pH biosensor and monitor the pH associated quality in fresh date fruit (Rutab). Polymer Testing 75:76–84. doi: 10.1016/j.polymertesting.2019.01.011.
  • Morteza, F., B. Amir, and R. Hosein. 2022. Development and characterization of locust bean gum-Viola anthocyanin-graphene oxide ternary nanocomposite as an efficient pH indicator for food packaging application. Food Packaging and Shelf Life 34:100934. doi: 10.1016/j.fpsl.2022.100934.
  • Nguyen, L. H., F. Oveissi, R. Chandrawati, F. Dehghani, and S. Naficy. 2020. Naked-eye detection of ethylene using thiol-functionalized polydiacetylene-based flexible sensors. ACS Sensors 5 (7):1921–8. doi: 10.1021/acssensors.0c00117.
  • Niponsak, A., N. Laohakunjit, and O. Kerdchoechuen. 2015. Contribution to volatile fingerprinting and physico-chemical qualities of minimally processed durian cv. ‘Monthong’ during storage: Identification of a novel chemical ripeness marker. Food and Bioprocess Technology 8 (6):1229–43. doi: 10.1007/s11947-015-1486-z.
  • Niponsak, A., N. Laohakunjit, O. Kerdchoechuen, and P. Wongsawadee. 2016. Development of smart colourimetric starch-based indicator for liberated volatiles during durian ripeness. Food Research International 89 (Pt 1):365–72. doi: 10.1016/j.foodres.2016.08.038.
  • Niponsak, A., N. Laohakunjit, O. Kerdchoechuen, P. Wongsawadee, and A. Uthairatanakij. 2020. Novel ripeness label based on starch/chitosan incorporated with pH dye for indicating eating quality of fresh–cut durian. Food Control 107:106785. doi: 10.1016/j.foodcont.2019.106785.
  • Obenland, D., S. Collin, J. Sievert, F. Negm, and M. L. Arpaia. 2012. Influence of maturity and ripening on aroma volatiles and flavor in ‘Hass’ avocado. Postharvest Biology and Technology 71:41–50. doi: 10.1016/j.postharvbio.2012.03.006.
  • Park, Y. W., S. M. Kim, J. Y. Lee, and W. Jang. 2015. Application of biosensors in smart packaging. Molecular & Cellular Toxicology 11 (3):277–85. doi: 10.1007/s13273-015-0027-1.
  • Pathare, P., U. Opara, and F. A. Al-Said. 2013. Colour measurement and analysis in fresh and processed foods: A review. Food and Bioprocess Technology 6 (1):36–60. doi: 10.1007/s11947-012-0867-9.
  • Perez de Vargas-Sansalvador, I. M., M. M. Erenas, A. Martínez-Olmos, F. Mirza-Montoro, D. Diamond, and L. F. Capitan-Vallvey. 2020. Smartphone based meat freshness detection. Talanta 216:120985. doi: 10.1016/j.talanta.2020.120985.
  • Pirsa, S., and S. Chavoshizadeh. 2018. Design of an optical sensor for ethylene based on nanofiber bacterial cellulose film and its application for determination of banana storage time. Polymers for Advanced Technologies 29 (5):1385–93. doi: 10.1002/pat.4250.
  • Qiu, L., M. Zhang, J. Tang, B. Adhikari, and P. Cao. 2019. Innovative technologies for producing and preserving intermediate moisture foods: A review. Food Research International 116:90–102. doi: 10.1016/j.foodres.2018.12.055.
  • Rohit, J. V., and S. K. Kailasa. 2014. Cyclen dithiocarbamate-functionalized silver nanoparticles as a probe for colorimetric sensing of thiram and paraquat pesticides via host–guest chemistry. Journal of Nanoparticle Research 16 (11):2585. doi: 10.1007/s11051-014-2585-x.
  • Rovina, K., J. M. Vonnie, S. N. Shaeera, S. X. Yi, and N. F. A. Halid. 2020. Development of biodegradable hybrid polymer film for detection of formaldehyde in seafood products. Sensing and Bio-Sensing Research 27:100310. doi: 10.1016/j.sbsr.2019.100310.
  • Shahzad, N., U. Khalid, A. Iqbal, and M. Rahman. 2018. eFresh–A device to detect food freshness. International Journal of Soft Computing and Engineering 8 (3):2231–307.
  • Shao, L., Y. Sun, B. Zou, Y. Zhao, X. Li, and R. Dai. 2023. Sublethally injured microorganisms in food processing and preservation: Quantification, formation, detection, resuscitation and adaption. Food Research International 165:112536. doi: 10.1016/j.foodres.2023.112536.
  • Shao, P., L. Liu, J. Yu, Y. Lin, H. Gao, H. Chen, and P. Sun. 2021. An overview of intelligent freshness indicator packaging for food quality and safety monitoring. Trends in Food Science & Technology 118:285–96. doi: 10.1016/j.tifs.2021.10.012.
  • Shao, P., L. Liu, J. Yu, L. Zheng, and P. Sun. 2022. Novel aldehyde sensitive bio-based colorimetric film for kiwi fruit freshness monitoring. LWT 159:113177. doi: 10.1016/j.lwt.2022.113177.
  • Shi, C., J. Zhang, Z. Jia, X. Yang, and Z. Zhou. 2021. Intelligent pH indicator films containing anthocyanins extracted from blueberry peel for monitoring tilapia fillet freshness. Journal of the Science of Food and Agriculture 101 (5):1800–11. doi: 10.1002/jsfa.10794.
  • Shi, H., M. Zhang, and B. Adhikari. 2018. Advances of electronic nose and its application in fresh foods: A review. Critical Reviews in Food Science and Nutrition 58 (16):2700–10. doi: 10.1080/10408398.2017.1327419.
  • Shuo, S., X. Xiaowei, F. Jia, R. Yanming, B. Xue, and X. Xiufang. 2023. Preparation of NH3- and H2S-sensitive intelligent pH indicator film from sodium alginate/black soybean seed coat anthocyanins and its use in monitoring meat freshness. Food Packaging and Shelf Life 35:100994. doi: 10.1016/j.fpsl.2022.100994.
  • Singh, S. P., and R. K. Pal. 2008. Controlled atmosphere storage of guava (Psidium guajava L.) fruit. Postharvest Biology and Technology 47 (3):296–306. doi: 10.1016/j.postharvbio.2007.08.009.
  • Siripongpreda, T., K. Siralertmukul, and N. Rodthongkum. 2020. Colorimetric sensor and LDI-MS detection of biogenic amines in food spoilage based on porous PLA and graphene oxide. Food Chemistry 329:127165. doi: 10.1016/j.foodchem.2020.127165.
  • Sohail, M., D. Sun, and Z. Zhu. 2018. Recent developments in intelligent packaging for enhancing food quality and safety. Critical Reviews in Food Science and Nutrition 58 (15):2650–62. doi: 10.1080/10408398.2018.1449731.
  • Solomon, E. B., S. Yaron, and K. R. Matthews. 2002. Transmission of Escherichia coli O157:H7 from contaminated manure and irrigation water to lettuce plant tissue and its subsequent internalization. Applied and Environmental Microbiology 68 (1):397–400. doi: 10.1128/AEM.68.1.397-400.2002.
  • Sonwani, E., U. Bansal, R. Alroobaea, A. Baqasah, and M. Hedabou. 2021. An artificial intelligence approach toward food spoilage detection and analysis. Frontiers in Public Health 9:816226. doi: 10.3389/fpubh.2021.816226.
  • Sun, Q., Zhang, M. Mujumdar, and A. S. 2019. Recent developments of artificial intelligence in drying of fresh food: A review. Critical Reviews in Food Science and Nutrition 59 (14):2258–75. doi: 10.1080/10408398.2018.1446900.
  • Sun, Y., M. Zhang, B. Bhandari, and P. Yang. 2019. Intelligent detection of flavor changes in ginger during microwave vacuum drying based on LF-NMR. Food Research International 119:417–25. doi: 10.1016/j.foodres.2019.02.019.
  • Sun, W., Y. Liu, L. Jia, M. D. A. Saldaña, T. Dong, Y. Jin, and W. Sun. 2021. A smart nanofibre sensor based on anthocyanin/poly-L-lactic acid for mutton freshness monitoring. International Journal of Food Science & Technology 56 (1):342–51. doi: 10.1111/ijfs.14648.
  • Sun, Z., L. Tian, M. Guo, X. Xu, Q. Li, and H. Weng. 2017. A double-film screening card for rapid detection of organophosphate and carbamate pesticide residues by one step in vegetables and fruits. Food Control. 81:23–9. doi: 10.1016/j.foodcont.2017.05.012.
  • Sutthasupa, S., C. Padungkit, and S. Suriyong. 2021. Colorimetric ammonia (NH3) sensor based on an alginate-methylcellulose blend hydrogel and the potential opportunity for the development of a minced pork spoilage indicator. Food Chemistry 362:130151. doi: 10.1016/j.foodchem.2021.130151.
  • Suzzi, G., and S. Torriani. 2015. Editorial: Biogenic amines in foods. Frontiers in Microbiology 6:472. doi: 10.3389/fmicb.2015.00472.
  • Tai, Y., C. Cheng, Y. Chen, and F. Ko. 2022. A hydrogel-based chemosensor applied in conjunction with a Griess assay for real-time colorimetric detection of nitrite in the environment. Sensors and Actuators B: Chemical 369:132298. doi: 10.1016/j.snb.2022.132298.
  • Tang, Q., J. Hu, S. Li, S. Lin, Y. Tu, X. Gui, and Y. Dong. 2023. Preparation of an aramid nanofiber-reinforced colorimetric hydrogel employing natural anthocyanin as an indicator for shrimp and fish spoilage monitoring. European Polymer Journal 187:111889. doi: 10.1016/j.eurpolymj.2023.111889.
  • Tuly, S. S., M. Mahiuddin, and A. Karim. 2023. Mathematical modeling of nutritional, color, texture, and microbial activity changes in fruit and vegetables during drying: A critical review. Critical Reviews in Food Science and Nutrition 63 (13):1877–900. doi: 10.1080/10408398.2021.1969533.
  • Vajiheh, E., N. Abdorreza Mohammadi, B. Marzieh, and B. Homa. 2022. Fabrication and characterization of a pH-sensitive indicator film by purple basil leaves extract to monitor the freshness of chicken fillets. Food Packaging and Shelf Life 34:100946. doi: 10.1016/j.fpsl.2022.100946.
  • Vasuki, M., V. Kadirvel, and G. Narayana. 2023. Smart packaging—An overview of concepts and applications in various food industries. Food Bioengineering 2 (1):25–41. doi: 10.1002/fbe2.12038.
  • Wang, B., W. Ahmad, Q. Chen, and O. Qin. 2023. Development of a dual-mode upconversion nanoparticles-3-aminophenol nanosystem based on Inner Filter Effect for sensitive detection of nitrite and its application on test strips. Sensors and Actuators B: Chemical 374:132740. doi: 10.1016/j.snb.2022.132740.
  • Wang, H., X. Jing, X. Bi, B. Bai, and X. Wang. 2020. Quantitative detection of nitrite in food samples based on digital image colourimetry by smartphone. ChemistrySelect 5 (32):9952–6. doi: 10.1002/slct.202002406.
  • Wang, J., J. Yang, C. Dong, Y. Wang, and S. Shuang. 2023. A smartphone-adaptable dual-signal readout chemosensor for rapid detection of nitrite in food samples. Journal of Food Composition and Analysis 118:105179. doi: 10.1016/j.jfca.2023.105179.
  • Wang, J., M. Zhang, Z. Gao, and B. Adhikari. 2018. Smart storage technologies applied to fresh foods: A review. Critical Reviews in Food Science and Nutrition 58 (16):2689–99. doi: 10.1080/10408398.2017.1323722.
  • Wells, N., D. Yusufu, and A. Mills. 2019. Colourimetric plastic film indicator for the detection of the volatile basic nitrogen compounds associated with fish spoilage. Talanta 194:830–6. doi: 10.1016/j.talanta.2018.11.020.
  • Wen, J., S. Huang, L. Jia, F. Ding, H. Li, L. Chen, and X. Liu. 2019. Visible colorimetric oxygen indicator based on Ag-loaded TiO2 nanotubes for quick response and real-time monitoring of the integrity of modified atmosphere packaging. Advanced Materials Technologies 4 (9):1900121. doi: 10.1002/admt.201900121.
  • Wen, K., Y. Chen, X. Meng, S. Botros, W. Dai, M. N. Stojanovic, R. Tomer, and Q. Lin. 2023. A microfluidic dual-aptamer sandwich assay for rapid and cost-effective detection of recombinant proteins. Microchemical Journal 188:108454. doi: 10.1016/j.microc.2023.108454.
  • Weston, M., S. Geng, and R. Chandrawati. 2021. Food sensors: Challenges and opportunities. Advanced Materials Technologies 6 (5):2001242. doi: 10.1002/admt.202001242.
  • Wojnowski, W., T. Majchrzak, T. Dymerski, J. Gębicki, and J. Namieśnik. 2017. Electronic noses: Powerful tools in meat quality assessment. Meat Science 131:119–31. doi: 10.1016/j.meatsci.2017.04.240.
  • Xu, L., A. M. Abd El-Aty, J. Eun, J. Shim, J. Zhao, X. Lei, S. Gao, Y. She, F. Jin, J. Wang, et al. 2022. Recent advances in rapid detection techniques for pesticide residue: A review. Journal of Agricultural and Food Chemistry 70 (41):13093–117. doi: 10.1021/acs.jafc.2c05284.
  • Yan, R., Z. Shou, J. Chen, H. Wu, Y. Zhao, L. Qiu, P. Jiang, X.-Z. Mou, J. Wang, and Y.-Q. Li. 2018. On–off–on gold nanocluster-based fluorescent probe for rapid Escherichia coli differentiation, detection and bactericide screening. ACS Sustainable Chemistry & Engineering 6 (4):4504–9. doi: 10.1021/acssuschemeng.8b00112.
  • Yang, T., Z. Luo, T. Bewal, L. Li, Y. Xu, S. Mahdi Jafari, and X. Lin. 2022. When smartphone enters food safety: A review in on-site analysis for foodborne pathogens using smartphone-assisted biosensors. Food Chemistry 394:133534. doi: 10.1016/j.foodchem.2022.133534.
  • Zahra, T., and S. Hajar. 2022. A colorimetric indicator based on copper nanoparticles for volatile sulfur compounds to monitor fish spoilage in intelligent packaging. Food Packaging and Shelf Life 33:100884. doi: 10.1016/j.fpsl.2022.100884.
  • Zeng, F., Y. Ye, J. Liu, and P. Fei. 2023. Intelligent pH indicator composite film based on pectin/chitosan incorporated with black rice anthocyanins for meat freshness monitoring. Food Chemistry: X 17:100531. doi: 10.1016/j.fochx.2022.100531.
  • Zhai, R., G. Chen, G. Liu, X. Huang, X. Xu, L. Li, Y. Zhang, J. Wang, M. Jin, D. Xu, et al. 2022. Enzyme inhibition methods based on Au nanomaterials for rapid detection of organophosphorus pesticides in agricultural and environmental samples: A review. Journal of Advanced Research 37:61–74. doi: 10.1016/j.jare.2021.08.008.
  • Zhai, X., Z. Li, J. Shi, X. Huang, Z. Sun, D. Zhang, X. Zou, Y. Sun, J. Zhang, M. Holmes, et al. 2019. A colorimetric hydrogen sulfide sensor based on gellan gum-silver nanoparticles bionanocomposite for monitoring of meat spoilage in intelligent packaging. Food Chemistry 290:135–43. doi: 10.1016/j.foodchem.2019.03.138.
  • Zhang, J., X. Huang, J. Zhang, L. Liu, J. Shi, A. Muhammad, X. Zhai, X. Zou, J. Xiao, Z. Li, et al. 2022. Development of nanofiber indicator with high sensitivity for pork preservation and freshness monitoring. Food Chemistry 381:132224. doi: 10.1016/j.foodchem.2022.132224.
  • Zhang, J., X. Huang, X. Zou, J. Shi, X. Zhai, L. Liu, Z. Li, M. Holmes, Y. Gong, M. Povey, et al. 2021. A visual indicator based on curcumin with high stability for monitoring the freshness of freshwater shrimp, Macrobrachium rosenbergii. Journal of Food Engineering 292:110290. doi: 10.1016/j.jfoodeng.2020.110290.
  • Zhang, L., Q. Li, Y. Bao, Y. Tan, R. Lametsch, H. Hong, and Y. Luo. 2022. Recent advances on characterization of protein oxidation in aquatic products: A comprehensive review. Critical Reviews in Food Science and Nutrition 1–20. doi: 10.1080/10408398.2022.2117788.
  • Zhang, X., S. Lu, and X. Chen. 2014. A visual pH sensing film using natural dyes from Bauhinia blakeana Dunn. Sensors and Actuators B: Chemical 198:268–73. doi: 10.1016/j.snb.2014.02.094.
  • Zhou, W., Z. Wu, F. Xie, S. Tang, J. Fang, and X. Wang. 2021. 3D printed nanocellulose-based label for fruit freshness keeping and visual monitoring. Carbohydrate Polymers 273:118545. doi: 10.1016/j.carbpol.2021.118545.
  • Zhu, B., L. Jiang, T. Chen, G. Bao, L. Zeng, X. Hu, and H. Yuan. 2021. A colorimetric and fluorescence lighting-up probe for the determination of biogenic primary diamine during the spoilage of fish. Dyes and Pigments 186:108963. doi: 10.1016/j.dyepig.2020.108963.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.