548
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Progress on molecular modification and functional applications of anthocyanins

, , , , , , , , , & ORCID Icon show all

References

  • Akdemir, H., A. Silva, J. Zha, D. V. Zagorevski, and M. A. G. Koffas. 2019. Production of pyranoanthocyanins using Escherichia coli co-cultures. Metabolic Engineering 55:290–8. doi: 10.1016/j.ymben.2019.05.008.
  • Belwal, T., G. Singh, P. Jeandet, A. Pandey, L. Giri, S. Ramola, I. D. Bhatt, P. R. Venskutonis, M. I. Georgiev, C. Clement, et al. 2020. Anthocyanins, multi-functional natural products of industrial relevance: Recent biotechnological advances. Biotechnology Advances 43:107600. doi: 10.1016/j.biotechadv.2020.107600.
  • Bingol, A., M. Turkyilmaz, and M. Ozkan. 2022. Increase in thermal stability of strawberry anthocyanins with amino acid copigmentation. Food Chemistry 384:132518. doi: 10.1016/j.foodchem.2022.132518.
  • Cahyana, Y., and M. H. Gordon. 2013. Interaction of anthocyanins with human serum albumin: Influence of pH and chemical structure on binding. Food Chemistry 141 (3):2278–85. doi: 10.1016/j.foodchem.2013.05.026.
  • Cai, D., X. Li, J. Chen, X. Jiang, X. Ma, J. Sun, L. Tian, S. K. Vidyarthi, J. Xu, Z. Pan, et al. 2022. A comprehensive review on innovative and advanced stabilization approaches of anthocyanin by modifying structure and controlling environmental factors. Food Chemistry 366:130611. doi: 10.1016/j.foodchem.2021.130611.
  • Cai, J., F. Zeng, S. Zheng, X. Huang, J. Zhang, P. Zhang, and P. Fei. 2020. Preparation of lipid-soluble bilberry anthocyanins through acylation with cinnamic acids and their antioxidation activities. Journal of Agricultural and Food Chemistry 68 (28):7467–73. doi: 10.1021/acs.jafc.0c01912.
  • Castellanos-Gallo, L., L. Ballinas-Casarrubias, J. C. Espinoza-Hicks, L. R. Hernández-Ochoa, L. N. Muñoz-Castellanos, M. R. Zermeño-Ortega, A. Borrego-Loya, and E. Salas. 2022. Grape pomace valorization by extraction of phenolic polymeric pigments: A review. Processes 10 (3):469. doi: 10.3390/pr10030469.
  • Chatham, L. A., J. E. Howard, and J. A. Juvik. 2020. A natural colorant system from corn: Flavone-anthocyanin copigmentation for altered hues and improved shelf life. Food Chemistry 310:125734. doi: 10.1016/j.foodchem.2019.125734.
  • Chen, H.-Z., M. Zhang, B. Bhandari, and Z. Guo. 2018. Applicability of a colorimetric indicator label for monitoring freshness of fresh-cut green bell pepper. Postharvest Biology and Technology 140:85–92. doi: 10.1016/j.postharvbio.2018.02.011.
  • Cruz, L., M. Benohoud, C. M. Rayner, N. Mateus, V. de Freitas, and R. S. Blackburn. 2018. Selective enzymatic lipophilization of anthocyanin glucosides from blackcurrant (Ribes nigrum L.) skin extract and characterization of esterified anthocyanins. Food Chemistry 266:415–9. doi: 10.1016/j.foodchem.2018.06.024.
  • Cruz, L., I. Fernandes, M. Guimaraes, V. de Freitas, and N. Mateus. 2016. Enzymatic synthesis, structural characterization and antioxidant capacity assessment of a new lipophilic malvidin-3-glucoside-oleic acid conjugate. Food & Function 7 (6):2754–62. doi: 10.1039/c6fo00466k.
  • Cruz, L., V. C. Fernandes, P. Araujo, N. Mateus, and V. de Freitas. 2015. Synthesis, characterisation and antioxidant features of procyanidin B4 and malvidin-3-glucoside stearic acid derivatives. Food Chemistry 174:480–6. doi: 10.1016/j.foodchem.2014.11.062.
  • Cruz, L., M. Guimaraes, P. Araujo, A. Evora, V. de Freitas, and N. Mateus. 2017. Malvidin 3-glucoside-fatty acid conjugates: From hydrophilic toward novel lipophilic derivatives. Journal of Agricultural and Food Chemistry 65 (31):6513–8. doi: 10.1021/acs.jafc.6b05461.
  • da Silva, C. P., R. M. Pioli, L. Liu, S. Zheng, M. Zhang, G. T. M. Silva, V. M. T. Carneiro, and F. H. Quina. 2018. Improved synthesis of analogues of red wine pyranoanthocyanin pigments. ACS Omega 3 (1):954–60. doi: 10.1021/acsomega.7b01955.
  • de Aguiar Cipriano, P., H. Kim, C. Fang, V. Paula Venancio, S. U. Mertens-Talcott, and S. T. Talcott. 2022. In vitro digestion, absorption and biological activities of acylated anthocyanins from purple sweet potatoes (Ipomoea batatas). Food Chemistry 374:131076. doi: 10.1016/j.foodchem.2021.131076.
  • Denish, P. R., J. A. Fenger, R. Powers, G. T. Sigurdson, L. Grisanti, K. G. Guggenheim, S. Laporte, J. Li, T. Kondo, A. Magistrato, et al. 2021. Discovery of a natural cyan blue: A unique food-sourced anthocyanin could replace synthetic brilliant blue. Science Advances 7: Eabe7871. doi: 10.1126/sciadv.abe7871.
  • Eghbaliferiz, S., and M. Iranshahi. 2016. Prooxidant activity of polyphenols, flavonoids, anthocyanins and carotenoids: Updated review of mechanisms and catalyzing metals. Phytotherapy Research : PTR 30 (9):1379–91. doi: 10.1002/ptr.5643.
  • Ehsani, N., H. Rostamabadi, S. Dadashi, B. Ghanbarzadeh, M. S. Kharazmi, and S. M. Jafari. 2022. Electrospun nanofibers fabricated by natural biopolymers for intelligent food packaging. Critical Reviews in Food Science and Nutrition :1–23. doi: 10.1080/10408398.2022.2147900.
  • Fan, L., Y. Wang, P. Xie, L. Zhang, Y. Li, and J. Zhou. 2019. Copigmentation effects of phenolics on color enhancement and stability of blackberry wine residue anthocyanins: Chromaticity, kinetics and structural simulation. Food Chemistry 275:299–308. doi: 10.1016/j.foodchem.2018.09.103.
  • Fanzone, M., S. Gonzalez-Manzano, J. Perez-Alonso, M. T. Escribano-Bailon, V. Jofre, M. Assof, and C. Santos-Buelga. 2015. Evaluation of dihydroquercetin-3-O-glucoside from Malbec grapes as copigment of malvidin-3-O-glucoside. Food Chemistry 175:166–73. doi: 10.1016/j.foodchem.2014.11.123.
  • Farhadi Chitgar, M., M. Aalami, R. Kadkhodaee, Y. Maghsoudlou, and E. Milani. 2018. Effect of thermosonication and thermal treatments on phytochemical stability of barberry juice copigmented with ferulic acid and licorice extract. Innovative Food Science & Emerging Technologies 50:102–11. doi: 10.1016/j.ifset.2018.09.004.
  • Farr, J. E., G. T. Sigurdson, and M. M. Giusti. 2018. Influence of cyanidin glycosylation patterns on carboxypyranoanthocyanin formation. Food Chemistry 259:261–9. doi: 10.1016/j.foodchem.2018.03.117.
  • Fei, P., F. Zeng, S. Zheng, Q. Chen, Y. Hu, and J. Cai. 2021. Acylation of blueberry anthocyanins with maleic acid: Improvement of the stability and its application potential in intelligent color indicator packing materials. Dyes and Pigments 184:108852. doi: 10.1016/j.dyepig.2020.108852.
  • Fenger, J. A., M. Moloney, R. J. Robbins, T. M. Collins, and O. Dangles. 2019. The influence of acylation, metal binding and natural antioxidants on the thermal stability of red cabbage anthocyanins in neutral solution. Food & Function 10 (10):6740–51. doi: 10.1039/c9fo01884k.
  • Fenger, J. A., G. T. Sigurdson, R. J. Robbins, T. M. Collins, M. M. Giusti, and O. Dangles. 2021. Acylated anthocyanins from red cabbage and purple sweet potato can bind metal ions and produce stable blue colors. International Journal of Molecular Sciences 22:4551. doi: 10.3390/ijms22094551.
  • Fenger, J.-A., R. J. Robbins, T. M. Collins, and O. Dangles. 2020. The fate of acylated anthocyanins in mildly heated neutral solution. Dyes and Pigments 178:108326. doi: 10.1016/j.dyepig.2020.108326.
  • Fernandez-Aulis, F., A. Torres, E. Sanchez-Mendoza, L. Cruz, and A. Navarro-Ocana. 2020. New acylated cyanidin glycosides extracted from underutilized potential sources: Enzymatic synthesis, antioxidant activity and thermostability. Food Chemistry 309:125796. doi: 10.1016/j.foodchem.2019.125796.
  • Garcia-Estevez, I., L. Cruz, J. Oliveira, N. Mateus, V. de Freitas, and S. Soares. 2017. First evidences of interaction between pyranoanthocyanins and salivary proline-rich proteins. Food Chemistry 228:574–81. doi: 10.1016/j.foodchem.2017.02.030.
  • Giordano, D., S. Provenzano, A. Ferrandino, M. Vitali, C. Pagliarani, F. Roman, F. Cardinale, S. D. Castellarin, and A. Schubert. 2016. Characterization of a multifunctional caffeoyl-CoA O-methyltransferase activated in grape berries upon drought stress. Plant Physiology and Biochemistry : PPB 101:23–32. doi: 10.1016/j.plaphy.2016.01.015.
  • Gowd, V., Z. Jia, and W. Chen. 2017. Anthocyanins as promising molecules and dietary bioactive components against diabetes – A review of recent advances. Trends in Food Science & Technology 68:1–13. doi: 10.1016/j.tifs.2017.07.015.
  • Guimaraes, M., N. Mateus, V. de Freitas, L. C. Branco, and L. Cruz. 2020. Microwave-assisted synthesis and ionic liquids: Green and sustainable alternatives toward enzymatic lipophilization of anthocyanin monoglucosides. Journal of Agricultural and Food Chemistry 68 (28):7387–92. doi: 10.1021/acs.jafc.0c02599.
  • Guimaraes, M., N. Mateus, V. de Freitas, and L. Cruz. 2018. Improvement of the color stability of cyanidin-3-glucoside by fatty acid enzymatic acylation. Journal of Agricultural and Food Chemistry 66 (38):10003–10. doi: 10.1021/acs.jafc.8b03536.
  • Hahm, T. H., M. Tanaka, H. N. Nguyen, A. Tsutsumi, K. Aizawa, and T. Matsui. 2021. Matrix-assisted laser desorption/ionization mass spectrometry-guided visualization analysis of intestinal absorption of acylated anthocyanins in Sprague-Dawley rats. Food Chemistry 334:127586. doi: 10.1016/j.foodchem.2020.127586.
  • He, F., N. N. Liang, L. Mu, Q. H. Pan, J. Wang, M. J. Reeves, and C. Q. Duan. 2012. Anthocyanins and their variation in red wines I. Monomeric anthocyanins and their color expression. Molecules 17 (2):1571–601. doi: 10.3390/molecules17021571.
  • He, Y., L. Wen, H. Yu, F. Zheng, Z. Wang, X. Xu, H. Zhang, Y. Cao, B. Wang, B. Chu, et al. 2018. Effects of high hydrostatic pressure-assisted organic acids on the copigmentation of Vitis amurensis Rupr anthocyanins. Food Chemistry 268:15–26. doi: 10.1016/j.foodchem.2018.06.052.
  • Heras-Roger, J., C. Diaz-Romero, and J. Darias-Martin. 2016. What gives a wine its strong red color? Main correlations affecting copigmentation. Journal of Agricultural and Food Chemistry 64 (34):6567–74. doi: 10.1021/acs.jafc.6b02221.
  • Huang, D., N. Z. Teo, J. Gao, X. Jin, and W. Zhou. 2022. Characteristics of anthocyanins in fortified cakes: A promising potent inhibitor of sucrase, α-glucosidase and lipase. International Journal of Food Science & Technology 57 (6):3804–15. doi: 10.1111/ijfs.15709.
  • Huang, Y., S. Zhou, G. Zhao, and F. Ye. 2021. Destabilisation and stabilisation of anthocyanins in purple-fleshed sweet potatoes: A review. Trends in Food Science & Technology 116:1141–54. doi: 10.1016/j.tifs.2021.09.013.
  • Jang, H. H., H. W. Kim, S. Y. Kim, S. M. Kim, J. B. Kim, and Y. M. Lee. 2019. In vitro and in vivo hypoglycemic effects of cyanidin 3-caffeoyl-p-hydroxybenzoylsophoroside-5-glucoside, an anthocyanin isolated from purple-fleshed sweet potato. Food Chemistry 272:688–93. doi: 10.1016/j.foodchem.2018.08.010.
  • Jing, N., J. Song, Z. Liu, L. Wang, and G. Jiang. 2020. Glycosylation of anthocyanins enhances the apoptosis of colon cancer cells by handicapping energy metabolism. BMC Complementary Medicine and Therapies 20 (1):312. doi: 10.1186/s12906-020-03096-y.
  • Jing, P., B. Qian, S. Zhao, X. Qi, L. Ye, M. Monica Giusti, and X. Wang. 2015. Effect of glycosylation patterns of Chinese eggplant anthocyanins and other derivatives on antioxidant effectiveness in human colon cell lines. Food Chemistry 172:183–9. doi: 10.1016/j.foodchem.2014.08.100.
  • Jokioja, J., B. Yang, and K. M. Linderborg. 2021. Acylated anthocyanins: A review on their bioavailability and effects on postprandial carbohydrate metabolism and inflammation. Comprehensive Reviews in Food Science and Food Safety 20 (6):5570–615. doi: 10.1111/1541-4337.12836.
  • Jung, J., C. Y. Lin, and Y. Zhao. 2022. Enhancing anthocyanin-phenolic copigmentation through epicarp layer treatment and edible coatings to retain anthocyanins in thermally processed whole blueberries. Journal of Food Science 87 (9):3809–21. doi: 10.1111/1750-3841.16269.
  • Klisurova, D., I. Petrova, M. Ognyanov, Y. Georgiev, M. Kratchanova, and P. Denev. 2019. Co-pigmentation of black chokeberry (Aronia melanocarpa) anthocyanins with phenolic co-pigments and herbal extracts. Food Chemistry 279:162–70. doi: 10.1016/j.foodchem.2018.11.125.
  • Leonarski, E., K. Cesca, D. de Oliveira, and A. A. F. Zielinski. 2022. A review on enzymatic acylation as a promising opportunity to stabilizing anthocyanins. Critical Reviews in Food Science and Nutrition :1–20. doi: 10.1080/10408398.2022.2041541.
  • Lila, M. A., B. Burton-Freeman, M. Grace, and W. Kalt. 2016. Unraveling anthocyanin bioavailability for human health. Annual Review of Food Science and Technology 7:375–93. doi: 10.1146/annurev-food-041715-033346.
  • Liu, J., Y. Zhuang, Y. Hu, S. Xue, H. Li, L. Chen, and P. Fei. 2020. Improving the color stability and antioxidation activity of blueberry anthocyanins by enzymatic acylation with p-coumaric acid and caffeic acid. Lwt 130:109673. doi: 10.1016/j.lwt.2020.109673.
  • Luo, S.-Z., S.-S. Chen, L.-H. Pan, X.-S. Qin, Z. Zheng, Y.-Y. Zhao, M. Pang, and S.-T. Jiang. 2017. Antioxidative capacity of crude camellia seed oil: Impact of lipophilization products of blueberry anthocyanin. International Journal of Food Properties 20:1–10. doi: 10.1080/10942912.2017.1350974.
  • Luo, X., R. Wang, J. Wang, Y. Li, H. Luo, S. Chen, X. Zeng, and Z. Han. 2022. Acylation of anthocyanins and their applications in the food industry: Mechanisms and recent research advances. Foods 11:2166. doi: 10.3390/foods11142166.
  • Lv, X., L. Li, X. Lu, W. Wang, J. Sun, Y. Liu, J. Mu, Q. Ma, and J. Wang. 2022. Effects of organic acids on color intensification, thermodynamics, and copigmentation interactions with anthocyanins. Food Chemistry 396:133691. doi: 10.1016/j.foodchem.2022.133691.
  • Malaj, N., B. C. De Simone, A. D. Quartarolo, and N. Russo. 2013. Spectrophotometric study of the copigmentation of malvidin 3-O-glucoside with p-coumaric, vanillic and syringic acids. Food Chemistry 141 (4):3614–20. doi: 10.1016/j.foodchem.2013.06.017.
  • Marathe, S. J., N. N. Shah, S. R. Bajaj, and R. S. Singhal. 2021. Esterification of anthocyanins isolated from floral waste: Characterization of the esters and their application in various food systems. Food Bioscience 40:100852. doi: 10.1016/j.fbio.2020.100852.
  • Martins, N., C. Lobo Roriz, P. Morales, L. Barros, and I. C. F. R. Ferreira. 2016. Food colorants: Challenges, opportunities and current desires of agro-industries to ensure consumer expectations and regulatory practices. Trends in Food Science & Technology 52:1–15. doi: 10.1016/j.tifs.2016.03.009.
  • Mirza Alizadeh, A., M. Masoomian, M. Shakooie, M. Zabihzadeh Khajavi, and M. Farhoodi. 2022. Trends and applications of intelligent packaging in dairy products: A review. Critical Reviews in Food Science and Nutrition 62 (2):383–97. doi: 10.1080/10408398.2020.1817847.
  • Moazami Goodarzi, M., M. Moradi, H. Tajik, M. Forough, P. Ezati, and B. Kuswandi. 2020. Development of an easy-to-use colorimetric pH label with starch and carrot anthocyanins for milk shelf life assessment. International Journal of Biological Macromolecules 153:240–7. doi: 10.1016/j.ijbiomac.2020.03.014.
  • Molaeafard, S., R. Jamei, and A. Poursattar Marjani. 2021. Co-pigmentation of anthocyanins extracted from sour cherry (Prunus cerasus L.) with some organic acids: Color intensity, thermal stability, and thermodynamic parameters. Food Chemistry 339:128070. doi: 10.1016/j.foodchem.2020.128070.
  • Moloney, M., R. J. Robbins, T. M. Collins, T. Kondo, K. Yoshida, and O. Dangles. 2018. Red cabbage anthocyanins: The influence of d-glucose acylation by hydroxycinnamic acids on their structural transformations in acidic to mildly alkaline conditions and on the resulting color. Dyes and Pigments 158:342–52. doi: 10.1016/j.dyepig.2018.05.057.
  • Prietto, L., T. Correa Mirapalhete, V. Z. Pinto, J. F. Hoffmann, N. L. Vanier, L.-T. Lim, A. R. Guerra Dias, and E. da Rosa Zavareze. 2017. pH-sensitive films containing anthocyanins extracted from black bean seed coat and red cabbage. Lwt 80:492–500. doi: 10.1016/j.lwt.2017.03.006.
  • Reis, F., F. Alcaire, R. Deliza, and G. Ares. 2017. The role of information on consumer sensory, hedonic and wellbeing perception of sugar-reduced products: Case study with orange/pomegranate juice. Food Quality and Preference 62:227–36. doi: 10.1016/j.foodqual.2017.06.005.
  • Rodriguez-Amaya, D. B. 2019. Update on natural food pigments – A mini-review on carotenoids, anthocyanins, and betalains. Food Research International 124:200–5. doi: 10.1016/j.foodres.2018.05.028.
  • Sari, F. 2016. The copigmentation effect of different phenolic acids on Berberis crataegina anthocyanins. Journal of Food Processing and Preservation 40 (3):422–30. doi: 10.1111/jfpp.12619.
  • Sigurdson, G. T., and M. M. Giusti. 2014. Bathochromic and hyperchromic effects of aluminum salt complexation by anthocyanins from edible sources for blue color development. Journal of Agricultural and Food Chemistry 62 (29):6955–65. doi: 10.1021/jf405145r.
  • Sigurdson, G. T., R. J. Robbins, T. M. Collins, and M. M. Giusti. 2017. Effects of hydroxycinnamic acids on blue color expression of cyanidin derivatives and their metal chelates. Food Chemistry 234:131–8. doi: 10.1016/j.foodchem.2017.04.127.
  • Skates, E., J. Overall, K. DeZego, M. Wilson, D. Esposito, M. A. Lila, and S. Komarnytsky. 2018. Berries containing anthocyanins with enhanced methylation profiles are more effective at ameliorating high fat diet-induced metabolic damage. Food and Chemical Toxicology 111:445–53. doi: 10.1016/j.fct.2017.11.032.
  • Straathof, N., and M. M. Giusti. 2020. Improvement of naturally derived food colorant performance with efficient pyranoanthocyanin formation from Sambucus nigra anthocyanins using caffeic acid and heat. Molecules 25:5998. doi: 10.3390/molecules25245998.
  • Strassmann, S., T. Brehmer, M. Passon, and A. Schieber. 2021. Methylation of cyanidin-3-O-glucoside with dimethyl carbonate. Molecules 26:1342. doi: 10.3390/molecules26051342.
  • Sun, J., X. Li, H. Luo, L. Ding, X. Jiang, X. Li, R. Jiao, and W. Bai. 2020. Comparative study on the stability and antioxidant activity of six pyranoanthocyanins based on malvidin-3-glucoside. Journal of Agricultural and Food Chemistry 68 (9):2783–94. doi: 10.1021/acs.jafc.9b06734.
  • Tachibana, N., Y. Kimura, and T. Ohno. 2014. Examination of molecular mechanism for the enhanced thermal stability of anthocyanins by metal cations and polysaccharides. Food Chemistry 143:452–8. doi: 10.1016/j.foodchem.2013.08.017.
  • Tan, C., G. B. Celli, M. J. Selig, and A. Abbaspourrad. 2018. Catechin modulates the copigmentation and encapsulation of anthocyanins in polyelectrolyte complexes (PECs) for natural colorant stabilization. Food Chemistry 264:342–9. doi: 10.1016/j.foodchem.2018.05.018.
  • Tan, C., G. B. Celli, and A. Abbaspourrad. 2018. Copigment-polyelectrolyte complexes (PECs) composite systems for anthocyanin stabilization. Food Hydrocolloids. 81:371–9. doi: 10.1016/j.foodhyd.2018.03.011.
  • Teixeira, N., L. Cruz, N. F. Bras, N. Mateus, M. J. Ramos, and V. de Freitas. 2013. Structural features of copigmentation of oenin with different polyphenol copigments. Journal of Agricultural and Food Chemistry 61 (28):6942–8. doi: 10.1021/jf401174b.
  • Teng, H., Y. Mi, H. Cao, and L. Chen. 2022. Enzymatic acylation of raspberry anthocyanin: Evaluations on its stability and oxidative stress prevention. Food Chemistry 372:130766. doi: 10.1016/j.foodchem.2021.130766.
  • Trouillas, P., J. C. Sancho-Garcia, V. De Freitas, J. Gierschner, M. Otyepka, and O. Dangles. 2016. Stabilizing and modulating color by copigmentation: Insights from theory and experiment. Chemical Reviews 116 (9):4937–82. doi: 10.1021/acs.chemrev.5b00507.
  • Tsutsumi, A., Y. Horikoshi, T. Fushimi, A. Saito, R. Koizumi, Y. Fujii, Q. Q. Hu, Y. Hirota, K. Aizawa, and N. Osakabe. 2019. Acylated anthocyanins derived from purple carrot (Daucus carota L.) induce elevation of blood flow in rat cremaster arteriole. Food & Function 10 (3):1726–35. doi: 10.1039/C8FO02125B.
  • Türkyılmaz, M., F. Hamzaoğlu, and M. Özkan. 2019. Effects of sucrose and copigment sources on the major anthocyanins isolated from sour cherries. Food Chemistry 281:242–50. doi: 10.1016/j.foodchem.2018.12.089.
  • Türkyılmaz, M., F. Hamzaoğlu, H. Ünal, and M. Özkan. 2022. Influence of amino acid addition on the thermal stability of anthocyanins in pomegranate (Punica granatum L., cv. Hicaznar) and orange (Citrus sinensis L. Osbeck, cv. Valencia) juice blend. Food Chemistry 370:131061. doi: 10.1016/j.foodchem.2021.131061.
  • Wang, P., J. Liu, Y. Zhuang, and P. Fei. 2022. Acylating blueberry anthocyanins with fatty acids: Improvement of their lipid solubility and antioxidant activities. Food Chemistry: X 15:100420. doi: 10.1016/j.fochx.2022.100420.
  • Wang, R., I. Khalifa, X. Du, K. Li, Y. Xu, and C. Li. 2021. Effects of anthocyanins on β-lactoglobulin glycoxidation: A study of mechanisms and structure–activity relationship. Food & Function 12 (21):10550–62. doi: 10.1039/D1FO01665B.
  • Weber, F., K. Boch, and A. Schieber. 2017. Influence of copigmentation on the stability of spray dried anthocyanins from blackberry. Lwt 75:72–7. doi: 10.1016/j.lwt.2016.08.042.
  • Wen, Y., J. Liu, L. Jiang, Z. Zhu, S. He, S. He, and W. Shao. 2021. Development of intelligent/active food packaging film based on TEMPO-oxidized bacterial cellulose containing thymol and anthocyanin-rich purple potato extract for shelf life extension of shrimp. Food Packaging and Shelf Life 29:100709. doi: 10.1016/j.fpsl.2021.100709.
  • Xie, J., X. Hao, Y. Shang, and W. Chen. 2022. Improvement of stability and lipophilicity of pelargonidin-3-glucoside by enzymatic acylation with aliphatic dicarboxylic acid. Food Chemistry 389:133077. doi: 10.1016/j.foodchem.2022.133077.
  • Xie, S., Y. Liu, H. Chen, Z. Zhang, and M. Ge. 2021. Anthocyanin degradation and the underlying molecular mechanism in a red-fleshed grape variety. Lwt 151:112198. doi: 10.1016/j.lwt.2021.112198.
  • Xu, H., X. Liu, Q. Yan, F. Yuan, and Y. Gao. 2015. A novel copigment of quercetagetin for stabilization of grape skin anthocyanins. Food Chemistry 166:50–5. doi: 10.1016/j.foodchem.2014.05.125.
  • Xue, J., F. Su, Y. Meng, and Y. Guo. 2019. Enhanced stability of red-fleshed apple anthocyanins by copigmentation and encapsulation. Journal of the Science of Food and Agriculture 99 (7):3381–90. doi: 10.1002/jsfa.9555.
  • Yan, Z., C. Li, L. Zhang, Q. Liu, S. Ou, and X. Zeng. 2016. Enzymatic acylation of anthocyanin isolated from black rice with methyl aromatic acid ester as donor: Stability of the acylated derivatives. Journal of Agricultural and Food Chemistry 64 (5):1137–43. doi: 10.1021/acs.jafc.5b05031.
  • Yang, W., M. Kortesniemi, X. Ma, J. Zheng, and B. Yang. 2019. Enzymatic acylation of blackcurrant (Ribes nigrum) anthocyanins and evaluation of lipophilic properties and antioxidant capacity of derivatives. Food Chemistry 281:189–96. doi: 10.1016/j.foodchem.2018.12.111.
  • Yang, W., M. Kortesniemi, B. Yang, and J. Zheng. 2018. Enzymatic acylation of anthocyanins isolated from alpine bearberry (Arctostaphylos alpina) and lipophilic properties, thermostability, and antioxidant capacity of the derivatives. Journal of Agricultural and Food Chemistry 66 (11):2909–16. doi: 10.1021/acs.jafc.7b05924.
  • Yang, X., H. Sun, L. Tu, Y. Jin, M. Wang, S. Liu, Z. Zhang, and S. He. 2020. Investigation of acute, subacute and subchronic toxicities of anthocyanin derived acylation reaction products and evaluation of their antioxidant activities in vitro. Food & Function 11 (12):10954–67. doi: 10.1039/d0fo01478h.
  • Yang, Y., J. L. Zhang, L. H. Shen, L. J. Feng, and Q. Zhou. 2021. Inhibition mechanism of diacylated anthocyanins from purple sweet potato (Ipomoea batatas L.) against alpha-amylase and alpha-glucosidase. Food Chemistry 359:129934. doi: 10.1016/j.foodchem.2021.129934.
  • Yildiz, E., G. Sumnu, and L. N. Kahyaoglu. 2021. Monitoring freshness of chicken breast by using natural halochromic curcumin loaded chitosan/PEO nanofibers as an intelligent package. International Journal of Biological Macromolecules 170:437–46. doi: 10.1016/j.ijbiomac.2020.12.160.
  • Yong, H., and J. Liu. 2020. Recent advances in the preparation, physical and functional properties, and applications of anthocyanins-based active and intelligent packaging films. Food Packaging and Shelf Life 26:100550. doi: 10.1016/j.fpsl.2020.100550.
  • Yoshida, K., M. Mori, and T. Kondo. 2009. Blue flower color development by anthocyanins: From chemical structure to cell physiology. Natural Product Reports 26 (7):884–915. doi: 10.1039/b800165k.
  • Yousuf, B., K. Gul, A. A. Wani, and P. Singh. 2016. Health benefits of anthocyanins and their encapsulation for potential use in food systems: A review. Critical Reviews in Food Science and Nutrition 56 (13):2223–30. doi: 10.1080/10408398.2013.805316.
  • Zeng, F., H. Zeng, Y. Ye, S. Zheng, Y. Zhuang, J. Liu, and P. Fei. 2021. Preparation of acylated blueberry anthocyanins through an enzymatic method in an aqueous/organic phase: Effects on their colour stability and pH-response characteristics. Food & Function 12 (15):6821–9. doi: 10.1039/d1fo00400j.
  • Zhang, Z. C., Q. Zhou, Y. Yang, Y. Wang, and J. L. Zhang. 2019. Highly acylated anthocyanins from purple sweet potato (Ipomoea batatas L.) alleviate hyperuricemia and kidney inflammation in hyperuricemic mice: Possible attenuation effects on allopurinol. Journal of Agricultural and Food Chemistry 67 (22):6202–11. doi: 10.1021/acs.jafc.9b01810.
  • Zhao, C. L., Y. Q. Yu, Z. J. Chen, G. S. Wen, F. G. Wei, Q. Zheng, C. D. Wang, and X. L. Xiao. 2017. Stability-increasing effects of anthocyanin glycosyl acylation. Food Chemistry 214:119–28. doi: 10.1016/j.foodchem.2016.07.073.
  • Zhao, C. L., Z. J. Chen, X. S. Bai, C. Ding, T. J. Long, F. G. Wei, and K. R. Miao. 2014. Structure–activity relationships of anthocyanidin glycosylation. Molecular Diversity 18 (3):687–700. doi: 10.1007/s11030-014-9520-z.
  • Zhao, L.-Y., J. Chen, Z.-Q. Wang, R.-M. Shen, N. Cui, and A.-D. Sun. 2016. Direct acylation of cyanidin-3-glucoside with lauric acid in blueberry and its stability analysis. International Journal of Food Properties 19 (1):1–12. doi: 10.1080/10942912.2015.1016577.
  • Zhao, X., B. W. Ding, J. W. Qin, F. He, and C. Q. Duan. 2020. Intermolecular copigmentation between five common 3-O-monoglucosidic anthocyanins and three phenolics in red wine model solutions: The influence of substituent pattern of anthocyanin B ring. Food Chemistry 326:126960. doi: 10.1016/j.foodchem.2020.126960.
  • Zhao, X., X. M. He, F. Liu, C. Q. Duan, and F. He. 2022. Intramolecular copigmentation in malvidin-3-O-(6-O-p-coumaryl)-glucoside: Insights from experimental and theoretical study. Food Chemistry 391:133255. doi: 10.1016/j.foodchem.2022.133255.
  • Zhao, X., X. Zhang, X. He, C. Duan, and F. He. 2021. Acetylation of malvidin-3-O-glucoside Impedes intermolecular copigmentation: Experimental and theoretical investigations. Journal of Agricultural and Food Chemistry 69 (27):7733–41. doi: 10.1021/acs.jafc.1c02378.
  • Zhu, X., and M. M. Giusti. 2021. Pyranoanthocyanin formation rates and yields as affected by cyanidin-3-substitutions and pyruvic or caffeic acids. Food Chemistry 345:128776. doi: 10.1016/j.foodchem.2020.128776.
  • Zhu, Y., H. Chen, L. Lou, Y. Chen, X. Ye, and J. Chen. 2020. Copigmentation effect of three phenolic acids on color and thermal stability of Chinese bayberry anthocyanins. Food Science & Nutrition 8 (7):3234–42. doi: 10.1002/fsn3.1583.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.