927
Views
0
CrossRef citations to date
0
Altmetric
Review

3D printing technology for prepared dishes: printing characteristics, applications, challenges and prospects

, , &

References

  • Abea, A., P. Gou, M. D. Guardia, P. Picouet, M. Kravets, S. Banon, and I. Munoz. 2022. Dielectric heating: A review of liquid foods processing applications. Food Reviews International doi:10.1080/87559129.2022.2092746.
  • Adedeji, O. E., H. E. Lee, Y. Kim, H. J. Kang, M. D. Kang, J. Y. Kim, J. S. Kim, O. O. Ezekiel, W.-C. Kim, S.-J. Lee, et al. 2022. Three-dimensional printing of wheat flour and Acheta domesticus powder blends. International Journal of Food Science & Technology 57 (10):6279. doi:10.1111/ijfs.15707.
  • Ahmed, J., M. Mulla, A. Joseph, M. Ejaz, and M. Maniruzzaman. 2020. Zinc oxide/clove essential oil incorporated type B gelatin nanocomposite formulations: A proof-of-concept study for 3D printing applications. Food Hydrocolloids. 98. doi:10.1016/j.foodhyd.2019.105256.
  • Barekat, S., and N. Soltanizadeh. 2017. Improvement of meat tenderness by simultaneous application of high-intensity ultrasonic radiation and papain treatment. Innovative Food Science & Emerging Technologies 39:223–229. doi:10.1016/j.ifset.2016.12.009.
  • Ben-Yacov, O., A. Godneva, and E. Segal. 2020. Personalized nutrition for prediabetes by prediction of glycemic responses. Diabetes 69 (Supplement_1):230-OR. doi:10.2337/db20-230-OR.
  • Benito, S., A. Lopez, X. Lizana, S. Lope, R. Carbo, L. J. Del Valle, A. M. Marques, and N. Pique. 2017. Presence of listeria monocytogenes in prepared foods: analysis of influencing factors. Journal of Food Processing and Preservation 41 (2):e12842. doi:10.1111/jfpp.12842.
  • Blutinger, J. D., Y. Meijers, and H. Lipson. 2019. Selective laser broiling of Atlantic salmon. Food Research International 120:196–208. doi:10.1016/j.foodres.2019.02.043.
  • Blutinger, J. D., A. Tsai, E. Storvick, G. Seymour, E. Liu, N. Samarelli, S. Karthik, Y. Meijers, and H. Lipson. 2021. Precision cooking for printed foods via multiwavelength lasers. NPJ Science of Food 5 (1):24. doi:10.1038/s41538-021-00107-1.
  • Blutinger, J. D., C. C. Cooper, S. Karthik, A. Tsai, N. Samarelli, E. Storvick, G. Seymour, E. Liu, Y. Meijers, and H. Lipson. 2023. The future of software-controlled cooking. NPJ Science of Food 7 (1):6. doi:10.1038/s41538-023-00182-6.
  • Cao, Y., L. Zhao, Q. Huang, S. Xiong, T. Yin, and Z. Liu. 2022. Water migration, ice crystal formation, and freeze-thaw stability of silver carp surimi as affected by inulin under different additive amounts and polymerization degrees. Food Hydrocolloids. 124:107267. doi:10.1016/j.foodhyd.2021.107267.
  • Carvajal-Mena, N., G. Tabilo-Munizaga, M. Perez-Won, and R. Lemus-Mondaca. 2022. Valorization of salmon industry by-products: Evaluation of salmon skin gelatin as a biomaterial suitable for 3D food printing. LWT 155:112931. doi:10.1016/j.lwt.2021.112931.
  • Chen, H., F. Xie, L. Chen, and B. Zheng. 2019. Effect of rheological properties of potato, rice and corn starches on their hot-extrusion 3D printing behaviors. Journal of Food Engineering 244:150–8. doi:10.1016/j.jfoodeng.2018.09.011.
  • Chen, J., Q. Zhao, G. Wu, X. Su, W. Chen, and G. Du. 2022. Design and Analysis of a 5-Degree of Freedom (DOF) Hybrid Three-Nozzle 3D Printer for Wood Fiber Gel Material. Coatings 12 (8):1061. doi:10.3390/coatings12081061.
  • Chen, Y., M. Zhang, and B. Bhandari. 2021. 3D Printing of Steak-like Foods Based on Textured Soybean Protein. Foods 10:2011. doi:10.3390/foods10092011.
  • Dankar, I., A. Haddarah, F. E. L. Omar, F. Sepulcre, and M. Pujola. 2018. 3D printing technology: The new era for food customization and elaboration. Trends in Food Science & Technology 75:231–42. doi:10.1016/j.tifs.2018.03.018.
  • Derossi, A., R. Caporizzi, D. Azzollini, and C. Severini. 2018. Application of 3D printing for customized food. A case on the development of a fruit-based snack for children. Journal of Food Engineering 220:65–75. doi:10.1016/j.jfoodeng.2017.05.015.
  • Dianez, I., C. Gallegos, E. Brito-de la Fuente, I. Martinez, C. Valencia, M. C. Sanchez, M. J. Diaz, and J. M. Franco. 2019. 3D printing in situ gelification of kappa-carrageenan solutions: Effect of printing variables on the rheological response. Food Hydrocolloids. 87:321–30. doi:10.1016/j.foodhyd.2018.08.010.
  • Dick, A., B. Bhandari, X. Dong, and S. Prakash. 2020. Feasibility study of hydrocolloid incorporated 3D printed pork as dysphagia food. Food Hydrocolloids. 107:105940. doi:10.1016/j.foodhyd.2020.105940.
  • Dick, A., B. Bhandari, and S. Prakash. 2019. 3D printing of meat. Meat Science 153:35–44. doi:10.1016/j.meatsci.2019.03.005.
  • Dick, A., B. Bhandari, and S. Prakash. 2021. Effect of reheating method on the post-processing characterisation of 3D printed meat products for dysphagia patients. LWT 150:111915. doi:10.1016/j.lwt.2021.111915.
  • Dong, X., Y. Pan, W. Zhao, Y. Huang, W. Qu, J. Pan, H. Qi, and S. Prakash. 2020. Impact of microbial transglutaminase on 3D printing quality of Scomberomorus niphonius surimi. LWT 124:109123. doi:10.1016/j.lwt.2020.109123.
  • Du, X., P. Chang, J. Tian, B. Kong, F. Sun, and X. Xia. 2020. Effect of ice structuring protein on the quality, thermal stability and oxidation of mirror carp (Cyprinus carpio L.) induced by freeze-thaw cycles. LWT 124:109140. doi:10.1016/j.lwt.2020.109140.
  • Durai Raj Vincent, P.M., S.S., Manivannan, Thamarai, Nivetha, (2018) Calorie measurement: predicting the nutrient content of food using image analysis. Research Journal of Pharmacy and Technology, 11:959–63
  • Feng, C. Y., M. Zhang, B. Bhandari, and Y. F. Ye. 2020. Use of potato processing by-product: Effects on the 3D printing characteristics of the yam and the texture of air-fried yam snacks. LWT 125:109265. doi:10.1016/j.lwt.2020.109265.
  • Gunduz, I. E., M. S. McClain, P. Cattani, G. T. C. Chiu, J. F. Rhoads, and S. F. Son. 2018. 3D printing of extremely viscous materials using ultrasonic vibrations. Additive Manufacturing 22:98–103. doi:10.1016/j.addma.2018.04.029.
  • Guo, C., M. Zhang, and B. Bhandari. 2019. Model Building and Slicing in Food 3D Printing Processes: A Review. Comprehensive Reviews in Food Science and Food Safety 18 (4):1052–69. doi:10.1111/1541-4337.12443.
  • Han, T., Y. Fujia, C. Xu, G. Li, W. Xiaoping, W. Jinhong, H. Jianlian, and W. Shaoyun. 2023. Investigation and effect on 3D printing quality of surimi ink during freeze-thaw cycles by antifreeze peptides. Journal of Food Engineering 337:111234.
  • He, C., M. Zhang, and C. Guo. 2020. 4D printing of mashed potato/purple sweet potato puree with spontaneous color change. Innovative Food Science & Emerging Technologies 59:102250. doi:10.1016/j.ifset.2019.102250.
  • Hertafeld, E., C. Zhang, Z. Jin, A. Jakub, K. Russell, Y. Lakehal, K. Andreyeva, S. N. Bangalore, J. Mezquita, J. Blutinger, et al. 2019. Multi-Material Three-Dimensional Food Printing with Simultaneous Infrared Cooking. 3D Printing and Additive Manufacturing 6 (1):13–9. doi:10.1089/3dp.2018.0042.
  • Huang, Y., M. Zhang, and P. Pattarapon. 2022. Reducing freeze-thaw drip loss of mixed vegetable gel by 3D printing porosity. Innovative Food Science & Emerging Technologies 75:102893. doi:10.1016/j.ifset.2021.102893.
  • Jiang, Q., M. Zhang, and A. S. Mujumdar. 2022. Novel evaluation technology for the demand characteristics of 3D food printing materials: A review. Critical Reviews in Food Science and Nutrition 62 (17):4669–83. doi:10.1080/10408398.2021.1878099.
  • Kamlow, M.-A., S. Vadodaria, A. Gholamipour-Shirazi, F. Spyropoulos, and T. Mills. 2021. 3D printing of edible hydrogels containing thiamine and their comparison to cast gels. Food Hydrocolloids. 116:106550. doi:10.1016/j.foodhyd.2020.106550.
  • Ke, Y., Y. Wang, W. Ding, Y. Leng, Q. Lv, H. Yang, X. Wang, and B. Ding. 2020. Effects of inulin on protein in frozen dough during frozen storage. Food & Function 11 (9):7775–83. doi:10.1039/d0fo00461h.
  • Kim, N. P., J.-S. Eo, and D. Cho. 2018. Optimization of piston type extrusion (PTE) techniques for 3D printed food. Journal of Food Engineering 235:41–9. doi:10.1016/j.jfoodeng.2018.04.019.
  • Kong, D., M. Zhang, A. S. Mujumdar, and J. Li. 2023. Feasibility of hydrocolloid addition for 3D printing of Qingtuan with red bean filling as a dysphagia food. Food Research International (Ottawa, Ont.) 165:112469. doi:10.1016/j.foodres.2023.112469.
  • Lee, C. P., M. Takahashi, S. Arai, C. L. K. Lee, and M. Hashimoto. 2021. 3D Printing of Okara Ink: The Effect of Particle Size on the Printability. ACS Food Science & Technology 1 (11):2053–61. doi:10.1021/acsfoodscitech.1c00236.
  • Li, Q., H. Lan, and Z. Zhao. 2019. Protection effect of sodium alginate against heat-induced structural changes of lactoferrin molecules at neutral pH. LWT 99:513–518. doi:10.1016/j.lwt.2018.10.019.
  • Li, Y., C. Li, X. Ban, L. Cheng, Y. Hong, Z. Gu, and Z. Li. 2021. Alleviative effect of short-clustered maltodextrin on the quality deterioration of frozen dough: Compared with trehalose and guar gum. Food Hydrocolloids. 118:106791. doi:10.1016/j.foodhyd.2021.106791.
  • Liang, H., Y. Zhou, H. Ma, and Q. Zhou. 2019. Adaptive Distributed Observer Approach for Cooperative Containment Control of Nonidentical Networks. IEEE Transactions on Systems, Man, and Cybernetics: Systems 49 (2):299–307. doi:10.1109/TSMC.2018.2791513.
  • Liang, Y., Z. Chen, M. Liu, Z. Qu, H. Liu, J. Song, M. Zhu, X. Zhang, B. He, and J. Wang. 2022. Effect of curdlan on the aggregation ­behavior and structure of gluten in frozen-cooked noodles during frozen storage. International Journal of Biological Macromolecules 205:274–282. doi:10.1016/j.ijbiomac.2022.02.085.
  • Lin, J., H. Hong, L. Zhang, C. Zhang, and Y. Luo. 2019. Antioxidant and cryoprotective effects of hydrolysate from gill protein of bighead carp (Hypophthalmichthys nobilis) in preventing denaturation of frozen surimi. Food Chemistry 298:124868. doi:10.1016/j.foodchem.2019.05.142.
  • Lipton, J. I. 2017. Printable food: The technology and its application in human health. Current Opinion in Biotechnology 44:198–201. doi:10.1016/j.copbio.2016.11.015.
  • Liqing, Q., Z. Min, B. Bhesh, C. Bimal, and C. Lu. 2023. Investigation of 3D printing of apple and edible rose blends as a dysphagia food. Food Hydrocolloids. 135:108184.
  • Liu, L., X. Yang, B. Bhandari, Y. Meng, and S. Prakash. 2020. Optimization of the formulation and properties of 3D-printed complex egg white protein objects. Foods 9:164. doi:10.3390/foods9020164.
  • Liu, Z., B. Bhandari, C. Guo, W. Zheng, S. Cao, H. Lu, H. Mo, and H. Li. 2021. 3D printing of shiitake mushroom incorporated with gums as dysphagia diet. Foods 10:2189. doi:10.3390/foods10092189.
  • Liu, Z., A. Dick, S. Prakash, B. Bhandari, and M. Zhang. 2020. Texture modification of 3D printed air-fried potato snack by varying its internal structure with the potential to reduce oil content. Food and Bioprocess Technology 13 (3):564–576. doi:10.1007/s11947-020-02408-x.
  • Liu, Z. B., X. B. Xing, H. Z. Mo, D. Xu, L. B. Hu, H. B. Li, and B. Chitrakar. 2023. 3D printed dysphagia diet designed from Hypsizygus marmoreus by-products with various polysaccharides. Journal of Food Engineering 343:111395. doi:10.1016/j.jfoodeng.2022.111395.
  • Liu, Z., J. Yang, Z. Shi, L. Chen, and B. Zheng. 2021. Effect of stearic acid on the microstructural, rheological and 3D printing characteristics of rice starch. International Journal of Biological Macromolecules 189:590–6. doi:10.1016/j.ijbiomac.2021.08.174.
  • Liu, Z., M. Zhang, and B. Bhandari. 2018. Effect of gums on the rheological, microstructural and extrusion printing characteristics of mashed potatoes. International Journal of Biological Macromolecules 117:1179–1187. doi:10.1016/j.ijbiomac.2018.06.048.
  • Liu, Z., M. Zhang, and C-h Yang. 2018. Dual extrusion 3D printing of mashed potatoes/strawberry juice gel. LWT 96:589–96. doi:10.1016/j.lwt.2018.06.014.
  • Luo, J., G. Xia, L. Liu, A. Ji, and Q. Luo. 2022. Fabrication of chitosan/hydroxyethyl cellulose/TiO2 incorporated mulberry anthocyanin 3D-printed bilayer films for quality of litchis. Foods 11 (20):3286. doi:10.3390/foods11203286.
  • Ma, Y., M. A. I. Schutyser, R. M. Boom, and L. Zhang. 2021. Predicting the extrudability of complex food materials during 3D printing based on image analysis and gray-box data-driven modelling. Innovative Food Science & Emerging Technologies 73:102764. doi:10.1016/j.ifset.2021.102764.
  • Melendrez-Ruiz, J., S. Chambaron, Q. Buatois, S. Monnery-Patris, and G. Arvisenet. 2019. A central place for meat, but what about pulses? Studying French consumers’ representations of main dish structure, using an indirect approach. Food Research International (Ottawa, Ont.) 123:790–800. doi:10.1016/j.foodres.2019.06.004.
  • Muthurajan, M., A. Veeramani, T. Rahul, R. K. Gupta, T. Anukiruthika, J. A. Moses, and C. Anandharamakrishnan. 2021. Valorization of food industry waste streams using 3D food printing: A study on noodles prepared from potato peel waste. Food and Bioprocess Technology 14 (10):1817–1834. doi:10.1007/s11947-021-02675-2.
  • Overvelde, J. T. B. 2019. How to print multi-material devices in one go. Nature 575 (7782):289–90. doi:10.1038/d41586-019-03408-4.
  • Pattarapon, P., M. Zhang, and A. S. Mujumdar. 2022. Application ­potential of 3D food printing to improve the oral intake for ­immunocompromised patients: A review. Food Research International 160:111616– doi:10.1016/j.foodres.2022.111616.
  • Peng, M., Z. Gao, Y. Liao, J. Guo, and Y. Shan. 2022. Development of functional kiwifruit jelly with chenpi (FKJ) by 3D food printing technology and its anti-obesity and antioxidant potentials. Foods 11:1894. doi:10.3390/foods11131894.
  • Petimar, J., A. H. Grummon, D. Simon, and J. P. Block. 2023. Nutritional Composition and Purchasing Patterns of Supermarket Prepared Foods Over Time. American Journal of Preventive Medicine 64 (2):213–220. doi:10.1016/j.amepre.2022.08.021.
  • Qin, L., Y. Fu, F. Yang, Z. Chang, C. Zou, H. Gao, D. Jiang, and C. Jia. 2022. Effects of polysaccharides autoclave extracted from Flammulina velutipes mycelium on freeze-thaw stability of surimi gels. LWT 169:113941. doi:10.1016/j.lwt.2022.113941.
  • Raj, G. V. S. B., and K. K. Dash. 2022. Comprehensive study on applications of artificial neural network in food process modeling. Critical Reviews in Food Science and Nutrition 62 (10):2756–83. doi:10.1080/10408398.2020.1858398.
  • Severini, C., D. Azzollini, M. Albenzio, and A. Derossi. 2018. On printability, quality and nutritional properties of 3D printed cereal based snacks enriched with edible insects. Food Research International (Ottawa, Ont.) 106:666–676. doi:10.1016/j.foodres.2018.01.034.
  • Shi, Y., L. Tu, C. Yuan, J. Wu, X. Li, S. Wang, H. Chen, and X. Chen. 2022. Regulatory mechanisms governing collagen peptides and their 3D printing application for frozen surimi. Journal of Food Science 87 (6):2692–706. doi:10.1111/1750-3841.16183.
  • Statista. 2022a. https://www.statista.com/statistics/261743/deli-department-sales-in-the-us/
  • Statista. 2022b. https://www.statista.com/statistics/1307551/japan-ready-to-eat-food-market-size/
  • Stevenson, M., J. Long, P. Guerrero, K. de la Caba, A. Seyfoddin, and A. Etxabide. 2019. Development and characterization of ribose-crosslinked gelatin products prepared by indirect 3D printing. Food Hydrocolloids. 96:65–71. doi:10.1016/j.foodhyd.2019.05.018.
  • Sun, P., Y. Zhang, Y. Zhang, Z. Feng, S. J. Lee, and L. Serventi. 2022. Antimicrobial activity of tofu whey and steam blanching pea water for enhancement of shelf-life of 3D printed mashed potatoes. Food Bioscience 50:102049. doi:10.1016/j.fbio.2022.102049.
  • Tang, T., M. Zhang, C. L. Law, and A. S. Mujumdar. 2023. Novel strategies for controlling nitrite content in prepared dishes: Current status, potential benefits, limitations and future challenges. Food Research International 170:112984. doi:10.1016/j.foodres.2023.112984.
  • Teng, X., M. Zhang, and A. S. Mujumdar. 2021. 4D printing: Recent advances and proposals in the food sector. Trends in Food Science & Technology 110:349–363. doi:10.1016/j.tifs.2021.01.076.
  • Teng, X., M. Zhang, and B. Bhandri. 2019. 3D printing of Cordyceps flower powder. Journal of Food Process Engineering 42 (6):e13179. doi:10.1111/jfpe.13179.
  • Tian, J., N. Walayat, Y. Ding, and J. Liu. 2022. The role of trifunctional cryoprotectants in the frozen storage of aquatic foods: Recent developments and future recommendations. Comprehensive Reviews in Food Science and Food Safety 21 (1):321–39. doi:10.1111/1541-4337.12865.
  • Torres, M. D., R. Moreira, F. Chenlo, and M. H. Morel. 2013. Effect of water and guar gum content on thermal properties of chestnut flour and its starch. Food Hydrocolloids. 33 (2):192–8. doi:10.1016/j.foodhyd.2013.03.004.
  • UN. 2023. https://www.un.org/zh/193220
  • Walayat, Noman, Xiukang, Wang, Asad, Nawaz, Zhongli, Zhang, Ibrahim, Khalifa, Muhammad Hamzah, Saleem, Bilal Sajid, Mushtaq, Mirian, Pateiro, José M., Lorenzo, Sajid, Fiaz, Shafaqat, Ali,. (2021). Ovalbumin and kappa-carrageenan mixture suppresses the oxidative and structural changes in the myofibrillar proteins of grass carp (Ctenopharyngodon idella) during frozen storage. Antioxidants, 8, 1186, 10. doi:10.3390/antiox10081186.
  • Wang, R., Z. Li, J. Shi, M. Holmes, X. Wang, J. Zhang, X. Zhai, X. Huang, and X. Zou. 2021. Color 3D printing of pulped yam utilizing a natural pH sensitive pigment. Additive Manufacturing 46:102062. doi:10.1016/j.addma.2021.102062.
  • Warner, E. L., I. T. Norton, and T. B. Mills. 2019. Comparing the viscoelastic properties of gelatin and different concentrations of kappa-carrageenan mixtures for additive manufacturing applications. Journal of Food Engineering 246:58–66. doi:10.1016/j.jfoodeng.2018.10.033.
  • Wu, J., Y. Rong, Z. Wang, Y. Zhou, S. Wang, and B. Zhao. 2015. Isolation and characterisation of sericin antifreeze peptides and ­molecular dynamics modelling of their ice-binding interaction. Food Chemistry 174:621–9. doi:10.1016/j.foodchem.2014.11.100.
  • Wu, J., M. Zhang, S. Devahastin, and H. Chen. 2022. Improving 3D printability of pumpkin pastes by addition of surimi. Journal of Food Processing and Preservation 46 (11), e17127. doi:10.1111/jfpp.17127.
  • Wu, W., J. Li, J. Jiang, Q. Liu, A. Zheng, Z. Zhang, J. Zhao, L. Ren, and G. Li. 2022. Influence mechanism of ultrasonic vibration substrate on strengthening the mechanical properties of fused deposition modeling. Polymers 14:904. doi:10.3390/polym14050904.
  • Xie, Y., K. Zhou, B. Chen, S. Al-Dalali, C. Li, Y. Wang, Z. Wang, H. Zhou, P. Li, and B. Xu. 2023. Synergism effect of low voltage electrostatic field and antifreeze agents on enhancing the qualities of frozen beef steak: Perspectives on water migration and protein aggregation. Innovative Food Science & Emerging Technologies 84:103263. doi:10.1016/j.ifset.2022.103263.
  • Xing, X., B. Chitrakar, S. Hati, S. Xie, H. Li, C. Li, Z. Liu, and H. Mo. 2022. Development of black fungus-based 3D printed foods as dysphagia diet: Effect of gums incorporation. Food Hydrocolloids. 123:107173. doi:10.1016/j.foodhyd.2021.107173.
  • Yameng, S., Z. Min, and P. Pattarapon. 2022. Microwave-induced spontaneous deformation of purple potato puree and oleogel in 4D printing. Journal of Food Engineering 313:110757.
  • Yan, K., Y. Xiong, S. Wu, W. E. Bentley, H. Deng, Y. Du, G. F. Payne, and X.-W. Shi. 2016. Electro-molecular Assembly: Electrical Writing of Information into an Erasable Polysaccharide Medium. ACS Applied Materials & Interfaces 8 (30):19780–6. doi:10.1021/acsami.6b07036.
  • Yang, F., M. Zhang, and W. Wang. 2020. 3D Printing Physical Properties of Mochi as Affected by Different Compositions. Journal of Food Science and Biotechnology 39 (4):71–5.
  • Yang, F., C. Guo, M. Zhang, B. Bhandari, and Y. Liu. 2019. Improving 3D printing process of lemon juice gel based on fluid flow numerical simulation. LWT 102:89–99. doi:10.1016/j.lwt.2018.12.031.
  • Yu, N., M. Zhang, M. N. Islam, L. Lu, Q. Liu, and X. Cheng. 2015. Combined sterilizing effects of nano-ZnO and ultraviolet on convenient vegetable dishes. LWT - Food Science and Technology 61 (2):638–643. doi:10.1016/j.lwt.2014.12.042.
  • Yu, Q., M. Zhang, R. Ju, A. S. Mujumdar, and H. Wang. 2022. Advances in prepared dish processing using efficient physical fields: A review. Critical Reviews in Food Science and Nutrition doi:10.1080/10408398.2022.2138260
  • Yu, X., Z. Zhao, N. Zhang, B. Yan, W. Gao, J. Huang, J. Zhao, H. Zhang, W. Chen, and D. Fan. 2022. Effects of preheating-induced denaturation treatments on the printability and instant curing property of soy protein during microwave 3D printing. Food Chemistry 397:133682. doi:10.1016/j.foodchem.2022.133682.
  • Zeng, X., T. Li, J. Zhu, L. Chen, and B. Zheng. 2021. Printability improvement of rice starch gel via catechin and procyanidin in hot extrusion 3D printing. Food Hydrocolloids. 121:106997. doi:10.1016/j.foodhyd.2021.106997.
  • Zeng, M.Q. 2021. Method and device of ultrasonic-coordinated pulsed electric field tenderizing and high efficiency salting beef., CN202110962353.X[P].
  • Zhai, X., Z. Li, J. Zhang, J. Shi, X. Zou, X. Huang, D. Zhang, Y. Sun, Z. Yang, M. Holmes, et al. 2018. Natural Biomaterial-Based Edible and pH-Sensitive Films Combined with Electrochemical Writing for Intelligent Food Packaging. Journal of Agricultural and Food Chemistry 66 (48):12836–12846. doi:10.1021/acs.jafc.8b04932.
  • Zhang, M. 2019. The invention relates to a microwave cooperative 3D printing device and an accurate and efficient printing method for a plant gel system, CN201911002864.6.
  • Zhang, L., M. Zhang, A. S. Mujumdar, D. Yu, and H. Wang. 2023. Potential nano bacteriostatic agents to be used in meat-based foods processing and storage: A critical review. Trends in Food Science & Technology 131:77–90. doi:10.1016/j.tifs.2022.11.023.
  • Zhang, Y., A. Y. Lee, K. Pojchanun, C. P. Lee, A. Zhou, J. An, M. Hashimoto, U. X. Tan, C. H. Leo, G. Wong, et al. 2022. Systematic Engineering approach for optimization of multi-component alternative protein-fortified 3D printing food Ink. Food Hydrocolloids. 131:107803. doi:10.1016/j.foodhyd.2022.107803.
  • Zhao, L., M. Zhang, B. Bhandari, and B. Bai. 2020. Microbial and quality improvement of boiled gansi dish using carbon dots combined with radio frequency treatment. International Journal of Food Microbiology 334:108835. doi:10.1016/j.ijfoodmicro.2020.108835.
  • Zhao, L., M. Zhang, and H. Wang. 2022. Inhibition of the fishy odor from boiled crab meatballs during storage via novel combination of radio frequency and carbon dots. Food Control. 136:108843. doi:10.1016/j.foodcont.2022.108843.
  • Zhao, L., M. Zhang, H. Wang, and S. Devahastin. 2020. Effect of carbon dots in combination with aqueous chitosan solution on shelf life and stability of soy milk. International Journal of Food Microbiology 326:108650. doi:10.1016/j.ijfoodmicro.2020.108650.
  • Zhao, Z., Q. Wang, B. Yan, W. Gao, X. Jiao, J. Huang, J. Zhao, H. Zhang, W. Chen, and D. Fan. 2021. Synergistic effect of microwave 3D print and transglutaminase on the self-gelation of surimi during printing. Innovative Food Science & Emerging Technologies 67:102546. doi:10.1016/j.ifset.2020.102546.
  • Zhu, X., P. Yuan, T. Zhang, Z. Wang, D. Cai, X. Chen, Y. Shen, J. Xu, C. Song, and D. Goff. 2022. Effect of carboxymethyl chitosan on the storage stability of frozen dough: State of water, protein structures and quality attributes. Food Research International 151:110863. doi:10.1016/j.foodres.2021.110863.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.